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1. Introduction. The problem of the expression of an invariant matrix of 
an invariant matrix as a direct sum of invariant matrices is intimately associ­
ated with the representation theory of the full linear group on the one hand and 
with the representation theory of the symmetric group on the other. In a pre­
vious paper1 the author gave an explicit formula for this reduction in terms of 
characters of the symmetric group. Later J. A. Todd derived2 the same 
formula using Schur functions, i.e. characters of representations of the full 
linear group. Clearly, this formula has no practical application beyond the 
range of existing character tables, and even within this range it is a cumbersome 
to use. However, the formula is important since it leads to an explicit defini­
tion of the representation [a] O [0] of Smn. In fact, if we write 

H = Sm X Sm X . . . X Smj n factors, 

then3 [a] O [0] is that representation of Smn induced by the irreducible represen­
tation [a; P] of the normaliser 31(H) of H in Smn> 

Here we show how the original step-by-step process of D. E. Littlewood4 

can be utilized to lead to a practical solution of the problem. An analysis of 
Todd's procedure in relation to the theory developed here is given in the last 
section of the paper. 

2. The irreducible representations5 of 31(H). The group 31(H) can be 
written as a sum of cosets in the following manner: 

2.1 31(H) =H + Hs*i + . . . + Hs*nl1 

where the operations s*i permute the n sets of m symbols, preserving the 
order of the symbols in each set. Clearly, the factor group 

3l(H)/H~S\~Sn, 

and the s*i generate the subgroups S*n of 31(H). 
With regard to the isomorphism between Sn and S*ni let us assume that an 

element Si of Sn has cox cycles of length A, so that 

2.2 n = coi + 2«2 + . . . + no)n; 

Received December 20, 1949. 
M5, p. 172]. 2[8]. 
3[5, §6]. HH. 
5For details of the theory of this section, along with illustrative examples, the reader should 

consult [5]. 
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then the corresponding element s*; of S*n has m cox cycles of length X. 
If we denote by S(s*t) the subgroup of those elements of H which commute 

with 5*», then a little consideration will show that 

2.3 6(5*0 - 5 w X S m X . . . X S m , co factors, 

where 0 < co = coi + co2 + . . . + <on ^ n. Moreover, we can write 

2.4 H = 6 + 6g2 + . . . + 6gr, 

where r = (m!)n~~t0, and the gi can be chosen to be elements of certain of the 
original 5m 's. In fact we can assume that 

2.5 G = {gi} = 5 m X S m X . . . X 5 m , w — co factors, 

where any X — 1 of the X factors Sm linked in a given factor of 6 appear in G. 
Collecting together all the omitted factors we construct 

2.6 K = Sm X Sm X . . . X5 m , eu factors, 

and H = K X G. Now the (m !)*""" cosets of K in iïs* are conjugate to Ks* 
under transformation by elements of G, so that the conjugate sets of 31(H) can 
be gathered into blocks, each block associated with a definite value ofco. A glance 
at the Table of Characters of Sft(H) for m = 2, n = 3 will make this clear. 

In order to study the irreducible representations of yi(H) we first construct 
the irreducible Kronecker product representation 

2.7 [a]n = [a] X [a] X . . . X [a], n factors, 

of H. As has been shown, this can be extended by means of any irreducible 
representation [fi] of Sn to yield the irreducible representation [a; 0] of 31(H) 
of degree xa

nx^, where [a] and [0] are of degrees xa and x$ respectively. If an 
element ks* belongs to an co-block, i.e. if 6(5*) is a product of co factors 5m , 
then the character of ks* in [a; P] is 

2.8 6(k) in [a]tt • x(s) in [0], 

where k is an element of K. 
The remaining irreducible representations of 31(H) arise by considering 

Kronecker products6 

2.9 [a; fi] X [a; r2] X . . . X [oj X [a*] X . . . X [0.], 

where a 7̂  a' 5̂  a;, [r»] is a diagram containing rt- nodes, and Y\ + r2 + . . . + 5 
= n. Such a Kronecker product gives rise to others as the variables are 
permuted by Sn. The number of sets of variables is equal to the number of 
ways of distributing the n integers 1 — n in the given partition. The only fact 

•See the Table of Characters of 31(H) a t the end of the paper. We have placed a bar over 
the multiplication signs in the generating Kronecker products to designate the representations 
r described here. 
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concerning these irreducible representations T, as we shall call them, which is 
of significance here is given by the following theorem. 

2.10 The characteristic of every conjugate set of the block associated with co = 1 
in an irreducible representation T of 91 (iï) is zero. 

This follows immediately, since no set of variables remains invariant under 
any one of the regular permutations which compose this block. 

3. Induced representations. We have already seen that the representation 
[a] O [fi] of Smn is induced by the irreducible representation [a; 0\ of 9l(iï), and 
that there is a one-to-one correspondence between the irreducible components 
of [a] O [0\ and the irreducible components of Littlewood's "new product" 
representation {a} ® {&} of the full linear group. Our purpose in this section 
is to study Littlewood's step-by-step building process4 with a view to adding a 
criterion by means of which the irreducible components of [a] O [ft] can be 
determined in a systematic manner. Our basic tool will be Frobenius' Recip­
rocity Theorem, which will tie together the two formulae which we shall write 
side by side, referring in what follows to the one on the left by writing A and to 
the one on the right by writing B. 

Let us assume that we know the frequencies pu in the reductions: 

3.1 [a] G [0i] = £ Pii[\<]; [Ai] - £ Pu [a; ft] + . . . , 
i I 

where we denote by =o= the restiction of Smn to the subgroup yi(H). Little­
wood's procedure is to build on each [X*] with [a] in all possible ways to yield 
the irreducible representations [X'y] of Sm(n+i). We may describe this process 
by means of the formulae:7 

3.2 [\i] . [a] = £ an [X'y]; [X'y] ** £ <^[X;] X [a] + . . . , 
j * 

where ^ denotes the restriction of Sm(n+i) to the subgroup Smn X Sm. The 
quantities 07; are known from the building process. Finally, we have the 
analogue of 3.1 for 5m(n+i>: 

3.3 [a] O Wk] - L p'ifc [X'y]; [X',] o £ p'ifc [a; fi'k] + . . . , 
j k 

the prime on 0' indicating an irreducible representation of 5n+i. 

Thus, confining our attention for the moment to 3.3B we can write 

3.4 [X'y] =c= £ p'ijb [a; fi'k] + . . . * = £ p'ih e*i [a; ft] X [a] + . . . , 
k k,i 

where [fi'k] ~ £ «*i [#J> and the [0i] are obtained from [p'k] by removing a 

7We are using the notation [X;].[a] to denote the representation of Smn induced by the Kro-
necker product representation [X;] X [a] of the direct product Smn X Sm. Cf. [4] in which the 
notion of the corresponding disjoint diagram denoting this representation was introduced. 
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single node in all possible ways. The truth of the reduction 

[<*;£'*] - T,*ki[a;fii] X[a] , 

where H' is the direct product of n + 1 factors Sm and we are restricting from 
yi{H') to yi{H) X Smi can be easily seen by checking the degrees on both sides 
of the equation. 

On the other hand we can make the restriction in a different manner, using 
first 3.2B and then 3.1 B to yield 

3.5 [X'y] ^ £ crji [Ki] X [a] + . . . =c= £ a* pu [a; 0,] X [a] + . . . . 
i i,l 

Equating the coefficients of the irreducible representations [a; fii] X [a] on the 
right of 3.4 and 3.5, we have 

3.6 £ P* jk € J U = £ <Tji Pil 
k i 

since no such representations arise from resticting the r ' s , by 2.9. 
There is an interesting analogy here with the operations of the ordinary 

calculus. For example, in the equation 

Wk] =* £ c*i [j8«] 

where *ki = 0, 1, the removal of a node in all possible ways can be thought of 
as corresponding to differentiation.8 The reverse process is not the same as 
inducing, but consists of finding one or more diagrams which, when differen­
tiated, yield the given integrand; e.g. the "integral" of [2, 1] is [22], while the 
integral of 

[3, 2] + [3, l2] + [22,1] 

is [3, 2, 1]. Not every direct sum of irreducible representations can be integ­
rated, but the definition of [a] O [&'] as an induced representation provides an 
existence theorem which makes possible the solution of the equation 3.6 for 
the p'. It is necessary, however• to enquire into the existence of a "boundary 
condition" which must be satisfied. We shall determine this condition in the 
following section. 

4. The star diagram of [X']. In what follows we must assume some know­
ledge of the theory of hooks which has turned out to be of paramount impor­
tance in the modular representation theory. Without going into details, we 
define a hook Hr in a Young diagram [X] to consist of all those nodes to the 
right of and below (including) a given node of [X], If we write Hr = [n — r, l r] , 
then we shall say that Hr is of length n and parity (— l ) r . In the present 
case we are thinking of removing m hooks of length n + 1 from the diagram 

8Consider the process as applied to the corresponding tensor! 
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[X']. If we denote these hooks by Hri(i = 1, 2, . . . , m), then the quantity 

a = Uai = ( - l ) S r i = ± 1 

is uniquely determined and is independent of the way in which the hooks are 
removed. We call a the parity of [X']. 

Now the (n + l)-hook structiure of [X'] is given by the star diagram [X']*n+i 
of [X'], which contains m nodes and is in general skew. A knowledge of this 
star diagram enables us to write down the characteristic in [X'] of every con­
jugate set appearing in the w = 1 block of the irreducible representations of 
yi(H). In fact9 

4.1 x(ks*) in [V] = <rx*(k) in [X']*»+i 
= 0-(Xttl + Xa2 + • • • ), 

where the [a*] are the irreducible representations of K = Sm which appear as 
components of [X']*n+i. On the other hand we have from 3.3B 

4.2 x(ks*) in [X'] = L X(ks*) in [a,-; /S'y] 

= Xa»(Vi + ht + . . . ) + Xa2(Vi + V t + . . . ) + ••• 

by 2.8, where èp = ± 1,0 according as [($'] is or is not a hook of even or odd 
parity. No irreducible representations T of yt(H) appear in 4.2 by virtue of 
2.10. Equating and multiplying the right-hand sides of 4.1 and 4.2 by Xa 
and summing over the elements k of K = 5m , we obtain, after dividing through 
by m!, 

4.3 a = Vi + V* + .--
for every [<n] in 4.1. We conclude that one ôp = <r, while the sum of the 
remaining terms vanishes. We state our conclusions in the following 

THEOREM. If the irreducible representation [X'] of 5OT(n+i) has zero (n-\-\)-core\ 

4.4 The [a]'s appearing in 3.3B are just the irreducible components [a;] of the 
star diagram [X/]*n+i. 

4.5 For a given [a] in 3.3B, one of the associated [/S ]̂ is a hook representation of 
Sn+i of parity or, while the sum of the characters of the remaining [a ; fi'k] 
is zero for every conjugate set in the a> = 1 block of 3l(Hf). 

If the irreducible representation [X'] has non-zero (n + I)-core then 

4.6 X(ks*) in [X;] = 0 

for every conjugate set in the oo = 1 block of yi(H'). 
9This formula is the special case for zero core of that obtained in [4, p. 291]. R. M. Thrall 

has recently drawn my attention to an error in the formulation of this result; this error will be 
corrected in a forthcoming Note. The independence of <r of the method of removing hooks 
is proved in [4, p. 289]; cf. also [6]. A glance at the Table of Characters of 91 (H) will help the 
reader at this point. 
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The conclusion 4.4 is of intrinsic interest though unnecessary if we use the 
method described above, since we are confining our attention to a given [a] 
and the quantities p*. *; 07, < determine for us whether a given [X'] appears. On 
the other hand, 4.5 and 4.6 are important, as the following argument shows. 

Consider once more the integration process. We have given a representation 
<p of S*n, in general reducible, and we are seeking a representation <p' of S*»+i, 
of the same degree which when restricted to 5*n, yields the representation <p. 
In other words, we are seeking to extend <p by means of a matrix (5*), where 
s* ~ (1, 2, 3 , . . . , n + 1), and such that 

4.7 S*n+1 = S*n + S*n • s* + S*n • s*2 + . . . + S*n • **\ 

By resticting the representation [X'] of 5m(n+i) to 3l(Hf) we may obtain (s*) 
and deduce from 4.7 that <p' is completely determined. The preceding theorem 
shows that the characteristic of (s*) can be obtained from the (n + l)-hook 
structure of [X']. We conclude that there is an unique solution of the equation 
3.6 which satisfies the boundary condition 4.5 or 4.6. 

5. Illustrative example. We apply the preceding theory to the problem of 
determining the irreducible components10 of [2] O [4], [2] O [3, 1], [2] O [22], 
[2] O [2, l2], [2] O [l4], taking for granted the reductions: 

[2] O [3] = [6] + [4, 2] + [2*], of degree 15, 
5.1 [2] O [2, 1] = [3, 2, 1] + [5, 1] + [4, 2], of degree 30, 

[2] O [F] = [4, l2] + [32], of degree 15. 

Though we have written the equations in the form 3.1A we shall actually use 
them in the form 3.IB. We calculate first the degrees from the formula 

5.2 degree [a] O [0\ = xa
n • **, 

obtaining 105, 315, 210, 315,105 respectively; these provide a useful check on 
the construction involved. Building 

On [63 with [2] we obtain: [8]+, [7,1]-, [6, 2]0; 
On [2*] :[4,22]0 ,[3,22 , 1]_,[2<]+; 
On [4, 2] : [6, 2]0, [5,3]0, [5, 2, l ] a , [42]+, [4, 3,1]_, [4, 22]0; 
On [3, 2,1]: [5, 2,1]0, [4, 3 ,1]- , [4, 22]„, [4, 2,12]+, [32, 2]+, [3 \ 12]0, [3, 2\ 1 ] . ; 
On [5,1] : [7,1]_, [6, 2]0, [6, 12]+, [4, 3]0, [5, 2,1]0; 
On [4, l2] : [6,12]+, [5, 2,1]0, [5, P]_, [4, 3,1]_, [4, 2, 12]+; 
On [32] : [5, 3]0, [4, 3, 1]-, [32, 2]+ . 

From the equations 5.1 we have the pu and from this building process we have 
the an as in 3.2. The subscripts + , — in the table above indicate the parity 
a of [X'] if it has no (n + l)-core. If on the other hand [X'] has a core, the 
characteristics of the w = 1 block of yi(H') all vanish when 5m(n+i> is restricted 
to yi(H'); this fact is indicated by the subscript 0. 

"[2, p. 289]. 
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Littlewood made it clear that all the [X'] must be distributed amongst the 
[a] O [£'] and devised several more or less empirical methods for making the 
distribution. The "integration'' method proposed here is rapid and simple to 
carry through, once some familiarity has been gained with the ideas involved. 

Take for example the case of [4, 3, 1]- which is obtained 

once from [4, 2] =c= [2; 3] + [2; 2, 1] + . . . , 

5 3 once from [3, 2, 1] =s= [2; 2, 1] + . . . , 

once from [32] =c= [2; l3] + . . . , 

once from [4, l2] o [2; l3] + 

Before going further it may be worth while writing out completely one of the 
reductions listed above. For example, we have from the character table at 
the end of the paper the reduction 

[ 3 2 ] ^ [ 2 ; P ] + [P;3] + [2;2]X[1 2 ] , 

which shows also that [32] can be obtained by building with [l2] since the star 
diagram [32]*3 of [32] is 

. # = [2] + [P], 

illustrating 4.4. 
To continue, we note that 

[2; 3,1] == [2; 3] X [2] + [2; 2, 1] X [2], 
[2; 2, l 2 ] ^ [2; 2,1] X [2] + [2; l3] X [2], 

so that we conclude that 

5.4 [4, 3, 1] o [2; 3, 1] + [2; 2, l2] + [2; l4] + . . . 

= [2;* J + [2;l«] + . . . , 

using the convenient notation of disjoint diagrams.7 The term [2; l4], or 
[2; 3, 1], is of the proper parity a = — 1 and the character of 

[* ./•],„, I*:'], 
vanishes for every conjugate set of the w = 1 block of 3l(H'). This illustrates 
4.5 and suggests the following 

THEOREM. The character of a representation [a; /3] of 31(H) vanishes for every 
conjugate set of the co = 1 block if and only if: 

5.5 [fi] is a right diagram, but not a hook; 

5.6 [ft] is a skew diagram, but not a skew hook; 
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The theorem follows immediately since in these and only these cases can no 
w-hook representation appear as an irreducible component11 of [0\. 

As a further illustration it is worthwhile examining the representation [42]+ 

which is obtained 

5.7 once only from [4.2]. =o= [2; 3] + [2; 2,1] + 

One might be tempted to integrate and obtain [2; 3, 1], but [3, 1] is a 4-hook 
with a = — 1, contrary to our boundary condition that a = + 1. Thus in­
stead we must have 

5.8 [42]+<>f2;4] + [2;22] + . . . , 

which illustrates 5.5 with [0] = [22]. 
From Frobenius' Reciprocity Theorem we conclude that [4, 3, 1] is an irre­

ducible component of [2] O [3, 1], [2] O [2, l2], [2] O [l4], from 5.4. Similarly, 
[42] is a component of [2] O [4] and [2] O [22], from 5.8. 

To illustrate the case of subscript 0 let us determine the distribution of 
[5, 2, 1]0 which is obtained 

once from [4, 2] =c= [2; 3] + [2; 2, 1] + . . . , 

5 9 once from [3, 2, 1] o [2; 2, 1] + . . . , 
once from [5, 1] o [2; 2, 1] + . . . , 

once from [4, l2] =c= [2; l3] + . . . . 

Integrating, we obtain 

[5, 2, 1]0 o [2; 3,1] + [2; 22] + [2; 2, l2] + . . . 

so that [5, 2, 1] is an irreducible component of [2] 0 [3,1], [2] O [22], and 
[2] O [2, l2]. Collecting together the results thus obtained we have 

[2] O [4] = [8] + [6, 2] + [42] + [4, 22] + [22], of degree 105, 

[2] 0 [3, 1] = [7, 1] + [6, 2] + [5, 3] + [5, 2, 1] + [4, 3, 1] 
+ [4, 22] + [3, 2M], of degree 315, 

[2] O [2s] = [6, 2] + [5, 2, 1] + [42] + 14, 22] + [32, l2], of degree 210, 
[2] O [2, P] = [6, l2] + [5, 3] + [5, 2, 1] + [4, 3,1] + [4, 2, l2] 

+ [32, 2], of degree 315, 

[2] O [1«] = [5, l8] + [4, 3,1], of degree 105. 

6. A comparison with Todd's method. In a recent paper Todd12 gives a 
method of determining the irreducible components of {a} ® {/?} or of [a] O [0] 
which is akin to the procedure developed here. We propose to comment 
briefly upon Todd's method. 

"[3, p. 296]. I2[7]. 

https://doi.org/10.4153/CJM-1950-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-032-4


342 G. DE B. ROBINSON 

T-t 

(1
35

24
6)

 

00 
1 1 1 

o O o o 

T-t 

(1
35

) 
(2

46
) 

00 
1 1 

o o o o 

N 

(1
32

4)
 (

56
) 

CO T-H o 
1 

T-H o T-H 

1 
T-H 

1 
i -H T-H 

1 
i -H 

N (1
3)

 (
24

) 
(5

6)
 

CO T-H o T-H 

1 
T-H 

1 j 
o T-H 

1 
T-H - T-H 

1 

N 

(1
32

4)
 

CO T-H o 
1 

T-H j 

1 
o T-H i - H T-H 

1 
T-H 

1 
T-H 

N 

(1
3)

 (2
4)

 

CO 1-H o T—1 

1 
T-H o T-H 

1 
T-H T-H 

1 
T-H T-H 

1 

eo 

(1
2)

 (
34

) 
(5

6)
 

T-H T-H CM r H T-H 

1 
CM 

1 
T-H 

1 
CO 

1 
CO 

1 
CO CO 

eo 

(1
2)

 (
34

) 

CO T-H 0* T-H T-H CM T-H 1 T~H 

1 
T-H 

1 
i-H 

1 1 ! 

eo 

CO T-H CM T-H T-H 

1 
CM 

1 
T-H 

1 
T-H T-H T-H 

1 
T-H 

1 

eo 

T-H 1 *—1 T H (M 1 vH T-H CM i -H CO CO CO CO 

3 Se
ts

 

C
on

ju
ga

te
s 

[2
; 3

] 

[2
:2

,1
] 

I 

CO co"1 

CM 
T-H 

T-H 

CM" 

T-H 

CO 
T-H 

T-H 

CM 
T-H 

MX 
CM 

1 ^ 

CM 
T-H 

IX 
T-H 

1 CM" 

c7 
IX 
CM 

1 T~l 

CNT 

IX 
CN 
T-H 

1 T"H 

https://doi.org/10.4153/CJM-1950-032-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-032-4


INDUCED REPRESENTATIONS AND INVARIANTS 343 

In the first place Todd does not utilize the notion of the star diagram, but 
derives its irreducible components by another method. These components, 
for the representations under consideration, are listed in the last column of 
Table I [7, p. 331] along with the quantity B9 which can be identified with the 
parity a used here. Thus the basis of Todd's method is the same as ours, but 
he goes on to construct functions 

6.1 { a } ® S n , 

where Sn is the sum of the nth powers of the variables in question. These 
functions have very interesting analogues in the theory of the symmetric 
group, namely certain identities13 which are satisfied by the characters of the 
irreducible representations [a] of the symmetric group 5m n , if the elements of 
Smn whose orders are divisible by n are left out of consideration. These 
identities are of importance in the modular theory but they have no group 
theoretical significance if attention is confined to the ordinary representation 
theory. In fact, the same remark applies to the functions 6.1 as regards the 
representation theory of the full linear group. This explains why their use 
introduces the cancellation of irreducible representations, whose appearance 
is always awkward in a purely group-theoretic argument. The use of theorems 
4.5 and 4.6 avoids this difficulty. 

From the point of view of invariant theory it is desirable to have the dual in­
terpretation in terms of the full linear group and the symmetric group available 
at all times. This duality throws much light on the role played by the variables 
in the symbolic representation of invariants as opposed to the symmetry 
properties of the symbolism The significance of the subgroups H and 31(H) 
of Smn has yet to be fully explored in this connection. 
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