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SUMMARY

The WAIFW matrix (Who Acquires Infection From Whom) is a central parameter in modelling

the spread of infectious diseases. The calculation of the basic reproductive number (R0) depends

on the assumptions made about the transmission within and between age groups through the

structure of the WAIFW matrix and different structures might lead to different estimates for R0

and hence different estimates for the minimal immunization coverage needed for the elimination

of the infection in the population. In this paper, we estimate R0 for varicella in Belgium. The

force of infection is estimated from seroprevalence data using fractional polynomials and we

show how the estimate of R0 is heavily influenced by the structure of the WAIFW matrix.

INTRODUCTION

An essential assumption in modelling the spread of

infectious diseases is that the force of infection, which

is the probability for a susceptible to acquire the

infection, varies over time as a function of the level of

infectivity in the population [1]. For many infectious

diseases, the force of infection is also known to de-

pend on age. The equation describing the dependence

of the force of infection on age and time is given by

l(a, t)=
ðL
0
b(a, a0)I(a0, t)da0: (1)

The coefficients b(a, ak) are called the transmission

coefficients and I(ak, t) is the number of infectious

individuals at age ak and time t. These transmission

coefficients combine epidemiological, environmental

and social factors affecting the transmission rate be-

tween an infective of age ak and a susceptible of age a

[1, 2]. For the discrete case with a population divided

into a finite number, say n, of age groups, Anderson &

May [3] introduced the WAIFW (Who Acquires

Infection FromWhom) matrix in which the ij th entry

of the matrix, bij, is the transmission coefficient from

an infective in age group j to a susceptible in age

group i. Let �IIi be the total number of infectious

individuals in the ith age group at time t, i=1, …, n,

then the age- and time-dependent force of infection

can be approximated by the matrix product

l=W�II: (2)

Here, �II=(�II1, …, �IIn) is the vector in which the ith el-

ement is the number of infectious individuals (preva-

lence of infectivity) in age group i, l=(l1, …, ln) is

the vector in which the ith element is the force of

infection specific to age group i and W is a known

WAIFW matrix. The configuration of the WAIFW

matrix represents a priori knowledge (or assumptions)

* Author for correspondence : Dr T. Van Effelterre, Hasselt
University, Center for Statistics, Biostatistics, Agoralaan 1, B3590
Diepenbeek, Belgium.
(Email : tvaneff@yahoo.com)

Epidemiol. Infect. (2009), 137, 48–57. f 2008 Cambridge University Press

doi:10.1017/S0950268808000563 Printed in the United Kingdom

https://doi.org/10.1017/S0950268808000563 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268808000563


about the mixing patterns in the population. Several

configurations are discussed in the literature (see e.g.

[1, 2, 4–6]). For example, for a model with five age

groups the WAIFW matrix W1 in equation (3) re-

presents a mixing pattern for which individuals are

mixing only with individuals from their own age

group (assortative mixing [5]) with a specific age-de-

pendent transmission coefficient whileW2 represents a

mixing pattern similar to W1, also accounting for an

additional mixing of individuals with individuals of

other age groups with a ‘background’ transmission

coefficient:

Note that both matrices have five unknown para-

meters and both are symmetric. For each of these

contact structures, the number of parameters is equal

to the number of age groups. This is a condition to

have a solution [3]. Suppose that the population is

divided into n age groups and let l̂l=(l̂l1, …, l̂ln) be the

estimated vector of age-specific force of infection in

each age group. If the structure of the WAIFWmatrix

is known and consists of n unknown parameters, the

WAIFW matrix can be estimated using the equality

l̂l1
:
:
:
l̂ln

0
BBBB@

1
CCCCA=

ND

L
W

Y1

:
:
:
Yn

0
BBBB@

1
CCCCA, (4)

with N the total population size, D the mean duration

of infectiousness, L the life-expectancy at birth, and

Yj=ex’jx1xex’j and ’j=
Xj

i=1

l̂li(aixaix1): (5)

Here, aixaix1 is the width of the ith age group.

Hence, as long as the WAIFW matrix has a

known configuration with n unknown parameters, the

parameter vector b=(b1, …, bn) is identifiable. Note

that we expect that bio0, i=1, 2, … , n.

The basic reproductive numberR0 can be computed

as the dominant eigenvalue of a matrix for which

the ijth entry is the basic reproductive number R0ij ,

specific to the transmission from an infective in age

group j to a susceptible in age group i. More precisely,

R0ij=bi, jDNi whereD is the duration of infectiousness

assumed independent of age and Ni is the size of the

population in age group i. Therefore, the estimator

for R0 depends on the configuration of the WAIFW

matrix. Farrington et al. [4] showed that different

configurations of theWAIFWmatrix can lead to quite

different estimates for R0. For example, Farrington

et al. [4] estimated R0 for mumps to be equal to 25.5,

8.0 and 3.3 for the configuration of W2, W3 and W4,

respectively :

Hence, the uncertainty related to the WAIFW matrix

is coming from two different sources : (1) the uncer-

tainty about the unknown transmission coefficients

bi and (2) the uncertainty about the configuration of

the WAIFW matrix. Furthermore, Wallinga et al. [6]

showed that the basic reproductive number for

measles ranges between 770.38 when assortative mix-

ing pattern is assumed and 1.43 when infant mixing is

assumed, i.e. infants are assumed to be the source of

all infection [6].

In this paper, we present an investigation of the

estimation of the basic reproductive number, R0, and

pc, the minimal proportion of the population that

needs to be vaccinated to eliminate the infection, for

varicella in Belgium for which, currently, there is no

vaccination programme. Following the approach of

Greenhalgh & Dietz [5] we show that, depending on

our assumption about the contact patterns, R0 ranges

between 3.12 and 68.57, and pc ranges between 67.9%

and 98.5%.

This paper is organized as follow. In the next section,

we present six possible configurations for the WAIFW

W1=

b1 0 0 0 0
0 b2 0 0 0
0 0 b3 0 0
0 0 0 b4 0
0 0 0 0 b5

0
BBBB@

1
CCCCA, W2=

b1 b5 b5 b5 b5
b5 b2 b5 b5 b5
b5 b5 b3 b5 b5
b5 b5 b5 b4 b5
b5 b5 b5 b5 b5

0
BBBB@

1
CCCCA: (3)

W3=

b1 b1 b4 b4 b5
b1 b2 b4 b4 b5
b4 b4 b3 b4 b5
b4 b4 b4 b4 b5
b5 b5 b5 b5 b5

0
BBBB@

1
CCCCA, W4=

b1 b1 b3 b4 b5
b1 b2 b3 b4 b5
b3 b3 b3 b4 b5
b4 b4 b4 b4 b5
b5 b5 b5 b5 b5

0
BBBB@

1
CCCCA: (6)
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matrix for varicella and discuss the estimation of the

age-dependent force of infection from serological data

using fractional polynomials. In the ‘Estimation of

the transmission coefficients’ section, the WAIFW

matrices are estimated using the integrated force of

infection in the relevant age groups. Parametric and

non-parametric bootstrap is used to calculate confi-

dence intervals for the transmission coefficients. The

estimation of R0 and pc is discussed in the ‘Estimation

of R0 from the WAIFW matrices’ section.

Estimation of R0 and the WAIFW matrix for varicella

based on serological data

Age-dependent transmission coefficients

Several authors [4, 5, 7] illustrated how the estimation

of R0 is influenced by the configuration of the

WAIFW matrix. A specific configuration of the

WAIFW matrix represents specific assumptions

about age-dependent transmission coefficients in the

population which in turn represents prior assump-

tions about the mixing patterns in the population.

We illustrate these concepts for varicella in

Belgium. The population was divided into the fol-

lowing six age groups, taking into account the

schooling system in Belgium, 6 months–1 year, 2–5

years, 6–11 years, 12–18 years, 19–30 years and 31–44

years. Several configurations were discussed by

Anderson & May [1] and Greenhalgh & Dietz [5].

Assortative mixing assumes that all contacts occurs

within the age groups [5]. The matrixWV1 has specific

transmission coefficients within each age group, i.e. for

the transmission among hosts belonging to the same

age group on the diagonal, and of a common ‘back-

ground’ transmission coefficient between any two

different age groups. This ‘background’ transmission

coefficient is assumed equal to the transmission coef-

ficients in the oldest age group (b6). Note that the

transmission coefficient in the oldest age group and

the ‘background’ transmission coefficient between

different age groups are both expected to be smaller

than the transmission coefficients in younger age

groups. The second configuration, WV2, assumes that

the main route of transmission for a directly trans-

mitted viral infection like varicella is in kindergarten

children or in the classroom. This is expressed by a

unique coefficient b2 for the (presumed high) trans-

mission between infectious and susceptible hosts in

the range 2–5 years and two other specific coefficients

(b1 and b3) for transmission amongst other hosts aged

<12 years. The third configuration of the WAIFW

matrix, WV3 is a minor variation of the structure WV2

with a common transmission coefficient b1 between

hosts in the range 6 months–1 year and hosts aged

<12 years. For the fourth configuration, WV4, the

transmission coefficient depends only on the age

group of the susceptible host. The susceptible hosts of

a given age group are assumed to be as likely to ac-

quire infection from infectious hosts of any age. Note

that this structure is not symmetric. The fifth matrix

structure, WV5, is a minor variation of the assortative

structure WV1 in which there is a common trans-

mission coefficient in the two older age groups and a

distinct ‘background’ coefficient for the transmission

between any other two different age groups. Finally,

the sixth configuration, WV6, is the extreme case of

assortative mixing for which there is only trans-

mission assumed between hosts belonging to the same

age group. Of these proposed configurations, the

latter structure is most obviously unrealistic, it is

nevertheless useful as it provides an upper bound to

the basic reproductive number R0 [5].

WV1=

b1 b6 b6 b6 b6 b6
b6 b2 b6 b6 b6 b6
b6 b6 b3 b6 b6 b6
b6 b6 b6 b4 b6 b6
b6 b6 b6 b6 b5 b6
b6 b6 b6 b6 b6 b6

0
BBBBBB@

1
CCCCCCA
, WV2=

b1 b1 b3 b4 b5 b6
b1 b2 b3 b4 b5 b6
b3 b3 b3 b4 b5 b6
b4 b4 b4 b4 b5 b6
b5 b5 b5 b5 b5 b6
b6 b6 b6 b6 b6 b6

0
BBBBBB@

1
CCCCCCA
,

WV3=

b1 b1 b1 b4 b5 b6
b1 b2 b3 b4 b5 b6
b1 b3 b3 b4 b5 b6
b4 b4 b4 b4 b5 b6
b5 b5 b5 b5 b5 b6
b6 b6 b6 b6 b6 b6

0
BBBBBB@

1
CCCCCCA
, WV4=

b1 b1 b1 b1 b1 b1
b2 b2 b2 b2 b2 b2
b3 b3 b3 b3 b3 b3
b4 b4 b4 b4 b4 b4
b5 b5 b5 b5 b5 b5
b6 b6 b6 b6 b6 b6

0
BBBBBB@

1
CCCCCCA
,
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Estimation of the age-dependent force of infection

for varicella

The estimation of the WAIFW matrix requires

the estimation of the force of infection from pre-

vaccination data. Following the methodology pro-

posed by Anderson & May [1] (see also [2, 7]) we

assume that an age-specific serological profile can

be estimated from pre-vaccination data. This can be

done by modelling pre-vaccination seroprevalence

data. The age-dependent force of infection can be

derived from the estimated model for the prevalence

of seropositive hosts by using non-parametric

methods (discussed in [8, 9]), or parametric methods

(discussed in [4, 10–13]).

For varicella, we estimated the force of infection

by using a seroprevalence dataset consisting of 1673

individuals aged between 1 and 44 years that was

sampled in Antwerp (Belgium) between October

1999 and April 2000 and reported by Thiry et al. [14].

The sera were residual specimens submitted to

medical laboratories for diagnostic purposes. Sera for

the 1–11 years age group were collected from out-

patients hospitals in Antwerp, sera for the 12–18 years

age group were collected from volunteers in vaccine

trials and sera for age groups >16 years were

provided by a medical laboratory in Antwerp. The

population was stratified by age in order to sample

about 100 observations per age group. The force

of infection can be estimated from this serological

sample under the assumption that the disease is in a

steady state.

For the analysis presented in this paper, fractional

polynomial [15] models were used to describe the

dependency of the force of infection on age, as dis-

cussed in Shkedy et al. [13]. Briefly, a generalized

linear model for the binary data with logit link was

used to estimate the force of infection. The linear

predictor for that model is given by

gm(a, b, p1, p2, . . . , pm)=
Xm
i=0

biHi(a), (7)

where m is an integer, p1<p2<…<pm is a sequence

of powers and Hi(a) is a transformation function

given by

Hi(a)=
api if pilpix1,
Hix1(a)rlog(a) if pi=pix1,

�
(8)

with p0=0 and H0=1. As shown in Shkedy et al. [13]

the force of infection in this model can be expressed as

l(a)=gm(a, b, p1, p2, . . . , pm)
0 egm(a, b, p1, p2, ..., pm)

1+egm(a, b, p1, p2, ..., pm)
,

(9)

where gm(a, b, p1, p2, …, pm)k denotes the partial de-

rivative of gm(a, b, p1, p2, …, pm) with respect to age a.

Figure 1 shows, for the varicella dataset, the estimated

model for the prevalence of seropositive hosts (Fig. 1a)

and the force of infection (Fig. 1b). Constrained

fractional polynomials were fitted to ensure that the

estimated force of infection will be non-negative. The

model fit was based on the value of the Akaike

Information Criterion (AIC) and the selected model

has exponents p1=x0.4 and p2=x0.3 with an AIC

equal to 125.769.

The estimated force of infection is given by

equation (9), with m=2 and g2(a)=x40.231ax0.3

+28.153ax0.4+11.303. According to this model, the

force of infection for varicella in Belgium peaks at

2 years of age with a value of ‘(2)=0.3111 and drops

monotonically for older susceptibles. At 44 years of

age the force of infection is estimated to be 0.0315.

The mean force of infection for each of the six age

groups can be estimated by integrating from the

parametric model of the force of infection in equation

(9). Hence, we first use a flexible parametric model to

estimate the force of infection and integrate over

the age groups thereafter. The advantage of using

fractional polynomials is that this integration can be

performed analytically and the force of infection in

age group i (i=1, …, 6) is given by

li=
log 1+eg2 (ai )

1+eg2 (aix1)

� �
aixaix1

, (10)

where aix1 and ai are the lower and upper bounds of

age group i, respectively. The estimates for the six

age groups were l̂l1=0.254, l̂l2=0.267, l̂l3=0.160,

WV5=

b1 b6 b6 b6 b6 b6
b6 b2 b6 b6 b6 b6
b6 b6 b3 b6 b6 b6
b6 b6 b6 b4 b6 b6
b6 b6 b6 b6 b5 b6
b6 b6 b6 b6 b6 b5

0
BBBBBB@

1
CCCCCCA
, WV6=

b1 0 0 0 0 0
0 b2 0 0 0 0
0 0 b3 0 0 0
0 0 0 b4 0 0
0 0 0 0 b5 0
0 0 0 0 0 b6

0
BBBBBB@

1
CCCCCCA
:
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l̂l4=0.096, l̂l5=0.059 and l̂l6=0.037 for age groups

6 months–1 year, 2–5 years, 6–11 years, 12–18 years,

19–30 years and 31–44 years, respectively. Figure 1b

shows the force of infection estimated by the frac-

tional polynomial (solid line) and the integrated force

of infection (dashed line) for the six age groups.

Estimation of the transmission coefficients

Once the estimates of the force of infection are

obtained, the elements of the WAIFW matrix can be

computed by

L

DrN
l̂li=

Xn
j=1

bijYj,

where L is the life-expectancy at birth, D is the mean

duration of infectiousness, N is the total population

size and Yj is given by equation (5). Substituting the

l̂lis by their expression, we have

ex’0=1, (11)

ex’1=
1+eg(a0)

1+eg(a1)
: (12)

It is easy to show that for i=2, …, 6:

ex’i=Pi
j=1

1+eg(ajx1)

1+eg(aj)
: (13)

Hence, in our model for varicella using six age groups,

the expressions for the Yi s are

Yi=ex’ix1xex’i=
(1+eg(a0))(eg(ai)xeg(aix1))

(1+eg(aix1))(1+eg(ai))
, (14)

for i=1, …, 6, where a0=0.5, a1=2, a2=6, a3=12,

a4=19, a5=31, a6=45, N=10237988,D=7/365 years

and L=78 years.

System (4) (i=1, …, n) is a linear system of n

equations in n2 unknowns: the elements of the

WAIFW matrix bij (i, j=1, …, n). Since this system

is underdetermined, we need to impose a structure

upon the WAIFW matrix, limiting the number of

unknowns to n (n=6 for our model of varicella). We

have estimated the elements of the WAIFW matrix

for the six types of matrix structure described above.

For example, the estimate of b6 for the WAIFW

matrix structure WV3 is given by

b6=
L
DN l̂l6

Y1+Y2+Y3+Y4+Y5+Y6
: (15)

The expressions for the other bis are given in the

Appendix for matrix WV3. Similar expressions can be

derived for each of the five other matrix structures.

The estimates of the bis are given in Table 1 for the

sixWAIFWmatrix structures described above (see also

Fig. 2), together with two types of confidence intervals

(CIs) : the non-parametric bootstrap percentile 95%

Age (years)

Se
ro
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ev

al
nc

e

0 10 20 30 40 0 10 20 30 40

0·2

0·4

0·6

0·8

1·0
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e 
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 in
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io
n

0·0

0·05

0·10

0·15

0·20

0·25

0·30

Fig. 1. Estimated prevalence (a) and force of infection (b) for varicella in Belgium. – – –, Integrated force of infection.
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CIs and the parametric bootstrap percentile 95% CIs.

We now provide details on the computations.

Bootstrap confidence intervals

In the seroprevalence sample, we have 44 samples by

age of sizeNi (i=1, …, 44) and let pi be the proportion

of subjects of age i who are seropositive for varicella-

zoster virus antibodies. The total number of subjects

in the seroprevalence sample is N=
P

Ni. A non-

parametric bootstrap sample is a sample of size N

obtained by drawing a random sample (with replace-

ment) for each age i. The sample for age i is a sample

of size Ni drawn from a Bernoulli distribution with

probability pi. Since we are interested in the number

of subjects seropositive for varicella-zoster virus in the

sample, we can equivalently generate a random value

from the binomial distribution (Ni, pi) for each age i.

We have used 1000 bootstrap samples in the compu-

tation since this is deemed necessary for the estima-

tion of confidence intervals. For each bootstrap

sample, we can then estimate the parameters of the

model. For these estimates, we can estimate the mean

force of infection l1, l2, …, l6, in each of the six age

groups. In this way we obtain 1000 bootstrap values

Table 1. Parameter estimates for the transmission coefficients. Decimal

points are shown to illustrate differences in the confidence intervals

Matrix Parameter
Estimate
(r10x5)

95% confidence intervals (r10x5)

Non-parametric Parametric

WV1 b1 28.6682 27.7358–29.5323 27.5719–29.5306
b2 21.8524 20.3157–23.6582 20.4073–23.7245

b3 35.1168 29.0089–43.0572 29.8378–43.4135
b4 54.5450 40.7348–75.4701 42.3997–76.1505
b5 38.7205 26.5479–58.3102 28.0602–59.4965

b6 1.5094 1.3360–1.7058 1.3609–1.7053

WV2 b1 11.6105 10.4412–12.7368 10.4131–12.7302
b2 12.7365 10.8082–14.8602 10.8940–14.6658
b3 6.7183 5.9755–7.6053 6.0147–7.5431

b4 3.9368 3.4821–4.4661 3.5077–4.4259
b5 2.3970 2.1192–2.7169 2.1350–2.6917
b6 1.5094 1.3351–1.7081 1.3459–1.6923

WV3 b1 10.8318 9.9369–11.7734 9.9768–11.7272
b2 13.9985 12.5165–15.6485 12.5210–15.5900

b3 4.5187 2.9861–6.0658 2.9490–6.0417
b4 3.9368 3.4693–4.4508 3.4827–4.4379
b5 2.3970 2.1111–2.7083 2.1205–2.6978

b6 1.5094 1.3306–1.7022 1.3371–1.6951

WV4 b1 10.2380 9.3540–11.2279 9.3234–11.1187
b2 10.7494 9.6824–12.0692 9.6734–11.9518
b3 6.4435 5.6806–7.4510 5.6677–7.2881

b4 3.8779 3.4311–4.4542 3.4111–4.3827
b5 2.3887 2.1112–2.7300 2.1051–2.6929
b6 1.5094 1.3364–1.7188 1.3334–1.6960

WV5 b1 29.8724 28.9071–30.6015 28.9620–30.6812

b2 22.5377 21.0784–24.2330 21.0108–24.3728
b3 38.4309 32.1284–46.5073 32.2774–46.5480
b4 66.7451 50.7934–89.8739 51.2996–90.4674
b5 62.2835 44.8055–89.4235 45.6252–90.3289

b6 0.9391 0.7546–1.1525 0.7657–1.1486

WV6 b1 31.8553 31.3491–32.3493 31.3605–32.3941
b2 23.6662 22.130–25.2923 22.0467–25.6191
b3 43.8884 36.7338–53.0386 36.4274–54.2846

b4 86.8345 65.136–117.256 64.743–123.908
b5 101.083 69.503–150.779 69.123–160.334
b6 162.356 103.335–263.287 102.905–280.916
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for each li (i=1, …, 6). The non-parametric percentile

bootstrap 95% CI for a parameter (for example l1), is

obtained from the bootstrap distribution of l1 by

taking the 25th and the 975th value in the sequentially

ordered set of 1000 bootstrap values of this par-

ameter.

The parametric bootstrap and the computation

of the parametric percentile bootstrap 95% CIs is

performed in the same way as described above

for the non-parametric bootstrap except that instead

of drawing for each age i a random sample with

replacement from the Bernoulli distribution with

probability pi, i.e. from the data, we can use instead

the parametric model for the cumulative distribution

of the age at infection p(a) and draw the random

sample from the Bernoulli distribution with prob-

ability fi, where fi is the fitted value for age i.

With the matrix structure WV1, the transmission

is the highest between hosts aged 12–18 years

(54.5r10x5, see also Fig. 2). This implies that the

highest probability of infection is between an infective

aged 12–18 years and a susceptible belonging to the

same age group, presumably because of the high

frequency of close contacts. In the other age groups,

the transmission increases almost monotonically

with age for hosts aged f18 years and decreases

monotonically with age for hosts aged >19 years.

The transmission coefficient among hosts aged 31–44

years, which is also the ‘background’ transmission

coefficient between hosts belonging to different age

groups is very low (1.5r10x5). The two highest

transmission coefficients with the matrix structure

WV2 are among hosts aged 2–5 years (12.7r10x5)

and between hosts aged 6 months–1 year and all hosts

up to 6 years of age (11.6r10x5). The mixing pattern

with matrix WV3 is quite similar to the pattern with

WV2. The two highest transmission coefficients with

WV3 is among hosts aged 2–5 years (14r10x5) and

between hosts aged 6 months–1 year and all hosts up

to 12 years of age (10.8r10x5). With matrix structure

WV4, the two highest transmission coefficients are

for susceptible hosts aged 2–5 years (10.7r10x5)

and hosts aged 6 months–1 year (10.2r10x5). The

transmission coefficient decreases monotonically with

increasing age for susceptible hosts aged >2 years.

Below 18 years of age, WV5 and WV1 have similar

mixing patterns. Transmission is highest between

hosts aged 12–18 years (66.7r10x5) and increases

almost monotonically with age for hosts aged f18

years and decreases monotonically with age for

hosts aged >19 years. However, the transmission

coefficient in the 19–30 years age group, which is

constrained to be equal to the parameter in the 31–44

years group is much higher than with matrix WV1.

Just as with WV1, the ‘background’ transmission

coefficient between hosts belonging to different age

groups is very low (0.9r10x5). With matrixWV6 with

no transmission at all between hosts belonging to
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Fig. 2. WAIFW matrices for varicella in Belgium. Configurations 1–6. The upper limit is not included in the category age.
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different age groups, the transmission coefficient

increases almost monotonically with age and is the

highest in hosts aged 31–44 years (162.4r10x5).

Estimation of R0 from the WAIFW matrices

The global basic reproductive number R0 for the

population is the dominant eigenvalue of the ‘next

generation matrix’ whose elements are the individual

basic reproductive numbers R0ij (i=1, 2, …, 6, j=1,

2, …, 6) for the transmission of the infection from an

infectious person in the age group j to a susceptible

person in the age group i. By definition of the basic

reproductive number, each R0ij=bijrNirD, where

bij is the ijth element of the WAIFW matrix, D is the

mean duration of infectiousness and Ni is the total

population in age group i. For varicella, the mean

duration of infectiousness is 7 days=7/365 years.

Like the elements of the WAIFW matrix, the 95%

CIs for R0 are computed using two different methods:

percentile non-parametric bootstrap and percentile

parametric bootstrap.

The minimal immunization coverage needed for

elimination, i.e. the proportion of the total population

to be immunized immediately after waning of

maternal antibodies in order to eliminate varicella,

pc, is obtained by the relationship:

pc=1x
1

R0
: (16)

Bootstrap confidence interval for estimation of R0

and pc

Table 2 and Figure 3 show the parameter estimates

for R0 and pc. Depending on the configuration

of the WAIFW matrix, the basic reproductive

number ranges between 3.12 (95% non-parametric CI

2.78–3.50) for WV3 to 68.57 (95% non-parametric CI

43.64–111.20) for the assortative mixing pattern WV6.

This implies that across the different configurations

of the WAIFW matrices pc ranges from 63.99%

(lower limit for WV3) to 99.10% (upper limit for the

assortative mixing pattern).

DISCUSSION

When the force of infection is both time and age

dependent, the WAIFW matrix is a central parameter

in modelling the spread of the infection in the

population. A structure has to be assumed for the

WAIFW matrix in order to be able to estimate

the transmission coefficients and different structures

lead to different estimates for the basic reproductive

number R0 and the minimal immunization coverage

needed for elimination of the infection in the popu-

lation pc. In this paper, we have estimated R0 and pc
for varicella in Belgium for different configurations of

the WAIFW matrix. First, the force of infection has

been estimated from seroprevalence data stratified by

age, using a parametric model with fractional poly-

nomials. The estimates of the mean force of infection

over six age groups has then given the means to esti-

mate the transmission coefficients, R0 and pc for six

different configurations of the WAIFW matrix. The

variability of these parameters has been estimated

through the computation of bootstrap confidence

intervals. The results show that the values of R0 and pc
are sensitive to the structure of the WAIFW matrix,

with the estimates of R0 ranging between 3.12 and

68.57 and those of pc ranging between 67.92% and

98.54% for the six configurations chosen. Preliminary

empirical data gathered by surveys about the mixing

patterns for directly transmitted infections like

varicella tend to show that people mostly mix with

other people of the same age (configurations WV1,

WV5, and WV6). However, although it has the advan-

tage of providing an upper bound on the values of R0

and pc, configuration WV6 is not realistic since people

do not mix exclusively with people of the same age

group. Moreover, the assumption of WV4, that only

the age of the susceptible hosts matters and not the

age of the infectious hosts seems a priori unrealistic.

Table 2. Estimates of the basic reproductive number R0

and pc for different matrix structures for the ‘Who

Acquires Infection From Whom ’ (WAIFW ) matrix

Parameter WAIFW Estimate

95% confidence intervals

Non-

parametric Parametric

R0 WV1 11.99 8.29–17.98 8.75–18.34
WV2 3.19 2.87–3.57 2.89–3.54
WV3 3.12 2.78–3.50 2.79–3.49

WV4 4.34 3.90–4.89 3.90–4.81
WV5 26.33 18.95–37.79 12.29–38.17
WV6 68.57 43.64–111.20 43.46–118.64

pc (%) WV1 91.66 87.94–94.44 88.57–94.55

WV2 68.65 65.12–71.99 65.35–71.75
WV3 67.92 63.99–71.40 64.11–71.31
WV4 76.95 74.39–79.55 74.38–79.19

WV5 96.20 94.72–97.35 94.82–97.38
WV6 98.54 97.71–99.10 97.70–99.16
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On the other hand, mixing patterns like WV2 and WV3

are probably realistic for a childhood disease like

varicella for which it can reasonably be assumed that

transmission takes place mainly amongst groups

of young children. Hence, configurations WV1, WV2,

WV3, and WV5 are probably the most relevant

for varicella, which tends to support a value of R0

between 3.12 and 26.33 and a value of pc between

67.92% and 96.20%. Although using a different

model with a force of infection that varies over time

and only five age groups, Whitaker & Farrington [16]

obtained similar values for R0 for varicella in the

United Kingdom. The estimates they obtained with a

WAIFW matrix with a configuration similar to our

WV2 andWV3 matrices were 3.02 and 3.14 in 1970 and

1998, respectively, while their estimate was 11.79 at

both time-points for a WAIFW configuration similar

to our assortative WV1 matrix. For elimination to be

possible at a critical uptake, uc, the vaccine’s lifelong

efficacy, e, should be between 64.0% and 97.4%,

respectively, in order for elimination of varicella by

vaccination to be theoretically possible (as uc=pc/e).

Different means can be investigated to determine

more precisely the value of R0 and pc. Gathering em-

pirical data about mixing patterns [17, 18] should help

us to better determine which is the most plausible

configuration for a given infection in a population.

Another possible avenue is to estimate R0 and pc using

seroprevalence data from different infections that

have a similar type of transmission, e.g. varicella,

parvovirus, measles, mumps and rubella. Assuming a

symmetric WAIFW matrix, seroprevalence data from

three or four different infections would be enough to

estimate the 15 (or 21), transmission coefficients with

five (or six), age groups without additional assump-

tions about the mixing pattern. In any case, it seems

clear that further studies on the most appropriate

configuration of the WAIFW matrix are necessary to

reduce variation in estimated R0 and associated

parameters.

APPENDIX

Expression of the bis for the structure WV3 :

b6=
L
DN l̂l6

Y1+Y2+Y3+Y4+Y5+Y6

b5=
L
DN l̂l5xb6Y6

Y1+Y2+Y3+Y4+Y5

b4=
L
DN l̂l4xb5Y5xb6Y6

Y1+Y2+Y3+Y4

b1=
L
DN l̂l1xb4Y4xb5Y5xb6Y6

Y1+Y2+Y3

b3=
L
DN l̂l3xb1Y1xb4Y4xb5Y5xb6Y6

Y2+Y3

b2=
L
DN l̂l2xb1Y1xb3Y3xb4Y4xb5Y5xb6Y6

Y2
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Fig. 3. Estimates for (a) pc and (b) R0 and non-parametric bootstrap confidence intervals.
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