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A GENERALIZATION OF THE CONCEPT OF
A RING OF QUOTIENTS

BY
JOHN K. LUEDEMAN

ABSTRACT. Sanderson (Canad. Math. Bull., 8 (1965), 505-513),
considering a nonempty collection Z of left ideals of a ring R, with
unity, defined the concepts of “X-injective module” and *“Z-essen-
tial extension” for unital left modules. Letting £ be an idempotent
topologizing set (called a o-set below) Sanderson proved the exis-
tence of a “Z-injective hull” for any unital left module and con-
structed an Utumi Z-quotient ring of R as the bicommutant of the
X-injective hull of zR. In this paper, we extend the concepts of “Z-
injective module”, ““X-essential extension”, and “Z-injective hull”
to modules over arbitrary rings. An overring S of aring Ris a John-
son (Utumi) left Z-quotient ring of R if xR is Z-essential (X-dense) in
»S. The maximal Johnson and Utumi Z-quotient rings of R are
constructed similar to the original method of Johnson, and condi-
tions are given to insure their equality. The maximal Utumi X-
quotient ring U of R is shown to be the bicommutant of the Z-in-
jective hull of R when R has unity. We also obtain a o-set UZ of
left ideals of U, generated by %, and prove that U is its own maxi-
mal Utumi UZ-quotient ring. A Z-singular left ideal Z 3(R) of R is
defined and U is shown to be UZ-injective when Z 3(R) = 0. The
maximal Utumi Z-quotient rings of matrix rings and direct pro-
ducts of rings are discussed, and the quotient rings of this paper
are compared with these of Gabriel (Bull. Soc. Math. France, 90
(1962), 323-448) and Mewborn (Duke Math. J. 35 (1968), 575-
580). Our results reduce to those of Johnson and Utumi when1 € R
and X is taken to be the set of all left ideals of R.

A ring S containing a ring R is a left (right) quotient ring of R if ;S (resp. Sy) is
an essential extension of zR (resp. Ry). Sanderson [9], considering a nonempty
collection 2 of left ideals of a ring R with unity, defined the concepts of “Z-injective
module” and ‘“Z-essential extension” for unital left modules. Letting X be an
idempotent topologizing set (called a o-set below) Sanderson proved the existence
of a “Z-injective hull” for any unital left module and constructed an Utumi
Z-quotient ring of R as the bicommutant of the Z-injective hull of zR. In §1 of this
paper, we extend the concepts of “X-injective module”, “Z-essential extension”,
and ““Z-injective hull” to modules over arbitrary rings. In §2, we call an overring
S of a ring R a Johnson left X-quotient ring of R if zR is Z-essential in S, and con-
struct a maximal Johnson left X-quotient ring. The Utumi maximal Z-quotient

Received by the editors October 6, 1970.
517

https://doi.org/10.4153/CMB-1971-093-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1971-093-6

518 JOHN K. LUEDEMAN [December

ring of R is constructed in §3, and characterized as the bicommutant of the 2-in-
jective hull of R when R has identity in §4. In §5 and §6, the Utumi maximal Z-
quotient ring of a matrix ring and a direct product of rings are discussed, and in
§8, the quotient rings of this paper are compared with the quotient rings of Gabriel
as discussed in Bourbaki [2]. Our results reduce to those of Johnson [5] and Utumi
[11] when 1 € R and X is taken as the set of all left ideals of R.

1. Preliminaries. Throughout this paper R will denote a ring and all R-modules
will be left R-modules unless otherwise stated. A o-set for R is a nonempty set
of left ideals of R satisfying the following conditions:

(0y) If I€Z, Jis a left ideal of R, and J21, then J e .
(op) f IeZ and re R, then Ir*={se R | srel}eX.
(o3) If I'is a left ideal of R, J€ X, and It~ € X for all t € J, then I € X.

It is clear from the following Lemma that a o-set = is what Gabriel calls an
idempotent topologizing set of left ideals [2, pp. 157-165].

LemMmA 1.1. 4 o-set Z is closed under finite intersections.

Proof. LetJ, KeX. Foreach teJ, Kt~ X by (o,). But Kt "*<(KNJ)t~1, so
(KN J)t~*eX for all teJ. Hence K N J e X by (o3) and the lemma is proved.
Sanderson [9] attributes Lemma 1.1 to Chew, but indicates no proof.

DErFINITION. A submodule M of ;N is essential in ;N if for each 0#x e N,
(x) N M #(0) where (x) is the submodule of N generated by x.
We generalize this definition as follows:

DErFINITION. Let X be a o-set for R. Then pN is a Z-essential extension of M
(zM is Z-essential in ;N) if zM is essential in RN and Mx *={reR|rxe M}eX
for all x € N.

We call ;M Z-injective if for any module 4 and Z-essential extension zB of
rd, each R-homomorphism f: 4 — M can be extended to an R-homomorphism
f:B—~ M.

Now let R be a ring with 1, and all modules considered be unital. Then M is
Z-essential in pN iff for each 0#x € N, Mx~ ! €X and (Mx~Y)x#0. Moreover, an
essential left ideal 7€ X is Z-essential in RR. Hence for a Z-injective R-module M,
each R-homomorphism from an essential left ideal 7€ X has an extension to all
of R. Since each R-homomorphism from a left ideal I € X to M can be extended to
an essential left ideal, necessarily in X, a -injective unital R-module M satisfies
the following property:

(S) Each R-homomorphism from a left ideal 7 € Z to M can be extended to R.

Let M be a unital R-module satisfying property (S), zB a Z-essential extension
of r4, and f: A — M an R-homomorphism. By Zorn’s Lemma, choose zC with
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rASrC< B maximal with respect to the existence of an R-homomorphism
h: C— M extending f. If C#£B, let 0#b € B\C; then Ch~* € X since Ch~*2 A4b~1.
By property (S), the map g: Chb~* — M given by g(c)=h(ch) has an extension
g: R— M. Define f: C+ Rb — M by f(c+rb)=h(c)+g(r). Thenifrbe C,re Ch~1
and A(rb)=g(r)=g(r); hence f is a well-defined R-homomorphism. This contra-
dicts the maximality of C. Thus B=C.

We have proved the following:

PROPOSITION 1.2. Let R have 1 and M be a unital left R-module. Then M is
Z-injective iff M satisfies property (S).

The definition of Z-injective for unital R-modules by property (S) is due to
Sanderson [9], and so our definitions extend his.

Eckmann and Schopf [3] proved the existence of an injective hull for any R-
module. That each R-module has a Z-injective hull is shown by the following two
theorems:

THEOREM 1.3 [9]. Let R be a ring with 1 and M be a unital R-module. There
exists an extension E (M) of M, unique up to isomorphism over M, satisfying the
Jfollowing equivalent conditions:

(1) E (M) is a maximal Z-essential extension of M;
(2) E 3(M) is a minimal Z-injective extension of M
(3) E (M) is a Z-injective Z-essential extension of M.

Let R be a ring without identity and R'=R X Z be the ring R with identity
adjoined. Then R! is a ring with identity, each R-module is a unital R*-module,
and for modules zM and N, and Homg (M, N)=Homp (M, N).

DerFINITION. Z'={T| T is a left ideal of R* and there is J € Z with J=T7}.
PROPOSITION 1.4, X! is a g-set for R™.

Proof. For TSR* or TSR, let (Tr Y)z={se€ R|sreT} and (Tr Yz ={(s, n)
eR | (s,n)(r,0)e T} whenreR.

(o) is clearly satisfied by Z*.

(0): Let TeXt, JeX, J<T and (r, n) € R. By (03), (Jr Y)zeX and so (Jr ),
N JeZX. Since (T(r, n) Y 2J N (Jr~1); and (r, n) € R is arbitrary, (T(r, n) ™)zt
e X! for (r, n) € R.

(03): Let S eZ?! and suppose (T(r, n) 1)zt € X! for each (r, n) € S. By the defini-
tion of 2* thereisa J e X with J< S. Since (Tr~ 1)z e Xl foreachreJ, (T N R)r~ 1),
=(Tr Yt N ReX foreach reJand TN ReX. Thus Te X

RemARK. Clearly, an extension M of 3N is Z-essential (Z-injective) iff p1M is a
Tl-essential (Z'-injective) extension of z:N. Thus the Zl-injective hull of M is
also its Z-injective hull and, hence, each R-module has a Z-injective hull. We state
this result as a theorem.
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THEOREM 1.5. Let R be a ring and M be a left R-module. Then E ;\(M) is the
unique (up to isomorphism over M) extension of M satisfying:

(1) Esi(M) is Z-injective and Z-essential over M,
(2) E g((M) is the maximal Z-essential extension of M ;
(3) E 51(M) is the minimal Z-injective extension of M.

Remark. If we define X-injectivity by property (S), then E (M) still satisfies
(1) and (2).

2. Construction of R. E. Johnson’s maximal quotient ring. A Z-essential left
ideal of R is called a Z-large left ideal. Let A denote the collection of all Z-large
left ideals of R.

LEMMA 2.1. I€A iff I€Z and I is large left ideal of R.

Proof. =: Ix *eXZ forall 0#xe Rand J0-'=ReZ so Ix *eX forall xe R.
Thus I €X. Iis a large left ideal by definition.

<: If I'is a large left ideal and I € X, then for 0#x € R, Ix~' € X and I N (x) #0.
Thus I €A.

REMARK. It is well known that a finite intersection of large left ideals is large.
By Lemma 1.1, X is closed under finite intersections. Thus A is closed under finite
intersections.

Consider the set of all Homy (/, R) where I € A. In what follows we are using
Johnson’s notation [5]. For f: I; — R and g: I, — R, define

frg:;nl;—>R by (f+8)x) =f(x)+g(x)
and

f2:Ij >R by (/) =f(gx)
where
I[={xel,|gx)els}
The remark after Lemma 2.1 shows that I, N [, € A,

LemMMA 2.2. IJ eA.

Proof. Johnson [5] has shown that If is a large left ideal of R. Let O0#x € R,
then I,x~ ! eX since I, eX. For se€ I,x™1, if g(sx)#0, then T=1I,g(sx)"* X and
T<Iix~ s~ Ifg(sx)=0, RS I/x~1s~1,soinany case, I/x s~ *cZ forallse I,x~ 1.
Thus IJx~*eX and so I/ € X.

With the above lemmas, we may apply Johnson’s method verbatim to obtain a
ring

J(R) = U {Homy (I, R) | I A}/o.
where f 0 g iff f(x)=g(x) for x € I for some I € A,
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DErFINITION. An overring S of R is a Johnson Z-quotient ring of R if zR is
Z-essential in zS.

DEerINITION. The Z-singular left ideal of R is
Zs(R) = {ac R| Ta = 0 for some Z-large left ideal T}.

THEOREM 2.3. Let R be a ring, = be a o-set for R and Z y(R)=0. Then J 3(R) is a
Johnson Z-quotient ring of R.

Proof. Consider R as a subring of J z(R) by having R operate on itself by right
multiplication. Then J 3(R) is a left R-module. If 0# « € J 3(R), then « € Homg (1,, R)
and re=«(r) for r € I,. Thus Ra~121, and so Ra~* € 2. Since 0+ ([)e S (Ra™ ),
g R is Z-essential in J z(R).

ExaMmpLEs. (1) If Z is the collection of all left ideals of R, and Z 3(R)=0, then
J 5(R) is the maximal Johnson quotient ring of R.

(2) If R has 1 and Z={R}, then the only Z-large left ideal of R is R, so R=J z(R)
and Z 3(R)=0.

(3) If R is a ring and Z={R}, then if Z z(R)=r(R)=0, J 3(R)=Hom;, (R, R).

3. Utumi’s Z-quotient ring. Utumi [11] constructed another quotient ring using
the method of Johnson. When R has identity, Utumi’s quotient ring exists regard-
less of the vanishing of the singular ideal, and agrees with Johnson’s quotient ring
when Z(R)=0. In this section we generalize Utumi’s method to obtain Utumi
Z-quotient rings.

DEFINITION. A submodule N of a module M is rational in M(zM is a rational
extension of zN) if for any pair of elements x, y € M with x#0, there exists a € R*
= R x Z such that ay € N and ax#0.

We generalize this definition to the following:

DEFINITION. Let £ be a o-set. A submodule N of a module M is Z-rational in
M (M is a Z-rational extension of pN) if N is rational in M and Ny~ € Z for every
yeM.

A left ideal I is dense in R (I is a dense left ideal of R) if ;I is rational in RR. We
say a left ideal I is Z-dense in R (I is a Z-dense left ideal of R) if pI is Z-rational
in gR.

Note that a Z-rational extension of ;N is a rational extension. Moreover, taking
x=y in the above definition, it is clear that a Z-rational extension of yN is a
X-essential extension. We also note that if 1 € R, for unital modules M and N,
M is a Z-rational extension of N if whenever 0#x, y € M, then Ny-*eX and
(Ny~YHx#£0.

PROPOSITION 3.1. A module N is Z-rational in M if and only if N is Z-essential
in M and if NeB= M and f: B— M is an R-homomorphism with N<Xker f, then

f=0.
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The proof of Proposition 3.1 follows by a well known characterization of
rational extension [4, p. 58].

ReMARK. We note that since a X-dense left ideal D is Z-large, D € Z. Moreover,
a X-dense left ideal is a dense left ideal. Clearly a dense left ideal belonging to X
is Z-dense. Thus as the size of X increases, the set of Z-dense left ideals does not
decrease in size.

DEFINITION. Let £ be a o-set for R. An overring U of R is a Utumi Z-quotient
ring of R if 3R is Z-rational in RU.

In order to construct a maximal Utumi Z-quotient ring by Utumi’s original
method, we require the following lemma. (Again we use the notation of Johnson

[51)

LEMMA 3.2. Let f: D; — R and g: D, — R be R-homomorphisms where D; and
D, are Z-dense left ideals of R. Then Dj={x € D, | g(x) € D;} is a Z-dense left ideal
of R.

Proof. Since D; and D, are Z-large, D) € X by Lemma 2.2 and Lemma 2.1. It
is well known that D} is dense in R, thus D} is Z-dense in R.

REMARK. Since X is closed under finite intersections, and a finite intersection of
dense left ideals is a dense left ideal, a finite intersection of X-dense left ideals is a
Z-dense left ideal.

Construct the maximal Utumi Z-quotient ring of R as

Ug(R) = | {Homg (D, R) | D is Z-dense in R}/
where f 6 g iff f(x)=g(x) for x € J where J is some 2-dense left ideal of R. Addition
and multiplication are defined as for Johnson’s quotient ring.

Consider the map ¢: R — Uy(R) given by ¢(r)(s)=sr. Then ¢(r) e Homy (D, R)
for all Z-dense left ideals of R and so determines an element of U »(R) also denoted
by ¢(r). ker ¢={re R| ¢(r)=0}={r e R | Sr=0 for some Z-dense left ideal S of
R}. By Proposition 3.1, reker ¢ if and only if rer(R)={se€ R | Rs=0}. Thus
Rc U y(R) if (R)=0.

Clearly 1€ Ug(R) since 1 is the element determined by 1,: D — R given by
1,(d)=d for any Z-dense left ideal D. Then if Uy(R) is a Utumi Z-quotient ring
of R, RE U y(R) and so if Rs=0, s € R, then U »(R)s=0 by Proposition 3.1, and
ls=s=0. Thus if Ug(R) is an Utumi XZ-quotient ring of R, r(R)=0. Thus we
restrict our rings to have zero right annihilator.

One can prove that U g(R) is a maximal Utumi Z-quotient ring of R by Utumi’s
original method [11]. However, a more elegant proof may be given using the
methods of Lambek [6] as in the next section.

At this point we do note the following

PROPOSITION 3.3. If Z 3(R)=0, then J is a Z-dense left ideal of R iff J is a Z-large
left ideal, and so J 3(R)=U g(R).
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Proof. As noted before, 2-dense implies 2-large.
Let J be Z-essential in R. Then for 0#x, ye R, Jy~! is Z-large in R, thus
(Jy~1Yx+0 since Z 3(R)=0. Hence J is Z-dense in R.

4. A characterization of the Utumi Z-quotient ring. J. Lambek [6] characterized
the Utumi maximal quotient ring of R as the bicommutant of the injective hull of
#Rif R has identity. Similarly, when 1 € R, we show that U 3(R) is the bicommutant
of E 3(R). This has been done by Sanderson [9]. In this section we obtain a o-set
UZ of left ideals of U z(R)="U, generated by X, and prove that U is UZ-injective
when Z 3(R)=0, and that U is its own maximal Utumi UZ-quotient ring.

Using the methods found in Faith [4], one can prove the following results.

THEOREM 4.1. Let M be an R-module, E=E (M), A=Homg (E, E), and
MA={Ae A | \M)=0}. Then
M =N {kerA| xe M4}
is a maximal Z-rational extension of M containing each Z-rational extension of M
contained in E. Moreover, M is unique up to isomorphism over M.

THEOREM 4.2. Let R be a ring with 1, S a o-set for R, E=E 5 (zR) and R be the
maximal Z-rational extension of R in E. Then R is a ring whose operations Rx R — R
induce the module operations Rx R — R in xR, and R~Hom, (E, E) (ring iso.)
where A=Homy, (E, E).

THEOREM 4.3. Let R be any ring with r(R)=0, R* be the subring of Homp, (R, _R_)
generated by R and the identity of Homy (R, R) and  be a o-set for R. Then zgR=p+R*
is @ maximal Utumi Z-quotient ring of R, and has an identity element.

Note that Theorem 4.2 shows that R is the bicommutant of the Z-injective hull
of R. This was Sanderson’s definition [9] of U 3(R). Since R=R* when r(R)=0,
R is the bicommutant of E z+(R™*). (Cf. Faith [4].) Similarly, using the methods of
Lambek [6], it can be shown that when 1€ R, Ug(R)~R (ring iso.). Lambek’s
proofs can be used verbatim.

DEerFNITION. Let U= U ¢(R) and X be a o-set for R. Define
UZ = {T'| T is a left ideal of U and there is J € £ with U/=T}.

LemMmA 4.4. UZ is a o-set for U.

Proof. (o,) is satisfied by definition of UZ.

(o2): Let Te UX and UJ<T, JeZ. Then for ge U, (Tq~)y={uc U|ugeT}
2(UJg~Y)y. Now if re(Rqg~Y)z={reR|rge R}, then rge R and (J(rg) )z
=((Jg~Yrr Yz € Z. Since pR is S-rational in RU, (Rg~1)z is a X-dense left ideal
and (Rg~ Yz eX. Thus (Jg )z eX and U(Jg~ V)= (UJg~ Ny <= (Tq™ Yy, so (ITq™ Yy
e UZ.

(03): Let T be a left ideal of U, L € UX with UISL where [ € X, and suppose
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(Ts Yy e UZ for all seL. Then for iel, (TN R)i")zeX for iel Hence
TNnReZand UT N RESTsoTe UL,

Lambek [6] and Utumi [11] both proved that U(R) is its own maximal Utumi
quotient ring. Analogously we show that Ug(R)="U is its own Utumi UZ-quotient
ring.

LEMMA 4.5. yE is the UZ-injective hull of yU.

Proof. We use the notation of the proof of Lemma 4.4. Let 0#e € E, then
(Ue YHy2(Re Ypand (Re 1)z € Z, thus (Ue )y 2 U(Re™ Yz and so (Ue~ 1)y, € UZ.
Moreover (0)# R N (e)= U N (e) so U is UZ-essential in yE.

Let ;A4 be UZ-essential in ;B and f: A — E be a U-homomorphism. Since yA4
is UXZ-essential in yB, zA is Z-essential in zB. By the Z-injectivity of FE, there is
f': gkB — gE extending f. To see that f” is a U-homomorphism, let b € B and define
gyt U — g E by g,(u)=f"(ub)—uf’(b). Clearly g,(R)=0, and since ;R is Z-rational
in RU, g,(U)=0. Thus f’ is a U-homomorphism. Since yE is UX-injective and
UZ-essential over (U, yE=E y5(U).

COROLLARY. Let R be a ring with r(R)=0. Then U 5(R) is its own maximal Utumi
UZ-quotient ring.

Proof. Clearly Homy (E, EyY=Hom;y (E, E)=A. To see the reverse inclusion,
let fe Homy (E, E). For O#e € E, define g, € Homg (U, E) by g.(u) =1 (ue) —uf (e).
Then g,(R)=0 and so g.(U)=0 since R is Z-rational in U. Thus fe Homy (E, E)
and Uys(U)=Hom, (E, E)=U 3x(R)=U.

We conclude this section by considering the relationship between J z(R) and
U 3(R) when Z 3(R)=0. In Proposition 3.3 we showed that J 3(R)=U g(R) when
Z 3(R)=0. Denote both of these rings by Q z(R).

THEOREM 4.6. Let R be a ring with Z (R)=0. Then

r(R) = 0and (1) @ x(R) = Ex(R)
and (2) Q 5(R) is QZ-injective.
Proof. (1) Since Z 5(R)=0, E 3(R) is the maximal Z-rational extension of R,
and so E 3(R)= 0 5(R).

(2) By (1), O s(R)=E3(R) and E 5(R) is the QZ-injective hull of Q by Lemma
4.5. Thus Q 5(R) is QZ-injective.

5. Matrix Rings. Let R be a ring with identity and Z be a o-set for R. All modules
considered are to be unital. As usual, if R is a ring, S is a nonempty subset of R,
and n a positive integer, we let .S, denote the set of # x n matrices with entries from
S; in particular, R, is the ring of all # x n matrices over the ring R. Define 2, ={I| I
is a left ideal of R,, and I=2J, for some J € Z}.

LemmMma 5.1. X, is a o-set for R,.
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Proof. (o,) is satisfied by definition.

(02): LetJ, € Z, for someJ € X and let (a;;) € R,. We must show that J,(a;,) " €X,.
Now for any a € R we have J,(ae,)~*2(Ja™?),. Thus we write (@)= aye; and
let I=");; Ja;;-1, an element of X by Lemma 1.1. Clearly I,(a;)<J, and I, € XZ,, so
J(a)~teZ,.

(o3): Let P be a left ideal of R, and J, € Z, for some J € Z. Suppose P(a;;)) 1€,
for all (a;)) € J,, we must show that PeX,. Now for any aeJ, P(ae,) X, so
there is an I e€X with Iae,<P. Let P, be the collection of tth column matrices
of P, then P, is a left ideal of R, and P,<P. Let

P, = {p e R|pis the (s, t)th entry in some (p,,) € P},

then Py is a left ideal of R, and Pya~?! € X since I,ae,, < P,. Since this holds for all
ael, P eX. Let K!=(", P, X and let ,(K*) be the collection of tth column matrices
with entries from K. If 37., kje;, € (K") k; € P;; and so there is 3 pgye, € P, with
Dpir=k;. Then e;;(3 pues)=k,e; € P, so (K)<SP,. Now let N=) {K* | K:=; Py
€ 2}, then N e X and ,N< (K*) < P, where N is the collection of ¢th column matrices
with entries from N. Hence

n

th=Nn§P1+P2+"'+PnSPSOPEZn.

1
Let Q(R) denote the maximal Utumi quotient ring of R and Q z(R) the maximal
Utumi Z-quotient ring of R. Utumi proved that (Q(R)).~ Q(R,) (ring iso.) [11,
p. 5, Theorem 2.4]. Analogously we will show that (Q g(R)),~ Q z,(R,) (ring iso.).
Note that for the sake of simplicity, here, as elsewhere, we maintain the notation
used by Utumi. We require the following

LEMMA 5.2. Let S be an Utumi Z-quotient ring of R, then S, is an Utumi Z,-
quotient ring of R,.

Proof. Let 0+#(a;;), (byy) € S, and suppose a,,7#0. Then there is JeX with
JSRb;; i, j=1,2,...,n, and Ja,,#0 since § is an Utumi Z-quotient ring of R,
and Z is closed under finite intersections. Since J, € Z,, J,(b;;) € R, and 0#Je,,(a;;)
=J,(a;;), the result follows.

THEOREM 5.3. (Q 5(R)n=> Q5. (R,).

Proof. By the Lemma, (Q 5(R)),= @, is an Utumi X,-quotient ring of R,.

Let D be a X,-dense ideal of R,, and let M be the set of all elements of R each
of which is a coefficient of a matrix in D N R,ey,. M is a left ideal of R. Let
0#x, y€ R. Then there is a JeX with J,<D(ye,)~' and an element (a;,)
€ D(yex) ~* with (a;))(xex) = 2= 1 ayexey #0. Suppose aq.x #0, then e, (3= 1ai.xeix)
=agxey#0 and ay € (M)y~1. Hence M is a dense left ideal of R, and since
Je( M)y~ (M)y~*eX and M is a Z-dense left ideal of R. Let M=(") . M, then
M is a Z-dense left ideal of R. If y € M, there is matrix (d,,) € D N R,e,;, whose
(1, k) entry is y. Thus ye;,=e;;(d;,) € D, and so M, < D.

Now let 8: D, — R, be an R,-homomorphism where D, is a Z,-dense left ideal
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of R,, then J,< D, for some Z-dense left ideal J of R. For x € J, denote (xey;)0
=ey,(xey;)0 by Z,(x0y;)e,;. Then 0,;: J — R is an R-homomorphism, and so there
are q; € Q 5(R) with x0,;=xgq,; for x € J. For each Zx;,e;. € J,,

(Z xikeik)e = Zyei(Xieqr)l

= Zyjein(Xicbij)ers

= Zi(ZeXirs)eis

- (sre)(zned
and 50 (Q x(R).x @ 5,(R,) over R,.

6. Direct products and direct sums. Let {R, | « € A} be a collection of rings, and
let for each o € 4, X, be a o-set for R. Define

@®Z, = {K| Kis a left ideal of II,R,, K2D J,,, J, €Z,}.
In proving that ®Z, is a o-set for II,R,, we require the following.

LeEMMA 6.1. Let R be a ring, and . be a nonempty collection of left ideals of R satis-
fying properties (o) and (o5). The following properties for X are equivalent:

(03): If Kis a left ideal of R, J€X and Ka~! €X for all a € J, then K€ X,
(o3'): If for some J € T there is associated to eachaeJa K, €2, then > K,a e X.

Proof. (o3') = (03): For each aeJ set K,=Ka™1, then Y K,a e X by (o3'), but
> K,acK so KeX by (o).

(o3) = (03"): Let K=3 K,a; for each a€J we have Ka~12K,, since K,acK;
hence Ka~* € £ and it follows from (o;) that K e X.

LemMMA 6.2. @, is a Z-set for IIR,.

Proof. (o,) is clearly satisfied.

(o,) is satisfied since (DJ,)(a,) =@ (J.a,~ ) for any (a,) e IR, and ®J, e D Z,.

(03): Let K be a left ideal of IIR,, @I, € @, and suppose K(a,)~! e ®Z, for
each (a,) € ®I,. Then K(a,) '2(®J) @, Where J, €3, for each «€.4. Hence

z (@Ja (aa)(an:) = (‘D ( z Jaaa) € @Ea SiIlCC Z Jaaa eztx

(ag)e®Iy an€ly agEly
by the previous lemma.
We next prove the main theorem of this section. The proof is modelled after
that of Lambek [7, p. 100].

THEOREM 6.3. Let {R, | « € A} be a collection of rings with 1, and let, for each
o« € A, 2, be a a-set for R,. Then

Qox(TTR:) = IT 0z.(R0).
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Proof. Regard R=] | R, as a subring of [ | 05 (R,)=0Q’. Let 0#g=(q,) € Q'
and set D'=@®R,q, *. Then D'q=R and D'SRq~1. If 0sx, y € R, then since
R.q,” ' is a Z,-dense left ideal of R, for each « € A4, there is a J, € 2, with J,y,
SR,g,. tand J,x,#0. Hence (BJ,)y< D' and (®J,)x#0. Thus D’ is a @Z,-dense
left ideal of R, and Q' is an Utumi @Z,-quotient ring of R.

Now let D be a @Z,-dense left ideal of R and D,=m,(D) with =,: R— R, the
canonical projection. Then D, is a X,-dense left ideal of R, for each « € A. Let
feHomg (D, R) and e,: D, — D be the canonical injection, then m, o foe,: D,
—R, and so there is a g, € Q 3 (R,) with d.g,=(m,  foe,)d,) for all d, e D,.
Define g € Q' by requiring 7,(q) =g, for each « € 4; then for d € D, we have

7(dq) = dug. = (7o 0 f o e)(dy) = m(f(d)),
and hence dg=/(d) and the theorem holds.

ReMARK. (1) From the above proofs, it is clear that ®Z, is a o-set for R, and
that [T0z,(R)= Q 6z, (DR.)-

(2) When, for each « € 4, X, is the collection of all left ideals of R,, then @,
is the set of all left ideals of [ | R,. Hence our result extends the original result of
Utumi [11].

7. Classical Z-quotient rings. In 1949, Asano [1] gave necessary and sufficient
conditions for a ring to have a classical left quotient ring. In [6], Lambek showed
that under Asano’s conditions, the classical left quotient ring is a subring of
Utumi’s maximal quotient ring.

DEerINITION. If R is a subring of a ring Q with identity (and R contains a regular
element) then Q is a left (right) classical quotient ring of R if (1) each regular
element of R is a unit in Q, and (2) each g € Q can be written asg=b"'a(g=ab™?)
where a, b € R and b is regular in R.

We generalize this definition to the following:

DEerINITION. Let R be a ring and X be a o-set of left ideals for R. An overring Q
of R is a left classical Z-quotient ring of R if Q is a left classical quotient ring of R
and Q is a left Z-quotient ring of R.

Analogous to Lambek’s result, we show that under certain conditions, the left
classical Z-quotient ring of R is a subring of Utumi’s maximal left Z-quotient ring
of R.

THEOREM 7.1. Let R be a ring containing a regular element, and = be a o-set for R.
R has a left classical Z-quotient ring Qy (R) if and only if (1) for each regular b € R,
Rb is a Z-large left ideal of R, and (2) for each 0+#a, b € R, b regular, (Rb)a™* con-
tains a regular element.

Proof. The requirement that (Rb)a~* contains a regular element whenever
Os#ae R and b is regular is a restatement of Ore’s condition: If 0#a, be R,
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b regular, then there exist ¢, d € R, ¢ regular, with ca=db. As is well known [1],
this condition is necessary and sufficient for R to have a classical left quotient ring.

If be R is regular, then Rb is Z-large by hypothesis. Hence if 0#x, ye R,
(Rb)y~teZ and contains a regular element. Hence [(Rb)y !]x#0, and Rb is
Z-dense. Define ¢ € Homy (Rb, R) by ¢(sb)=s, then ¢ defines g€ Q 5(R) and
bg=1. The regularity of b yields gb=1 and, hence, bis a unit in Q x(R). Let Q 5 (R)
be the subring of Q z(R) generated by all elements of the form b~ 1a for a, b € R,
b regular. (Note that R< Q 5(R) since r(R)=0.) Then Q 5 (R) is the left classical
Z-quotient ring of R.

8. Gabriel’s ring of quotients and Mewborn’s generalized centralizer. In a recent
paper, Mewborn [8] constructed a ‘““generalized centralizer” of a nonzero left
R-module M with respect to a collection 7 of submodules of M satisfying

(71): If Te 7 and T< N, N a submodule of M, then N € =

(r9): If S, Ter,thenSNTer.

(13): If S, Te 7 and «: T— M is an R-homomorphism such that «~1(S)=U,
then Ue 7.

The “generalized centralizer” of M is
P(M) = lim {Homg (T, M) | T € 7}.

If 2 is a o-set of left ideals for R, then X satisfies conditions (7,)-(73) for R. It is
clear that (o) is (7;). Lemma 1.1 shows that X satisfies (75). To see that (73) holds,
let S, TeX and « € Homg (T, R). Then for ae T, [« 1(S)]la " t=S(«(a))"! €2 by
(o5) since S €X. Thus «~1(S) € 2 by (o3). In a series of exercises [2, pp. 157-165]
Gabriel constructs a “ring of quotients” for a ring R with respect to a o-set X
for R as

Gx(R) = li_rp {Homy (J, R) | JeZ}.

By what has been shown above, G 5(R)=P(R) since X satisfies (,)-(73) for R.

Now let = be a collection of submodules of ;M satisfying conditions (7;)~(73).
Let fe Hom (T}, M), T; € =. By Zorn’s Lemma, we can find f: J,— M, J; € r, extend-
ing f and J; is maximal with respect to this property. Then J; is essential in M and
J; € . Hence we see that P(M) is a homomorphic image of J(M )=1i_{11 {Homp
(S, M)| Ser, S is essential in M} by the map taking fe J(M) to the image of
fin P(M). The kernel of this map is {fe J(M) | f~1(0) € 7}.

In case R is a ring and X a o-set for R, we have shown that G z(R) is ring homo-
morphic image of J xz(R). If we define Z(M)={me M | Jm=0 for some J € X} for
any R-module M, then the kernel of J 3(R) — G 5(R) is Z(J »(R)). If Z(R)=0, then
for each 7€ X and Os#a, be R, Ib~* € X and (Ib~Y)a+#0. Hence each element of =
is both a Z-large and Z-dense left ideal of R, and so G g(R)=J 3(R)=U g(R). When
Z(R)#0, the difference between G z(R) and J 5(R) can be great; in fact, if X is the
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set of all left ideals of R, and Z 3(R)=0, then G z(R)=0 but J z(R) need not be
zero (e.g. let R be a field). Gabriel has shown that R< G 3(R) if and only if Z(R)=0.
We note, as have many other authors, that the set of Z-large left ideals 2, and the
set of Z-dense left ideals X, satisfy (o;)~(o3), and Jy(R)=G 5 (R) and U x(R)
=G 3 (R).

Finally we let M be an R-module and 7 a collection of submodules of M satis-
fying conditions (7,)~(r3).

DEFINITION [8]. M is 7-complemented if for each submodule N of M, there is a
submodule N’ of M such that NN N'=(0) and N+ N'€ 7.

If M is 7-complemented and N is an essential submodule of M, NN N'=(0)
only if N'=(0) for any submodule N’ of M, thus N € . Since 7 contains all large
submodules of M, J(M) is Johnson’s extended centralizer of M and so is von
Neumann regular [S]. Hence P(M) is von Neumann regular. This proves the
following theorem due to Mewborn.

THEOREM 8.1. Let M be an R-module and t a collection of submodules of M satis-
fying (71)—(75). Then P(M) is von Neumann regular if M is 7-complemented.
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