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Abstract. A complete list of combinations of the rates of asteroid perihelia and nodes and the
corresponding fundamental frequencies of planets, giving rise to secular resonances and involving
up to 4 frequencies, is known from the previous work, while for the resonances with 6 frequencies
a systematically derived comprehensive list is given here for the first time. There are 28 divisors
in the theory of degree up to 4, not all of which can give rise to resonances, while at degree 6
there are (at least) 33 such possibly resonant frequency combinations.

Mapping the secular resonances by plotting the resonant lines in the phase space of proper
elements or of secular frequencies, possibly also against the background of known asteroids,
enables to straightforwardly identify resonances causing large long periodic variations of asteroid
orbital elements, resonances that interact with known families, those that bound the dynamically
distinct regions, deplete or disturb asteroids in these regions, etc.
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1. Introduction

Secular resonances correspond to singularities in the phase space of orbital elements
where integer combinations of frequencies of the longitude of perihelion and the longitude
of node of perturbed (asteroids) and perturbing (planets) bodies, appearing in divisors
of the perturbing terms in the equations of motion, tend to zero. Permitted combinations
are determined by D’Alembert rules, but not all of them give rise to secular resonances
located in the region of interest.
Roughly, secular resonances can be divided into two broad categories: the linear ones,

which are the strongest and most important in terms of the effects they produce in
the motion of asteroids, and the nonlinear ones, which affect the motion to a lesser
extent, depending on the degree of these resonances themselves. Linear resonances appear
in the equations of motion as divisors of the terms linear in eccentricity and/or (sine
of) inclination (that is, of degre 2 in the perturbing Hamiltonian) and they include
the difference of just two frequencies - one of the asteroid and another of a perturbing
planet, while all others are nonlinear resonances, corresponding to divisors of terms with
amplitudes containing higher degrees of (e, sin I) and involving combinations of 4, 6, 8,
and so on, frequencies. Limiting our dynamical model to include only the most massive
perturbing planets - Jupiter and Saturn - the linear secular resonances are just three:
g− g5, g− g6, s− s6, while examples of degree 4 and 6 nonlinear ones are, e.g.: g+ s−
g6 − s6, g+ 2s− g5 − 2s6; here g, s denote the secular frequencies of the longitude of
perihelion and the longitude of node of the asteroid’s orbit, while g5 = 4.26 arcsec/y,
g6 = 28.25 arcsec/y, s6 =−26.34 arcsec/y are the corresponding frequencies for Jupiter
and Saturn.
Knowledge of the exact positions of secular resonances in the phase space of

proper orbital elements or frequencies encompassing the asteroid belt, is of paramount
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importance for a number of reasons; these include the possibility to reliably assess the
interaction with asteroids inside or near the resonant region, the reshaping of asteroid
families interacting with resonances, the transport of objects inside or outside the aster-
oid belt, and so on. Mapping the secular resonances is the most effective tool to pin down
and visualize their positions, and to appreciate their importance in terms of the asteroid
dynamics.
The first secular resonance maps in the region of asteroid belt were presented by

Williams and Faulkner (1981), who plotted secular resonance surfaces projected to
(a, sin I) plane. They showed the lines corresponding to a number of different values
of eccentricity, representing the centers of libration only for the three above mentioned
linear resonances with Jupiter and Saturn (which they labeled ν5, ν6, ν16, respec-
tively, and for one nonlinear resonance located in the very high inclination region.
Subsequently, Milani and Knežević (1990), and later Milani and Knežević (1992) and
Milani and Knežević (1994), presented improved version of these maps, with reso-
nant positions marked by the contour lines approximately indicating also the width
of the resonant strip. They upgraded the mapping by showing the positions of a num-
ber of most significant nonlinear secular resonances against the background of known
asteroids in the proper elements space, illustrating the interaction of asteroid families
with these resonances, studying dynamical behavior of asteroids affected by resonances,
etc. Knežević et al. (1991) further extended the representation of positions of linear
secular resonances to the interval of semimajor axes from 2 to 50 au, followed by
Michel and Froeschle (1997) who mapped the positions of linear secular resonances in the
region of semimajor axes less than 2 au. The most recent entries into the literature on
secular resonance positions pertain to an attempt to precisely locate the g− g5 secular
resonance Knežević (2020), and to a survey of positions of all the resonances in the aster-
oid belt up to degree 4, as well as of an incomplete list of degree 6 ones and of several
resonances of degree 8 Knežević (2022).

To be able to map the secular resonances, one needs to know which are the combina-
tions of frequencies, allowed by the D’Alembert rules, giving rise to resonances. For this
purpose in the following we consider the lists of resonant combinations and assess their
completeness.

2. Secular resonance census

The most obvious way to assess the completeness of a list of resonances is on a degree
by degree basis. We proceed from the linear, degree 2 resonances, involving combinations
of two frequencies only, and continue afterwards with resonances of degrees 4, 6, and
so on, involving the corresponding number of frequencies, while checking for all of them
whether they can achieve zero value in the region of interest, that is, in the asteroid belt.
As already explained above, if we limit ourselves to consider a dynamical model with

only Jupiter and Saturn as perturbing planets, we see that the degree two resonances are
just three, while in the full planetary system model, with 8 perturbing planets, there are
15 such combinations.
The situation is not so trivial already at the next level, in the degree 4 case. In Table 1

we give a list of 28 divisors appearing in the analytical theory of Milani and Knežević
(1990), not all of which, however, can give rise to a resonance - obviously, this is the case
with divisor g5 − g6, which is simply a constant, but also divisors Nos. 22− 27 cannot be
zero, as frequency s has always a negative value throughout the asteroid belt. Bearing in
mind that this list does not include the “fake” divisors, involving s5, which are removed
from the theory by the change of coordinates to express inclinations with respect to the
invariable plane, one may state that this list of resonances is complete.
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Table 1. Secular resonances of degree 2 and 4

No Divisor No Divisor

1 g − g5 15 2g − 2s6
2 g − g6 16 g + g5 − s− s6
3 s− s6 17 g + g6 − s− s6
4 g − g5 + s− s6 18 g + g5 − 2s6
5 g − g6 + s− s6 19 g + g6 − 2s6
6 2g − 2s 20 s− s6 + g5 − g6
7 g − 2g5 + g6 21 s− s6 − g5 + g6
8 g + g5 − 2g6 22 2s− 2g5
9 2g − g5 − g6 23 2s− 2g6

10 g − g5 − s+ s6 24 2s− g5 − g6
11 g − g6 − s+ s6 25 s+ s6 − 2g5
12 2g − s− s6 26 s+ s6 − 2g6
13 g + g5 − 2s 27 s+ s6 − g5 − g6
14 g + g6 − 2s 28 g5 − g6

While for resonances up to degree 4 we could use the results available from the pre-
vious work, for the extension to degree 6 resonances there is no such possibility. Thus,
a dedicated effort is needed to get the full list of these resonances suitable for their
mapping.
Before we venture to address the problem at hand, let us clarify whether this is a

worthwhile effort. Let us, namely, consider whether the degree 6 secular resonances are
at all important in the asteroid dynamics: are their effects large enough to be easily recog-
nized and do they offer plausible explanations for some peculiar features of the motion of
asteroids and of their distribution in the phase space. For simplicity, we shall recall here
only a couple of examples of secular resonances affecting the shapes of asteroid families
in the space of proper elements, because these are easy to recognize and understand.
One of the first ever examples of the observable effect of a secular resonance, and to that

matter of a degree 6 resonance, on the shape of an asteroid family is due to Bottke et al.
(2001): they showed that the so-called ”Prometheus surge”, consisting of members of
the Koronis asteroid family exhibiting systematically larger proper eccentricities than
the rest of the family, is a consequence of the interaction of family members migrating
outwards from the Sun due to Yarkovsky effect with the secular resonance g+ 2g5 − 3g6.
Another example pertains to Hansa family Milani et al. (2019) affected by the degree

6 secular resonance 2g− g5 − g6 + s− s6. The effect of this resonance explains a large
scatter of proper eccentricity e in the part of the family with semimajor axis a< a0,
where a0 is the proper a of the parent body. The members on this side of the family,
also originally ejected in the same direction as suggested by the positive V-shape of the
family, are moving preferentially towards the Sun due to the Yarkovsky effect, so that
many members currently outside of the secular resonance zone must have passed through
it in the past. The eccentricities of the family members being low and inclinations high,
the scattering in this case affects much more the proper e than the proper sin I because
of the D’Alembert rule, thus the changes in e are much larger than those in sin I.
There are other examples of this kind, but even just these two are enough to conclude

that secular resonances of degree 6 are important and thus worth an effort of identifying
and mapping them..

2.1. Identification of secular resonances of degree 6

The identification of degree 6 secular resonances is not a straightforward thing to do:
the analytical theory based on the expansion of perturbing function beyond degree 4
terms in eccentricity and sine of inclination, but with inclinations expressed with respect
to a common coordinate plane, is not available Ellis and Murray (2000), and a computer
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Table 2. Secular resonances of degree 4 as combinations of linear and Kozai ones. Columns
gs and ν give the same divisor written in two ways

No gs ν No gs ν

1 g − g5 ν5 15 2g − 2s6 2ν16 + 2K

2 g − g6 ν6 16 g + g5 − s− s6 2K − ν5 + ν16

3 s− s6 ν16 17 g + g6 − s− s6 2K − ν6 + ν16

4 g − g5 + s− s6 ν5 + ν16 18 g + g5 − 2s6 2K − ν5 + 2ν16

5 g − g6 + s− s6 ν6 + ν16 19 g + g6 − 2s6 2K − ν5 + 2ν16

6 2g − 2s Kozai 20 s− s6 + g5 − g6 ν6 − ν5 + ν16

7 g − 2g5 + g6 2ν5 − ν6 21 s− s6 − g5 + g6 ν5 − ν6 + ν16

8 g + g5 − 2g6 2ν6 − ν5 22 2s− 2g5 2ν5 − 2K

9 2g − g5 − g6 ν5 + ν6 23 2s− 2g6 2ν6 − 2K

10 g − g5 − s+ s6 ν5 − ν16 24 2s− g5 − g6 ν5 + ν6 − 2K

11 g − g6 − s+ s6 ν6 − ν16 25 s+ s6 − 2g5 2ν5 − ν16 − 2K

12 2g − s− s6 ν16 + 2K 26 s+ s6 − 2g6 2ν6 − ν16 − 2K

13 g + g5 − 2s 2K − ν5 27 s+ s6 − g5 − g6 ν5 + ν6 − ν16 − 2K

14 g + g6 − 2s 2K − ν6 28 g5 − g6 ν6 − ν5

algebra system like TRIP Gastineau and Laskar (2011) is both quite demanding to use
and available only in a limited version, in any case not yet applied for our purpose.
There is, however, a simple and efficient “empirical” way to find most, if not all, secular
resonances of degree 6 (and higher, if neeeded) and produce their list; whether such a
list is also complete remains to be verified by one of the above methods.
Carruba and Michtchenko (2009) proposed a new notation for nonlinear secular res-

onances that employs the νk labels introduced by Williams and Faulkner (1981); the
new notation was based on the idea that nonlinear resonances can be expressed as
simple combinations of linear ones (c.f. g+ g5− 2g6 = 2ν6 − ν5; 2g− s− g5 − g6 + s6 =
ν5 + ν6 − ν16). Although this conjecture soon proved not to be entirely correct since only
10 resonances of degree 4 could be constructed by means of the three linear ones and 14
of them could not (e.g. resonances like g− 2s+ g6 or s+ s6− 2g5, appearing in Table 1,
cannot be obtained as a combination of linear ones), the idea lingered around, to eventu-
ally become useful providing an appropriate correction is added. It turned out, namely,
that all divisors in Table 1 can be recovered if also Kozai’s resonance 2K = 2g− 2s is
included in the arithmetic. This is demonstrated in Table 2, where all the resonances of
degree 4 listed in Table 1 are expressed as combinations of either the linear ones only, or
as combinations that involve Kozai’s resonance as well.
It is now straightforward to assume that resonances of higer degree, in particular

these of degree 6, can be identified in the same way. The procedure may be considered
an extrapolation, but note that D’Alembert rules are at work here, making the higher
degree terms logically connected with the lower degree ones. In Table 1 we thus list all
33 resonances of degree 6 identified as combinations of linear resonances only (1–20), and
as combinations with Kozai’s resonance included too (21–33).

3. Mapping of resonances

Once we have a list of secular resonances at our disposal, it is easy to map them and
visualize their positions and interactions with asteroid families and background objects
in a suitable phase space, be it a proper elements space or, perhaps more appropriate
in this context, a secular frequencies space. In the former case, one uses frequencies
computed on a regular grid by means of the polynomial fitting procedure developed by
Knežević and Milani (2019), and represents them by means of the contour lines in the
plane of two proper elements (e.g. a, sin I), while keeping the third one (e) fixed Knežević
(2022). In the latter case, resonance loci are simply plotted as straight lines in the cor-
responding (g, s) plane. Adding in the same figures the positions of asteroids selected to
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Table 3. Secular resonances of degree 6 as combinations of linear and Kozai ones. Columns
gs and ν give the same divisor written in two ways

No gs ν No gs ν

1 3g − 2g5 − g6 2ν5 + ν6 21 3g − 2s− g5 ν5 + 2K

2 3g − g5 − 2g6 ν5 + 2ν6 22 3g − 2s− g6 ν6 + 2K

3 2g + s− g5− g6− s6 ν5 + ν6 + ν16 23 3s− 2g − s6 ν16 − 2K

4 2g − s− g5 − g6 + s6 ν5 + ν6 − ν16 24 3s− g − g5 − s6 ν5 + ν16 − 2K

5 2g + s− 2g5 − s6 2ν5 + ν16 25 3g − s− g5− s6 ν5 + ν16 + 2K

6 2g − s− 2g5 + s6 2ν5 − ν16 26 3s− g − g6 − s6 ν6 + ν16 − 2K

7 2g + s− 2g6 − s6 2ν6 + ν16 27 3g − s− g6 − s6 ν6 + ν16 + 2K

8 2g − s− 2g6 + s6 2ν6 − ν16 28 2g − 2s− g5 + g6 ν5 − ν6 + 2K

9 g + 2s− g5 − 2s6 ν5 + 2ν16 29 2g − 2s+ g5 − g6 ν6 − ν5 + 2K

10 g − 2s− g5 + 2s6 ν5 − 2ν16 30 2s− g − 2g5 + g6 2ν5 − ν6 − 2K

11 g + 2s− g6 − 2s6 ν6 + 2ν16 31 2s− g + g5 − 2g6 2ν6 − ν5 − 2K

12 g − 2s− g6 + 2s6 ν6 − 2ν16 32 g + 2s− g5 − 2g6 ν5 + 2ν6 − 2K

13 2g − 3g5 + g6 3ν5 − ν6 33 g + 2s− 2g5 − g6 2ν5 + ν6 − 2K

14 2g + g5 − 3g6 3ν6 − ν5

15 g + s− 2g5 + g6 − s6 2ν5 − ν6 + ν16

16 g + s+ g5 − 2g6 − s6 2ν6 − ν5 + ν16

17 g − s− 2g5 + g6 + s6 2ν5 − ν6 − ν16

18 g − s+ g5 − 2g6 + s6 2ν6 − ν5 − ν16

19 2s− g5 + g6 − 2s6 ν5 − ν6 + 2ν16

20 2s+ g5 − g6 − 2s6 ν6 − ν5 + 2ν16

Figure 1. Sample of secular resonances of degree 6 plotted in the plane of frequencies (g, s).
Overlapped are asteroids with deteriorated proper elements: σe > 0.005 (green dots) and σsin I >
0.003) (blue dots).
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demonstrate interaction of the resonance with a particular asteroid population, (families,
asteroids with deteriorated proper elements, or similar), one also enables analysis of the
resonant dynamics and effects these interactions cause.
In Figure 1 a sample of secular resonances of degree 6 is shown in the plane of fre-

quencies (g, s). Also shown are asteroids with deteriorated proper elements - these with
σe > 0.005 (green dots) and with σsin I > 0.003 (blue dots). Although the strips with
lower accuracy data align mostly with resonances of different degrees not shown in the
figure, in at least one case (2g− 2g6 + s− s6, at g� 30 arcsec/y, s�−30 arcsec/y) the
alignment of blue dots with the resonance is obvious.

4. Conclusions

In conclusion one can state that the complete list of resonances of degree 6 (and possibly
higher) is indeed necessary, since many of them have important effects on the dynamics of
asteroids, and that their exact positions must be known to pursue the research. Whether
the simple scheme presented in this work solves the issue of completeness of their census
remains to be verified in the future with some more sophisticated approaches.
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