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ABSTRACT 

A space S is /{"-embedded (G*-embedded) in a space X if two disjoint regular closed sets (closure 
disjoint open sets) of 5 are contained in disjoint regular closed sets (extended to closure disjoint open 
sets) of X. A space S is /{-extendable to a space X if any regular closed set of S can be extended to a 
regular closed set of X. It is shown that /{"-embedding and G*-embedding are identical with 
C*-embedding for certain fairly general classes of Tychonoff spaces. Under certain conditions it is 
shown that /?-extendability is related to z-embedding. Spaces in which the regular open sets are C and 
C*-embedded are also investigated. 

1980 Mathematics subject classification (Amer. Math. Soc): primary 54 C 45; secondary 54 D 15. 

1. INTRODUCTION 

It is well known that a set S is ^-embedded in a set X if given two disjoint zero 
sets Z and H of S, there exists disjoint zero sets E(Z) and E(H) of X such that 
E(H) n S = H and E(Z) n S = Z. We examine embeddings where Z, H, and 
E(Z), E(H) are regular closed sets or closure disjoint open sets. We relate these 
embeddings to C*-embeddings. A separation axiom, metanormality (every regular 
closed set is C*-embedded), plays a significant role in this so properties of this 
axiom will be investigated. These concepts will be applied to investigating 
Alexandroff s extension aX and relating it to BX. The question of the C*-embed-
ding of regular open sets is also studied. 

Studies of embeddings involving extending disjoint sets may be found in [21, [3] 
and [4]. Some like FF-embeddings are closely related to C*-embeddings. Much of 
the background and notation is in [13]. 
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12 ' Some embeddings related to C*-embeddings 89

DEFINITION 1.1. A set 5 is /"/"-embedded [2] (R*-embedded) [G* embedded]
{GG-embedded [2]} in a space X if given two disjoint closed sets (two disjoint
regular closed sets) [two closure disjoint open sets] {two disjoint open sets) of s,
they can be extended to two disjoint closed sets (can be extended to two disjoint
open sets} of X. A subset A of S is extended to a set E(A) of X if E(A) DS = 0.
A set S is ^-extendable to X if for R a regular closed in S, R is extendable to a
regular closed set of X. If in the above definiitons of (/?*-embedding) [G*-embed-
dings] we replace two by any number of (disjoint regular closed sets) [pairwise
closure disjoint open sets} we will use the term (77?*-embedding) [7"G*-embed-
ding].

2. Basic properties

THEOREM 2.1. The following are satisfied.
(a) A set S is G*-embedded in X if given two closure disjoint open sets G and H of

S, there exists closure disjoint open sets of X, G' and H' such that G c G' and
Ha H'.

(b) A GG-embedded subset is R-extendable. Hence every dense subset of an open
set is R-extendable; furthermore regular closed sets are R-extendable.

(c) Using the notation A -* B to mean that if a set S is A-embedded in a space X
then S is B-embedded in X, G* -» R*, TG* -» 77?*. For dense subsets of Tychonoff
spaces, G* +* R* -* C*; for dense subsets of open sets FF -* G* «-• R*.

(d) A regular closed set R of X is TR*-embedded in X.
(e) G*- and R*-embeddings are transitive; that is, if S is G*-embedded in X and

Xis G*-embedded in Y, then S is G*-embedded in Y.
(f) G*-embeddings are hereditary, that is if S c T c X and S is G*-embedded in

X, then S is G*-embedded in T. If S is dense in T and R*-embedded in X, S is
R*-embedded in T.

(g) If an open set G of X is R*-embedded (G*-embedded) in G,G is R*-em-
bedded (G*-embedded) in X. For open sets R* -* G*.

(h) An R*-embedded (G*-embedded) dense subset M of an open subset of X is
TR*-embedded (TG*-embedded).

(i) A dense subset of an open set is R*-embedded if given two disjoint regular
closed sets of S they can be extended to disjoint regular closed sets of X (that is, if S
is R*-embedded and R-extendable).

(j) In a normal space FF -* G* -* R*.
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PROOF, (b) Let R be a regular closed in S. Then S ~ R and R' have disjoint 
open extensions E(S ~ R) and E(R') in X. Then E(R')C, closure in X, is a 
regular closed extension of R; the .R-extendability of open and dense sets follows 
from the GG-embeddings of these sets [2]. 

(c) G* -* R*. Let A and B be disjoint regular closed sets of S; then A' and B', 
interiors with respect to S, are closure disjoint open sets of S with closure disjoint 
open extension E(A') and E(B') in X. The closures of these sets with respect to 
X are regular closed. The proof of TG* -» 77?* is similar. For dense subsets of 
open sets FF -> G*. Let 5 be dense in G an open set of X. Let U and V be 
closure disjoint open subset of S. The sets U" and V" with respect to G are 
disjoint open extensions of Uc and Vc (closures of U and V in S), by the 
FF-embeddings of S in X, the closures in X of U" and are disjoint. For 
dense subsets of X, R* -> G*. The proof is identical with the one above noting 
that closures of U and V in S and in X are regular closed. For dense sets 
R* -» C*. Let 5 be dense in X and let Z and i / be disjoint zero sets of S. Let 
G(Z) and G{H) be closure disjoint open sets of 5 containing Z and H 
respectively. The sets G(Z) C and G(H)C, closures with respect to S, have disjoint 
closures in X; so Z and H have disjoint closures in X. Hence S is C*-embedded 
in X. 

(d) Regular closed subsets of a regular closed set of a space are regular closed. 
(f) The first part is immediate. If Q and R are regular closed in S, they are 

contained in disjoint regular closed sets of x which contain Qc and Rc, closures 
with respect to T which are regular closed sets of T. 

(g) The i?*-embedding case follows from (d). From the /?*-embedding case and 
the last part of (c) the G*-embedding case follows. 

(i) This follows from (b). 
We omit the proofs of (a), (e), (h) and (j). 

REMARK 2.2. (d) is not true in general for rG*-embeddings and (f) is not in 
general true for /?*-embeddings (Theorem 6.10). 

3. C*-embeddings of regular open sets 

COROLLARY 3.1. The following are equivalent for a Tychonoff space X. 
(a) Every regular open set is C*-embedded in its closure. 
(b) Every regular open set is R*-embedded in its closure. 
(c) Every regular open set is R*-embedded in X. 
(d) Every regular open set is G*-embedded in its closure. 
(e) Every regular open set is G*-embedded in X. 
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1*1 Some embeddings related to C*-embeddings 91

PROOF, (e) <-• (d) -» (b) <-> (c) -> (a) follow from Theorem 2.1, (c) and (g).
(a) -» (e). Let (/ and V be closure disjoint open sets of a regular open set G. The
sets £/" and V", closures and interiors with respect to G, are zero sets of
U" U V" that can be extended to disjoint zero sets of U U V (closures in X).
Since U" U V" is regular open in G and hence in X, then U C\ V = 0 and G is
^•-embedded in X.

Related to Corollary 3.1 is the question as to whether a space is extremally
disconnected (ED) if the regular open sets are C*-embedded. On the positive side
we have the following result.

THEOREM 3.2. An Oz-space (space where open subsets are z-embedded [6]) is
extremally disconnected (ED) iff every regular open set is C-embedded. A space
such that the union of two regular open sets is C*-embedded is ED.

PROOF. In an ED space every regular open set is closed and thus C-embedded.
Conversely in an Oz-space every regular open set is a cozero set and hence by the
C-embedding is a zero-set; so the space is ED. We omit the proof of the last part.

Except to replace C-embedding by well embedding (S is well-embedded in X if
S is completely separated from any disjoint zero set of X contained in X ~ S
[17]) we can not substantially improve Theorem 3.2. For we have below an
example of a Tychonoff space such that every regular open set is C-embedded
that is not ED and an Oz-space such that every regular open set is C*-embedded
but is not ED.

EXAMPLE 3.3. Let / be the quotient map and KN be the quotient image of (IN
obtained by identifying two points of ftN ~ N. Designate the resulting point as
[y]. We will show that every regular open set of KN is C-embedded. For R
regular closed # - / ? ' = 0 or [y] since in /3Nf-\R) is open. If y <£ R, R = Rl

so R' is C-embedded in X. This also happens if y e i i ' . Suppose y & R and
R* R\ there exists Nv N2 such that N = Nx U N2 and Nx n N2= 0 and
y(=Nfn Nl Thus KN = 0N2 U $N2 and $NX n $N2 = [y]. Then neither one
of R' n fiNx and R' n ftN2 contains y and y is a limit point of only one of them;
for if y were a limit point of both then R would be in KN and R = R'. Then R'
is C-embedded in R since one of R' O /?#! and R' n fiN2 is clopen and R' is
pseudocompact.

It is clear that Example 3.3 is not Oz unlike the next example in which the
regular open sets are C*-embedded but not C-embedded.

EXAMPLE 3.4. Let X be the quotient map of IT = N U D [13, page 197]
obtained by identifying two points of D. By the same argument as in Theorem 1
we can show that regular open sets of X are C*-embedded in their closure. We
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can show that X is Oz by using the fact that every point of X is a zero set and the
fact that FT is Oz. This establishes that regular closed sets are C*-embedded since
Oz-spaces are metanormal [15] and [19].

The following example shows that a space may satisfy the conditions of
Corollary 3.1 but not every regular open set is C*-embedded in the space.

EXAMPLE 3.5. Let M be a discrete set of cardinality c. We partition M into an
uncountable number of denumerable infinite families {Pa}- Let P'a = clpMP3~
M. The c sets {Pa} are pairwise disjoint subsets of BM ~ M. Construct D by
assigning one point da for each set P'a and let D = {da}. Compare with
construction of II [13]. Using the quotient topology, let X = N U D U M where
N U D = II and D U M c j S M and (N U D) n (Z) U M) = D. The regular
open set M is C*-embedded in D U M but not in X. Otherwise D would be
C*-embedded in II since D U M is normal, since the family {daU Pa) is
discrete. We will show that every regular open set is C*-embedded in its closure.
Let R be regular closed. Then R = RM U RN where RN = (R n N)c and
RM = (R n M)c and RM and i?^ are regular closed. Consequently R' = (RN n
RM) U(RC\ N)U(RC\ M). For let ^ e Z?̂  n RM, then j> e (£ n iV)c n (#
n M)cand (/? n iV)c is open in N U £> and (/? n A/)c is open in D U M. There
exists open Gy of (R D N)c such that 6 ^ n / ) = {y} and G open ^ of
(R n M)c such that Hy n D = {y}, Gy<z(Rn N)c, Hyd(Rn M)c. The set
//v U Gy is open in X and contained in /?. If / is continuous on R', fn (f
restricted to iV) can be extended continuously on RM. Thus / can be extended
continuously to R since / is uniquely defined on RM n RN.

4. Relation to C*-embeddings and metanormal spaces

DEFINITION 4.1. A space X is metanormal (MN) if given A and B regular
closed, A C\ B = 0 , there exists disjoint open sets G and H such that A c G,
B c H.

These spaces were studied systematically in [19] and [21] and called K-normal
and mildly normal respectively.

THEOREM 4.2 [19] and [21]. The following are equivalent for a space X.
(a) XisMN.
(b) Given A and B, disjoint regular closed sets, they are completely separated in

X.
(c) Every regular closed set of X is C* -embedded.
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(6] Some embeddings related to C*-embeddings 93

Using the fact [2] that a set S is z-embedded in a space X if any two disjoint
cozero sets may be extended to disjoint cozero sets of X, we may establish the
following equivalence for MN.

(d) Every regular closed set is z-embedded.

?*

THEOREM 4.3. The following hold.
(a) IfS<zX,S is MN, then C* -» G* -> R*
(b) IfXisMN, then for a subsets, R* -* G* -* C*.
(c) IfXis MN and S is R*-embedded or G*-embedded, then S is MN.

PROOF, (a) C* -* G*. Let G and H be closure disjoint open sets of S. Let Z
and Q be disjoint zero sets of 5 such that G c Z and H c Q guaranteed by
Theorem A. Let E(Z) and E(Q) be disjoint zero set extensions of Z and Q
respectively which are in turn contained in closure disjoint open sets G' and H'.
Since G c f f , H c J/', and by Theorem 1, S is G*-embedded and hence
fl*-embedded in X.

(b) R* -* G*. Let G and f/ be closure disjoint open sets of S then Gc and # c

(closures in S) are contained in disjoint regular closed sets A and B of X. There
exists closure disjoint open sets of A', A' and B' such that A c A' and 5 c B' by
Theorem 4.2. Then G <z A' and H c fi'. An application of Theorem 2.1 com-
pletes the proof. G* -* C*. Let Z and £ be disjoint zero sets of S. They are
contained in closure disjoint open sets G and H of S. Let E(G) and £ ( i / ) be
closure disjoint open extensions of G and H respectively in X. By Theorem 4.2, G
and H will be contained in disjoint zero sets of X establishing the C*-embedding
of 5 in X.

(c) Let A and B be disjoint regular closed sets of 5. By the /?*-embedding of S
in X, there exists disjoint regular closed sets of X, A' and B' such that A a A'
and B c £'. By the MN property of X there exists disjoint open sets of X, G and
H such that A' c G, B' c //. Then G n S and i / n 5 are disjoint open sets of S
such that 4̂ c G n S and G c / / n S . The proof is completed by noting that
G* -» /?*.

COROLLARY 4.4. / / S « Tychonoff and MN and KS is a T2 compactification of S
then KS = BSifS is R*-embedded = G*-embedded in KS.

COROLLARY 4.5. For X Tychonoff, X is R*-embedded = G*-embedded in BX if
and only if X is MN.

We note with Theorems 2.1 and 4.3 the following equivalences may be added to
Theorem 4.2.
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(e) Every R*-embedded subset is C*-embedded. 
(f) Every regular closed set is G* -embedded. 
(g) Every R*-embedded subset is G*-embedded. 
(h) The R*-embedded and the G*-embedded subsets are identical. 

COROLLARY 4.6. In a hereditary MN-space the C*-embedded, G*-embedded and 
R*-embedded subsets are identical. 

EXAMPLE 4.7. The example IT mentioned in Example 3.4 is hereditary ED so IT 
is hereditary MN but IT is not normal [13, page 197]. 

Lane [15] and Shchepin [19] have shown that every Oz-space is MN and Noble 
[18] has shown that the product of real lines is Oz. 

EXAMPLE 4.8. A product of real lines is not ED or necessarily normal but is 
MN. 

EXAMPLE 4.9. The set of all countable ordinals is not Oz [6] but is normal and 
hence is MA'. 

COROLLARY 4.10. A Tychonoff space X is R*-embedded (G*-embedded) in every 
Tychonoff space in which X is embedded if and only if X is almost compact and MN. 

Later in Example 5.4, we will show that an almost compact space is not 
necessarily MN. 

We can show that every dense subset of a Tychonoff space is MN if every open 
set is MN. This condition neither implies that the space is hereditary MN nor that 
every C*-embedding or even C-embedding is a G*-embedding in the space. For 
we may embed any Tychonoff space S, in the product of real lines in which every 
open set is Oz [6] and hence MN as a C*-embedded subset. Since S may not be 
MN, S say may not be /?*-embedded or G*-embedded in X. 

5. Alexandroffs extension aX 

DEFINITION 5.1 [5]. An open filter ^ is regular (completely regular) if for 
G e <S there exists H e 'S there exists H e ^ such that H c G (and a real 
function fonX such that f{H) = 0 and / ( X ~ G) = 1). 

Alexandroff [1] identified a fixed regular open ultrafilter (completely regular 
open ultrafilter) with the adherent point of the filter. The space aX(a'X) 
consisted of l u (Ĵ : a e A) where each is a free regular (completely 

https://doi.org/10.1017/S1446788700031396 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031396


[ 81 Some embeddings related to C*-embeddings 95

regular) open ultrafilter of X. A base for the topology on aX(a'X) consists of the
sets of the form G' = G U {&a: G e J ^ } , that is, the strict extension [5].
Alexandroff showed that a'X = fiX. Votavova [23] proved the following theorem
connecting aX and fiX.

THEOREM 5.2. A necessary and sufficient condition that aX = fiX is that for
every sequence of sets {An: Ac

n c A'n_l, A'n ¥= 0, n = 1,2,...} there exists a
continuous function to the reals f and k such that / ( ~ Ax) c [0] and f(Ak) c [1).
The superscripts i and c mean interior and closure respectively.

It is immediate that if X is MN, X satisfies the condition of Votavova.

THEOREM 5.3. (a) If X is MN, aX = $X. (b) If X is R*-embedded in aX, aX is

regular, (c) / / (b) holds and aX = 0X, X is MN.

PROOF, (b) Let x e G* a member of the base of aX. There exist H e 'Sx such
that H c G. Then x e H* c G*. The latter relation is due to the i?*-embedding
of X in aX since G* is regular open, (c) follows from Theorem 4.3.

EXAMPLE 5.4 (JACK PORTER). This is an example of a space satisfying the
condition of Theorem 5.2 which is not MN. Let Tx, T2 and T3 be copies of the
Tychonoff Plank and let X = 7\ U T2 U 73 which A\ and JV2 and W3 identified
using the quotient topology. The one free regular ultrafilter is completely regular.
Since T3 and 7\ are regular closed sets of X not contained in disjoint open sets of
X, X is not MN.

The above example also shows that an almost compact space may not be MN
and also is an example of C*-embedded subset that is not R*- or G*-embedded
(in /iX), by Theorems 4.3, and 5.2.

6. Metatransitiviry of embeddings

DEFINITION 6.1. Let S be dense in X (in T) and let S c T c I If S is
A -embedded in X implies T is A embedded in X then A -embeddings are said to
be metatransitive (paratransitive). If S is ^-embedded in X implies S is .4-em-
bedded in T then A -embeddings are said to be hereditary.

It is well known that C- and C*-embeddings are paratransitive; but FF-embed-
dings and z-embeddings are not metatransitive.
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EXAMPLE 6.2. Since N is Lindelof, N is z-embedded in any compactification
KN [7]. If KN is the compactification of Example 3.3, then KN - [y] is not
z-embedded in KN.

EXAMPLE 6.3. If M is a non-normal dense subset of BN, then M is not
FF-embedded in BN, whereas N being normal, is FF-embedded in BN.

THEOREM 6.4. R*-embeddings are paratransitive.

PROOF. Let 5 be /?*-embedded in X and be dense in T c X. Let A and B be
disjoint regular closed sets of T, then A n S and B n S are regular closed sets of
S for if A = Gc, G open in T, A must be the closure of G C\ S in T. Otherwise
there exists F = ( G n S)c, F c A, F * A. So F c G and thus G - F * 0
contrary to S being dense in T. So A D S is the closure of G n S in S; let A' and
B' be disjoint regular closed sets of X suth that A n S <z A' and B n S <z B'.
Then ^ c / , fie 5 ' , since ,4 c (^ n 5 ) c in I and B c (B n 5 ) c in X. The
/?*-embedding of T in X follows.

COROLLARY 6.5. G*-embeddings are metratransitive.

PROOF. A dense embedding is an /?*-embedding if it is a G*-embeddings.
We will later show that G*-embeddings are not paratransitive.

COROLLARY 6.6. LetS(zT<z/lS.IfS is MN then Tis MN.

PROOF. By Theorem 4.3, S is G*-embedded in BS and by Corollary 6.5, T is
G*-embedded in j3S; by Theorem 4.3 T in MN.

COROLLARY 6.7. If S c T <z BS and S is FF-embedded in BS, then T is
G*-embedded in BS.

PROOF. S is normal [2].

COROLLARY 6.8. The Tychonoff Plank T and the square plank, W* X W* -
(w*, w*) are MN.

PROOF. The set Wx N is normal and C*-embedded in T and W X W is
normal and C*-embedded in W* X W*. An application of Corollary 6.6 com-
pletes the proof.

We note that Zaitsev [19] has shown that the Niemytski plane is MN.
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REMARK 6.9. A theorem of the type of Corollary 6.6 is satisfied for many
properties, such as pseudocompactness, extremal disconnectedness, basic discon-
nectness, being an F-space and connectness [13]. If we replace fiS by vS, the
property is satisfied by being a P-space, [13], Oz [6] and weakly S-normally
separated [16].

THEOREM 6.10. In general (a) G* -» C*. (b) C* -» G*. (c) R*-embedding are
not hereditary, (d) G*-embeddings are not paratransitive.

PROOF. Let X = N U D c BN, N n D = 0 , D countable and discrete. Let
Y = Xu T, where T is the Tychonoff Plank and N is also the side of the
Tychonoff Plank homeomorphic to the integers and the topology in Y is the
quotient topology, (a) The set N is C*-embedded in X but not in Y = X U T.
For if N were C*-embedded in Y, X would be C*-embedded in Y, X would be
C*-embedded in Y and hence in T. However similar to the proof of Corollary 3.1
(a) -> (c), N is G*-embedded in Y. (b) the space Y is not MN since the regular
closed set X is not C*-embedded in Y, so by Theorem 4.3, Y is not G*-embedded
in BY. (c), the set D is /?*-embedded in Y since X is regular closed in Y
(Theorem 2.1): By Theorem 4.3, D is not /?*-embedded in MN-space T since D
is not C*-embedded in T. (d) the set X is not (/"-embedded in Y even though N
is G*-embedded in Y by part (a). For if X were G*-embedded in Y, D would be
G*-embedded in Y and hence in T since G*-embeddings are hereditary.

We note that we could have used Example 3.5 to prove Theorem 6.10.

THEOREM 6.11. In an MN-space X an R*-embedding is hereditary and G*-
embedding is paratransitive.

PROOF. From Theorem A(h) the R*- and G*-embedded sets are identical and
#*-embeddings are paratransitive (Theorem 6.4) and G*-embeddings are heredi-
tary (Theorem 2.1).

7. R*- and G*-embeddings of every set

DEFINITION 7.1 [10]. A space X is seminormal if given two disjoint closed sets
A and B of X, there is a regular closed set R such that A c R c — B.

It follows that an MN seminormal space is normal.

THEOREM 7.2. (a) A space is normal if and only if every closed set of X is
G*-embedded, (b) A space X is seminormal if and only if every closed set of X is
R*-embedded.
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PROOF. We prove only (b). Let A and B be regular closed sets of a closed set F
of a seminormal space X. There exists disjoint regular closed sets of X, A' and B'
such that A c A', B c B' so F is i?*-embedded in X. Conversely suppose every
closed set of X is /?*-embedded and A and B are disjoint closed sets of X. Then
A and B are disjoint regular closed sets of A U B, so A and 5 are contained in
disjoint regular closed sets of X.

THEOREM 7.3 (JACK PORTER). Let S be Tychonoff and not normal. Then S may
be embedded as a closed set of seminormal Tychonoff space that is not normal.

PROOF. Katetov [14] has shown that any Hausdorff space S may be embedded
in a semiregular Hausdorff space l a s a closed set. Dickman and Zame [10]
showed that X is seminormal and Porter showed that X is Tychonoff if S is
Tychonoff.

THEOREM 7.4. The following are equivalent for a space X.
(a) X is extremally disconnected (ED).
(b) Every dense open set is R*-embedded.
(c) Every dense open set is G*-embedded.

PROOF, (a) -» (b), since ED -* MN every dense and open set is MN and
C*-embedded so these sets are G*-embedded. (b) -> (c) from Theorem 2.1.
(c) -> (a). Let G and H be disjoint open sets of X. Then U = G U H is dense and
open in X. Since G and H are closed and disjoint in U they have closure disjoint
extensions in X. So X is ED.

THEOREM 7.5. The following are equivalent for a space X.
(a) X is normal and hereditarily ED.
(b) Every subset of X is G*-embedded.
(c) Every subset of X is R*-embedded.

PROOF, (a) -> (b), (a) -> (c) since very subset is C*-embedded [13] and A/TV,
every subset is G*- and /{""-embedded by Theorem 4.3. (b) -» (c) by Theorem 2.1.
(c) -» (a). The space X is ED by Theorem 7.4 and hence MN. Hence every
i?*-embedded set is C*-embedded; so X is hereditary ED and normal.
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8. Remarks on MV-spaces

The following theorem is easily proved.

THEOREM 8.1. Every Oz-space is MN [15]. An MN F'-space is an F-space. A
8-normal [16] MN-space is weakly ^-normally separated. Every regular closed set of
a space X is C-embedded if X is MN and wewakly S-normally separated.

EXAMPLE 8.2. There exists a 5-normal space that is not MN. Mack [16] has
constructed a 5-normal space that is not weakly S-normally separated. Such a
space cannot be MN by Theorem 8.1.

EXAMPLE 8.3. There exists an /"-space 5 that is not MN. Comfort, Hindman
and Negrepontis [9] have constructed an F'-space that is not an /"-space. By
Theorem 8.1, S is not MN.

The question arises in view of Theorem 4.3 as to how far from normality is MN
or how general are spaces in which we can describe C*-embeddings in terms of
regular closed sets or closure disjoint open sets. A normal space S is C*-
embedded in every normal space in which 5 is embedded as a closed set whereas
a Tychonoff space S is C*-embedded in every Tychonoff space in which S is
embedded as a closed set if and only if S is almost compact.

THEOREM 8.4. A Tychonoff space S is (a) C*-embedded ((b) z-embedded) in
every Oz-space in which S is embedded as a closed set if and only if S is almost
compact (or Lindelof).

PROOF. Every almost compact Tychonoff space S is C*-embedded in every
Tychonoff space in which 5 is embedded, a result of Hewitt. A Tychonoff space
S is z-embedded in every Tychonoff space in which S is embedded if S is almost
compact or Lindelof, a result of Blair and Hager [7]. (a) If S is not almost
compact, let KS be a compactification of S such that KS # j85. We embed K in
the product of closed intervals, II{Ia: a e A, A countable, Ia = [0,1]}. In turn
we embed this product in Y = $ { / a : a e A, Ja = 0,2}. In turn we embed this
product in Y = U{Ja: a&A,Ja = [0,2]}. Set X•= Y - (KS ~ S\). Since X
contains the 2-product with xa = 2 for each a, X is C*-embedded in Y [12]
based on work of H. H. Corson and A. M. Gleason. So that S is closed in X but
not C*-embedded in X. Otherwise S would be C*-embedded in Y and hence in
KS. The product Y is Oz being the product of separable metric spaces [18]. Since
X is dense in Y, X is also Oz [6]. The result follows, (b) If 5 is not Lindelof or
almost compact, there is a compactification KS in which S is not z-embedded [7].

https://doi.org/10.1017/S1446788700031396 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031396


100 C. E. Aull [13]

Construct Y and X as above since Y is Oz, X is z-embedded in Y [6]. So S
cannot be z-embedded in X. Otherwise S would be z-embedded in Y and hence
in KS.

DEFINITION 8.5. A property P is a Tychonoff C*-associate (z-associate) if for a
space S having a property P to be C*-embedded in every Tychonoff space
having property P in which S is embedded as a closed set, it is necessary that the
S be almost compact (almost compact or Lindeldf)-

COROLLARY 8.6. The properties Oz, MN and weakly 8-normally separated are
Tychonoff C*-associates and z-associates.

PROOF. OZ -* MN by Theorem 8.1 and Oz -» weakly 8-normally separated;
for in an Oz-space, regular closed sets are zero sets [6].

From Theorem 7.3 we can prove the following corollary of Theorem 8.4.

COROLLARY 8.7. Seminormality is (a) a Tychonoff C*-associated (b) a Tychonoff
z-associate.

PROOF, (a) Let 5 be a Tychonoff space that is not almost compact. By
Theorem 8.4 S is embedded in an Oz-space X as a closed and not C*-embedded
set. Then X may be embedded as a closed subset of a Tychonoff seminormal
space Y by Theorem 7.3. Then S is closed in Y but not C*-embedded in Y. The
proof of (b) is similar.

By the method of Corollary 8.7, we can show that P is a Tychonoff C*-associ-
ate if every Tychonoff space can be embedded as a closed set of a Tychonoff
space having property P.

For purpose of comparison a stronger condition than MN, almost normal, is
mentioned here.

DEFINITION 8.8 [20]. A space is AN if given two disjoint closed sets A and B,
one regular closed, there exists two disjoint open sets G and H such that A <z G,
B c H. (There is an equivariant formulation with G and H zero sets.)

Every extremally disconnected space is AN. We have

ED -» AN
i i
Oz -* MN + weakly 8-normally separated.

Unlike MN and seminormal, AN is not a Tychonoff C*-associate. We can easily
prove using the equivalent formulation of Definition 6.1:
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THEOREM 8.9. Let S be an AN-space which is Lindelof or almost compact. Then S
is C*-embedded in every AN-space in which S is embedded as a closed set.

EXAMPLE 8.10. The Tychonoff plank is not AN as it has a closed countable
subet that is not C*-embedded contrary to Theorem 8.9.

EXAMPLE 8.11. The square plank is MN (Example 6.2) and satisfies Z, being
countable compact [24], is not AN. For the closed sets Wx and W2 are contained
in disjoint open sets Gx and G2 respectively but are not contained in disjoint zero
sets [13]. So that Gx and W2 are not completely separated.

REMARK 8.12. Some results in regard to absolute C*-embedding of properties
betwen Tychonoff and normal may be found in [4]. The absolute C*-embedding
properties of ED space were investigated by Dow [11].

9. A-extendability

The concept of /{-extendability was defined in Definition 1.1 and in Theorem
2.1 it was shown that a GG-embedded subset was /^-extendable. Analogous to
Theorem 4.3 we prove

THEOREM 9.1.(a) A z-embedded Oz-space X is R-extendable. (b) An R-extenda-
ble subset S of an Oz-space X is z-embedded and (c) Oz. (d) A space X is Oz if
every R-extendable set of X is z-embedded.

PROOF, (a) From [2] a z-embedded Oz-space is GG-embedded and hence
A-extendable. (b) Let Z be a zero set of S. Then S - Z = UHn where each Hn is
a zero set of S. There exists regular closed neighborhoods of Z, {Rn}, such that
RnC\ Hn= 0. Then Rn has a regular closed extension E(Rn) which by the
Oz-property of A' is a zero set. Then (~\E(Rn) is a zero set extensions of Z in X.
(c) If R is a regular closed set of S, E(R) is a zero set by the Oz-property of X.
So R = S n E(R) is a zero set of S. (d) From [2] and Theorem 2.1 every open set
is .R-extendable and hence z-embedded. So X is Oz.

COROLLARY 9.2. An Oz-space is weakly perfectly normal [6] if every subset is
R-extendable.

COROLLARY 9.3. A Tychonoff space S is R-extendable in every Tychonoff space in
which S is embedded if S is almost compact or Lindelof, and Oz.
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EXAMPLE 9.4. The set BN ~ N is G*- and i?*-embedded in BN but is not 
/^-extendable as BN ~ N is not Oz and BN is Oz. 

EXAMPLE 9.5. The set N is z-embedded and Oz. So N is /^-extendable to T, the 
Tychonoff Plank; but N is not /?*-embedded in T. 

From Theorem 2.1 it follows that every subset of a completely normal space is 
/^-extendable since every subset is GG-embedded. However the result can be 
improved. 

THEOREM 9.6. The following are equivalent for a space X. 
(a) X is hereditary seminormal. 
(b) Every closed subset of X is R-extendable. 
(c) Every subset of X is R-extendable. 

COROLLARY 9.7. / / every closed set is R-extendable then every closed set is 
R*-embeddable. 

Analogous to Theorem 9.1 we have the following results. 

THEOREM 9.8. (a) Let S c X. An R*-embedded ED-space S is R-extendable to 
X. (b) An R-extendable subset of an ED-space X is R*-embedded in X and (c) ED. 

COROLLARY 9.9. The following are equivalent for a space X. 
(a) X is ED and every subset is R-extendable. 
(b) Every subset of X is R*-embedded. 
(c) X is hereditarily ED and normal. 

10. Conclusion 

In relating R*- and G*-embedding to C*-embedding, the MN property plays a 
vital role. Singal and Singal [21] noted that the MN property was preserved by a 
mapping that is both open and closed. We note using the following further 
equivalence for MN in Theorem 4.2 we can prove that the MN property is 
preserved under cozero set preserving mappings. 

(i) Two closure disjoint open subsets of X are completely separated. Example 
3.5 shows that MN is not preserved under closed maps. In regard to products 
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there are some results in [19] including that the product of two metanormal spaces

may not be MN. This was pointed out to the author by E. Van Douwen.

Analogous to a theorem of Blair [6] on Oz-spaces one can prove the following.

THEOREM 10.1. Assume that each finite subproduct in X = TlAXa satisfies the

countable chain condition. If every countable subproduct of X is MN then X is MN.
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