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A phenomenological description is presented to explain the intermediate and
low-frequency/large-scale contributions to the wall-shear-stress (τw) and wall-pressure
( pw) spectra of canonical turbulent boundary layers, both of which are well known to
increase with Reynolds number, albeit in a distinct manner. The explanation is based
on the concept of active and inactive motions (Townsend, J. Fluid Mech., vol. 11, issue
1, 1961, pp. 97–120) associated with the attached-eddy hypothesis. Unique data sets of
simultaneously acquired τw, pw and velocity-fluctuation time series in the log region are
considered, across a friction-Reynolds-number (Reτ ) range of O(103) � Reτ � O(106).
A recently proposed energy-decomposition methodology (Deshpande et al., J. Fluid
Mech., vol. 914, 2021, A5) is implemented to reveal the active and inactive contributions
to the τw- and pw-spectra. Empirical evidence is provided in support of Bradshaw’s
(J. Fluid Mech., vol. 30, issue 2, 1967, pp. 241–258) hypothesis that the inactive motions
are responsible for the non-local wall-ward transport of the large-scale inertia-dominated
energy, which is produced in the log region by active motions. This explains the large-scale
signatures in the τw-spectrum, which grow with Reτ despite the statistically weak signature
of large-scale turbulence production, in the near-wall region. For wall pressure, active
and inactive motions respectively contribute to the intermediate and large scales of the
pw-spectrum. Both these contributions are found to increase with increasing Reτ owing
to the broadening and energization of the wall-scaled (attached) eddy hierarchy. This
potentially explains the rapid Reτ -growth of the pw-spectra relative to τw, given the
dependence of the latter only on the inactive contributions.
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Figure 1. Premultiplied energy spectra of (a) τw, (b) pw and (c) premultiplied spectrogram of the bulk
turbulence production ( f z+P+) as a function of T+(= 1/f +). Data for 500 � Reτ � 2000 are from
Eitel-Amor, Örlü & Schlatter (2014), for Reτ ∼ O(104) are from Marusic et al. (2021) and for Reτ ∼ O(106) are
from the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility data sets acquired by
(a) Marusic & Heuer (2007) and (b) Klewicki, Priyadarshana & Metzger (2008). Grey and yellow coloured
backgrounds in (a–c) indicate the nominal intermediate (O(102) � T+ � O(103)) and large-scale ranges
(T+ � O(103)), respectively.

1. Introduction and motivation

Wall-bounded flows are ubiquitous in various applications, such as over aircraft wings
and around submarines, where they affect vessel performance through the imposition of
wall-shear-stress (τw) and wall-pressure ( pw) fluctuations on the bounding surface. The
former, τw, are associated with the skin-friction drag which limits vehicle speed, while
the latter, pw, are responsible for flow-induced vibrations that affect structural stability
and generate noise. Nevertheless, accurately modelling the fluctuations in τw and pw
remains a challenge due to the limited understanding of the dependence of their generation
mechanisms on the Reynolds number.

Figure 1 shows a compilation of premultiplied frequency spectra of τw and pw for a wide
range of Reynolds numbers. Here, the viscous-scaled time is defined as T+ = U2

τ /( f ν),
where f is the frequency of turbulence scales, ν is the kinematic viscosity and Uτ is the
mean friction velocity, with superscript ‘+’ indicating viscous scaling. All these spectra
have been computed from previously published high-fidelity simulations (500 � Reτ �
2000) and experimental data sets (O(104) � Reτ � O(106)) of a turbulent boundary layer
(TBL), where Reτ = Uτ δ/ν is the friction Reynolds number and δ is the TBL thickness.
Although the experimental spectra have certain limitations at T+ � 100 owing to spatial
and temporal resolution, they will not influence this discussion (see § 3).

A noteworthy observation from figure 1(a,b) is the increasing energy contribution to
the τw − (T+ � O(103)) and pw-spectra (T+ > O(102)) with increasing Reτ , which has
been noted previously in all canonical wall flows (Tsuji et al. 2007; Örlü & Schlatter
2011; Mathis et al. 2013; Panton, Lee & Moser 2017; Yu, Ceci & Pirozzoli 2022; Baars,
Dacome & Lee 2024). While these viscous-scaled spectra exhibit Reτ -invariance in the
small-scale range (T+ � 100), they exhibit distinct Reτ -variations in the intermediate
(O(102) � T+ � O(103)) and large-scale ranges (T+ � O(103)), with these nominal
bounds considered based on the largest possible Reτ -range (figure 1a,b). Although past
studies have broadly linked these Reτ trends to the energization of large inertial motions,
the present study addresses two fundamental questions that have remained unanswered:
(i) Which motions are responsible for transporting the large-scale energy (i.e. energy
of large-scale motions), residing in the outer region, towards the wall to influence the
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Active-inactive effects on wall pressure and shear stress

wall-shear stress (Lee & Moser 2019; Lee & Hwang 2024)? (ii) Which motions contribute
to the rapid Reτ -growth of pw in the intermediate scales (O(102) � T+ � O(103)), and
why is this growth relatively weaker in the case of τw?

The origin of the large-scale inertia-dominated energy in the outer region has now
been well established in the literature (Lee & Moser 2019), based on the turbulent
kinetic energy (TKE) production term, P+ = −2uw+(∂U+/∂z+). Here, u, v and w
represent instantaneous velocity fluctuations along the streamwise (x), spanwise (y) and
wall-normal (z) directions, respectively, while capital letters and overbar indicate time
averaging. Figure 1(c) shows the premultiplied spectra of the bulk turbulence production
( f z+P+(z+; T+)) from the same simulation data sets as in figure 1(a,b). Note here that
the premultiplication with z+ artificially amplifies the spectral content in the outer region
compared with the inner region, but the majority of the energy production essentially
occurs near the wall when Reτ � O(103). Figure 1(c) confirms the weak energy production
in the near-wall large scales (T+ > 1000) compared with the small scales, thereby
suggesting association of the large-scale τw−signatures with wall-ward energy transport
from the outer region (Lee & Hwang 2024). While several past studies have quantified
and predicted the superposition of large-scale signatures on τw (Metzger & Klewicki
2001; Örlü & Schlatter 2011; Mathis et al. 2013), fundamental understanding of their
energy-transfer mechanisms is still lacking, starting from the motions governing the
transport of large-scale energy from outer region towards the wall.

With regards to the differences between τw and pw over O(102) � T+ � O(103),
although considerable TKE is produced in this scale range in the inner region, the
contour levels of the TKE production spectra in figure 1(c) exhibit a convincing
collapse/invariance across different Reτ . This suggests a negligible Reτ -increment in
the near-wall TKE production in the intermediate-scale range (O(102) � T+ � O(103)),
consistent with results presented by Lee & Moser (2019). It means that the Reτ increase
of f φ+

pwpw
in the intermediate-scale range is also associated with the energization of

turbulence motions farther away from the wall, which, however, seem to influence f φ+
τwτw

relatively weakly. The present study attempts to advance our fundamental understanding
of the turbulence motions governing these trends, and their roles in the underlying
energy-transfer mechanisms. This information would be valuable for designing high−Reτ

drag and noise reduction strategies in the future.

2. Active and inactive components and their roles in the energy-transfer mechanisms

This study explores the ability of the attached-eddy (i.e. wall-scaled eddy; Townsend
1976) framework to provide a phenomenological explanation for the questions raised
above. This is motivated by the fact that the same framework has been previously
successful in predicting the τw- and pw-spectra, associated with the inertial scales,
across a broad Reτ -range (Ahn, Graham & Rizzi 2010; Marusic et al. 2021). Per
Townsend’s hypothesis, the outer region (z � zmin) of a high−Reτ wall-bounded flow
can be statistically represented by a hierarchy (O(zmin) � H � O(δ)) of geometrically
self-similar, inviscid, wall-scaled eddies dominated by inertia (figure 2), where H is the
eddy height and zmin is the nominal lower bound of the log region. These wall-scaled
eddies have been classically referred to as attached eddies in the literature, in reference
to their scaling with z and Uτ , and not necessarily implying their physical extension to
the wall. Townsend (1976) proposed that these eddies have a population density varying
inversely to their height H, leading their cumulative velocity contributions at z � zmin to
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Figure 2. Conceptual sketches of wall-scaled eddies in a TBL at relatively (a) low (Reτ1 ) and (b) high
(Reτ2 ) Reynolds numbers. (c–e) Depict the roles of the active and inactive parts of wall-scaled eddies in the
energy-transfer mechanisms per the hypotheses of Bradshaw (1967) and de Giovanetti, Hwang & Choi (2016).
Blue and red sections, respectively, correspond to the inactive and active portions of the wall-scaled eddies
(grey scaled), which are defined based on the point of observation, z: (c) z1 or (d,e) z2. In (d,e), white eddies
with dashed contours are centred lower than z, and hence are not involved in either local TKE production at z
(red region), or non-local energy transport from z to the wall (cyan arrows). Greater thickness of the arrows in
(e) indicates larger transport magnitude at higher Reτ . Panels show (a) Reτ1 ; (b) Reτ2 > Reτ1 ; (c) Reτ1 , point
of observation: z1; (d) Reτ1 , point of observation: z2; (e) Reτ2 , point of observation: z2.

follow (at asymptotically high Reτ )

u2+ = B1 − A1 ln(z/δ),

v2+ = B2 − A2 ln(z/δ),

w2+ = B3 and

uw+ = B4,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

where B1−4 and A1−2 are constants. The increased availability of high-Reτ data over
the past two decades has provided considerable empirical support to these expressions
(Jimenez & Hoyas 2008; Hultmark et al. 2012; Lee & Moser 2015; Orlandi, Bernardini
& Pirozzoli 2015) in the nominal log region of the TBL (the exact definition of which
may vary in the literature). The disagreement beyond the log region is owing to the
statistical significance of the non-wall-scaled eddy-type motions coexisting in boundary
layers, particularly in the boundary layer wake region (Marusic & Perry 1995).

While the expressions for u2+
and v2+

in (2.1) suggest their dependence on Reτ , w2+

and uw+ are postulated to be Reτ -independent in the large Reτ limit. Townsend (1976)
explained this contradiction by proposing that the flow at any point of observation (z �
zmin) comprises two components of wall-scaled eddies (figure 2) – an ‘active’ component
of the wall-scaled eddy that is responsible for local turbulent transfer and accounts for
the instantaneous Reynolds shear stresses (uw) at z, and an ‘inactive’ component that
does not contribute to uw at z. Here, the inactive component predominantly comes from
wall-scaled eddies much taller than z, which contribute to uw (i.e. behave as active
motions) at wall-normal locations larger than z. Hence, while the active component is
solely responsible for the local TKE production, Townsend (1976) described inactive
motions as non-local ‘swirling motions’ whose ‘effect on that part of the layer between
the point of observation and the wall is one of slow random variation of ‘mean velocity’
which cause corresponding variation of wall stress’. These statements were supported by
Bradshaw (1967) and de Giovanetti et al. (2016), who hypothesized that the inactive parts
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Active-inactive effects on wall pressure and shear stress

of the wall-scaled eddies are responsible for transporting large-scale energy produced
in the outer layer (by active parts), to the wall. As per Bradshaw (1967), this process is
necessary to maintain the near-wall energy balance and is sketched in figure 2(c–e).

Although the non-local wall-normal transport of large-scale energy has been previously
observed through correlation/spectral analysis of the TKE budget equations (Cho, Hwang
& Choi 2018; Lee & Moser 2019; Yin, Hwang & Vassilicos 2024), its connection with the
inactive part of the wall-scaled eddies has never been definitively established, primarily
due to the lack of a reliable flow-decomposition methodology. Along the same lines, while
the association of pw-signatures with intense uw events is well known (Gibeau & Ghaemi
2021; Baars et al. 2024), their distinct correlations with uw-contributing (active) and
non-contributing (inactive) components has never been explicitly established. Recently,
Deshpande, Monty & Marusic (2021) proposed a spectral linear stochastic estimation
(SLSE)-based methodology that enables data-driven decomposition of the log-region flow
into its corresponding active and inactive components. This provides an opportunity to
establish the association of active/inactive components with τw and pw, and thereby explain
their Reτ -variation based on the Reτ growth of the wall-scaled eddy hierarchy (figure 2).

2.1. Revisiting the concept of active and inactive motions
Before proceeding with the new analysis, we briefly review the concept of active and
inactive motions by means of a simplified mathematical description, which is inspired
by Townsend’s original ideas and adapted from our previous work (Deshpande, Monty &
Marusic 2020; Deshpande et al. 2021). We consider the simplest model of a wall-bounded
flow comprising wall-scaled eddies as the only eddying motions, which are represented
by hairpin-type vortical structures. It is important to note here, however, that the concept
of active and inactive motions does not depend on the shape of the vortical structures,
but is rather associated with the spatial distribution of velocity signatures generated by
these vortical structures, as depicted in figure 3(a) (estimated by simple Biot–Savart
calculations). The inviscid nature of the wall-scaled eddy model permits slip at the
wall (i.e. finite u and v), while w = 0 is enforced at z = 0 to remain consistent with
wall impermeability. These differences in the boundary conditions result in spatially
localized w-signatures (and consequently uw-signatures) at z from any wall-scaled eddy of
H ∼ O(z), while the u- and v-signatures extend across 0 � z < H (i.e. non-local; refer to
figure 3a). It is these characteristics that distinguish the active and inactive contributions in
the velocity flow field, despite both of them originating from the same wall-scaled vortical
structures.

Differences in the active/inactive contributions to the Reynolds stresses can be
understood by invoking Townsend’s (1976) eddy-intensity function Iij (where i, j = u, v or
w), depicted schematically in figure 3(b) for the four non-zero combinations of i, j (refer
to (2.1)). Here, Iij is representative of the contribution from each eddy to the normal and
Reynolds shear stresses as a function of z, and this is sketched for wall-scaled eddies of
three different heights (H1–H3) in figure 3(b), as an example. Effects of increasing Reτ can
be accounted for by including taller eddies of height H4 > H3 and so on. The wall-normal
distributions of Iij are inspired by the individual velocity distributions in figure 3(a), and
they are used to explain the cumulative contributions to the Reynolds stresses (from the
three eddies) at three different probe locations in figure 3(b). For instance, when the probe
is positioned at z ∼ H1, all three eddies will contribute to u2(z) and v2(z), while the
contribution to w2(z) and uw(z) would come solely from the eddy of height H1. However,
upon increasing the probe location to z ∼ H2, contributions to the wall-parallel stresses
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Figure 3. (a) Spatial signatures of the three velocity components (u, v, w) from a hairpin-type vortex
structure of height H, representative of a wall-scaled eddy (Marusic & Perry 1995). Regions in magenta
and indigo, respectively, denote high- and low-momentum regions for the corresponding velocity fluctuations.
(b) Eddy-intensity functions (Iij) for wall-scaled eddies of three different heights Hi, with H1 < H2 < H3.
Here, ui, vi, wi respectively denote velocity signatures generated from these wall-scaled eddies that are sensed
by a probe, depending on their z-location. Red and blue background shadings of ui, vi, wi, respectively, indicate
active and inactive contributions at that location. The figure has been adapted from Deshpande et al. (2020).

are only made by the tallest two eddies, while those to w2(z) and uw(z) only come from the
eddy of height H2, and so on. Connecting these observations with Townsend’s definitions
in § 2, the active contributions at any z can be solely associated with eddies of height,
H ∼ O(z), which will contribute to u, v, w and hence uw, at z (indicated by red background
shading in figure 3b). On the other hand, the inactive contributions are associated with
relatively tall wall-scaled eddies: O(z) � H � O(δ). These contribute to u(z) and v(z),
but not w(z) and uw(z) (indicated by blue background shading).

Considering that increasing Reτ introduces new eddies that are much taller than z, only
the inactive contributions to u(z) and v(z) will increase for all z � H, while the active
contributions will exhibit Reτ -invariance when scaled in wall units (i.e. z and Uτ ). This
explains the contrasting trends exhibited by the Reynolds stresses in (2.1), where u2+

(z)

and v2+
(z) are Reτ -dependent while w2+

(z) and uw+(z) exhibit Reτ -invariance in the
log region. In summary, both active and inactive motions contribute to the wall-parallel
velocity fluctuations, but only the former contribute to the Reynolds shear stresses
and w-fluctuations. This is expressed mathematically by the following (Panton 2007;
Deshpande & Marusic 2021):

u(z) = ua(z) + uia(z),

v(z) = va(z) + via(z) and

w(z) = wa(z),

⎫⎪⎬
⎪⎭ (2.2)

where subscripts ‘a’ and ‘ia’, respectively, denote active and inactive components. The
variances can be decomposed according to the following (Panton 2007; Deshpande &
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Marusic 2021):

u2+ = u2
ia

+ + u2
a
+ + 2uiaua,

v2+ = v2
ia

+ + v2
a
+ + 2viava,

w2+ = w2
a
+

and

uw+ = uaw+ + uiaw+.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

While uiaua, viava and uiaw = 0 for a traditionally conceptualized wall-scaled eddy
field (i.e. considering only linear superposition of velocity fluctuations originating from
various hierarchies of wall-scaled eddies), that is not true for an actual/real wall-bounded
flow (Deshpande et al. 2021; Deshpande & Marusic 2021). A real TBL also comprises
very-large-scale inertial motions/superstructures that are inherently inactive per the
definition of Townsend (Deshpande et al. 2021) and interact nonlinearly with/modulate
the eddies local to z (Metzger & Klewicki 2001; Mathis et al. 2013; Baars, Hutchins &
Marusic 2016). The causality between superstructures and nonlinear interactions, however,
is a topic of ongoing debate (Andreolli et al. 2023). This, combined with the fact that these
nonlinear interactions are smaller in magnitude than individual u2

ia and u2
a components

(Deshpande & Marusic 2021), makes the investigation of nonlinear interactions beyond
the scope of this study. The present study aims to deploy the decomposition methodology
facilitating (2.2) on instantaneous flow fields of published data sets, to analyse for the
first time the active and inactive contributions to τw and pw. This work builds on the past
successes of the decomposition methodology (Deshpande et al. 2021) that has yielded
empirical support for the scaling characteristics of the active and inactive components,
hypothesized by Townsend (1976). This includes the z-scaling behaviour of u2

a
+

, and the

inverse-logarithmic variation of u2
ia

+
associated with the k−1-scaling (where k represents

the streamwise/spanwise wavenumber), to list a few.

3. Data sets and methodology

The present study considers two previously published multi-point data sets across a large
Reτ range: O(103) � Reτ � O(106), for the SLSE analysis. The low−Reτ data set is
from the high-resolution large-eddy simulation (LES) of a zero-pressure-gradient TBL by
Eitel-Amor et al. (2014), which was computed over a numerical domain large enough for
the TBL to evolve up to Reτ ≈ 2000. In comparison with a fully resolved direct numerical
simulation (DNS), the resolution employed in the LES data is just a factor of 2 coarser in
the wall-parallel directions, and approximately 1.5 times coarser along the wall-normal
one. Hence, instead of using a conventional subgrid-scale model in the simulation, a
small forcing was implemented on the very small scales, essentially to add some extra
dissipation. As a consequence, only two minor statistical differences emerge compared
with a fully resolved DNS: a slight attenuation of the near-wall peak of u2+

, and a resolved
TKE dissipation 87.2 % of that in a conventional DNS. However, adding the dissipation
associated with the forcing recovers 99.8 % of the TKE dissipation. Since the present study
predominantly focuses on the correlation between synchronously sampled time series
of the desired wall properties (τ+

w , p+
w ) and the overlying flow field (u+, w+), the use

of a high-resolution LES instead of DNS does not influence the present conclusions.
These correlations are investigated at designated streamwise locations of the numerical
domain, corresponding to Reτ ≈ 500, 1000, 1500 and 2000. For this, the time series of

1003 A24-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1218


R. Deshpande, R. Vinuesa, J. Klewicki and I. Marusic

the LES were sampled across the entire domain cross-section (y − z), with a resolution
of �t+ � 0.5 and for a total eddy-turnover time (tsampU∞/δ) ≈ 243, where U∞ is the
free-stream speed. Combined with the option to ensemble average across the span, these
time series are long enough to obtain a sufficiently converged frequency spectrum for
capturing the inertial phenomena (demonstrated in Eitel-Amor et al. 2014).

The high-Reτ (∼ O(106)) data set is from the neutrally buoyant surface layer at the
SLTEST facility in Utah (Marusic & Heuer 2007). The data comprise synchronously
acquired time series of (u+, w+) from five sonic anemometers positioned on a vertical
tower, within the log region (0.0025 < z/δ < 0.0293), and wall-shear-stress signals (τ+

w )
measured using a custom-designed sensor placed vertically below the sonics. These data
were acquired at a time resolution of �t+ � 78.4 and for a total of 175 eddy-turnover
times, across a viscous-scaled measuring volume of 1400 (of sonics).

While the sampling intervals for both LES and SLTEST data sets are not sufficient for
fully converging/resolving the very-large-scale phenomena (quantitatively), they have been
analysed previously by Deshpande, Vinuesa & Marusic (2024) and found to be sufficient
to attain an accurate qualitative understanding. This was demonstrated by repeating the
same statistical analysis (as presented ahead in § 3.1) on the simultaneous u+, w+ and
τ+

w measurements conducted in the large Melbourne wind tunnel (Deshpande & Marusic
2021), time series for which were sampled for a much longer time interval and at greater
frequency. The results and trends derived from the wind-tunnel data were qualitatively
consistent with those obtained from the LES and SLTEST data sets, which will serve as the
basis for the present study. Both these data sets provide rare access to velocity-fluctuation
time series across the log region synchronously with τw, for TBLs spanning a broad
Reτ range (103–106). This offers a unique opportunity to directly test the hypotheses of
Bradshaw (1967) and de Giovanetti et al. (2016), regarding TKE production and transport
mechanisms from the log region to the wall, and to understand how they affect τw and
pw. Our present conclusions will only depend on the qualitative energy variation across z,
and not focus on its quantification/scaling (requiring convergence). We note that, although
the SLTEST flows are transitionally rough TBLs, the roughness effects are insignificant
beyond the roughness sublayer (Klewicki et al. 2008; Marusic & Heuer 2007). Hence, the
roughness will not influence the inertial eddies, which are our primary focus.

3.1. Data-driven flow-decomposition methodology
The multi-point nature of both the LES and SLTEST data sets permits theoretical
estimation of ua and uia by following the SLSE-based methodology proposed previously
in Deshpande et al. (2021) and Deshpande & Marusic (2021). Throughout this paper, we
limit our SLSE analysis to the log region where the concept of active and inactive motions,
as well as expressions in (2.1), have received considerable empirical support (Deshpande
et al. 2021). Per the SLSE methodology (Baars et al. 2016), the instantaneous component
uia(z) in the log region can be obtained by

ũia(z+; T+) = HL(z+; T+)ũτ (T+). (3.1)

Here, ũτ (T+) = √
τ̃w/ρ = F(uτ (t+)) is essentially the Fourier transform of the friction

velocity fluctuations, uτ (t+), in time t, where ρ is density. The parameter ũτ acts as
the scale-specific unconditional input required to obtain the scale-specific conditional
output, ũia(z+; T+). The linear relationship between ũia and ũτ is inspired by the original
definitions of active and inactive motions derived from the wall-scaled eddy model
(refer § 2), which assumes a linear superposition of the velocity signatures generated by
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Figure 4. Absolute values of the linear transfer kernel (|HL|(z+; T+); (3.2)) computed for the (a) LES and
(b) SLTEST data with grey shading representing changing z+. Here, |HL| is plotted for z+ limited to the log
region and its ordinate is considered on the primary vertical axis (left; in black) while the solid golden line
represents the premultiplied spectra of the friction velocity ( f φ+

uτ uτ
) and its ordinate is considered on the

secondary vertical axis (right; in golden yellow). (c,d) Premultiplied spectra of the active (ua) and inactive
u-components (uia) estimated for various z-locations in the log region for both the LES and SLTEST data. Note
that the horizontal axis is chosen to test for z-scaling of the spectra by invoking Taylor’s hypothesis. Panels
show data for (a) Reτ ≈ 2000, (b) Reτ ≈ O(106), (c,d) both Reτ ≈ 2000 and Reτ ≈ O(106).

individual eddies. Further, HL is the complex-valued linear transfer kernel reconstructed
by cross-correlating the synchronously acquired ũ(z+) and ũτ according to the following:

HL(z+; T+) = {ũ(z+; T+)ũτ
∗(T+)}

{ũτ (T+)ũτ
∗(T+)} , (3.2)

where the curly brackets ({·}) and asterisk (∗) denote ensemble averaging and complex
conjugate, respectively. Here, the definition of HL is underpinned by the discussion
presented in § 2 and figure 3 that the inactive components coexisting at z+ extend down
to the wall (i.e. influence uτ ), while the active components are localized to z. Hence, (3.1)
and (3.2) essentially classify ũia as a subset of the total momentum ũ that is coherent with
ũτ . Figure 4(a,b) depicts |HL|(z+, T+) computed from the LES and SLTEST data sets
at z+ within the log region, alongside the premultiplied spectra of uτ ( f φ+

uτ uτ
), where

|·| represents the modulus. Before plotting, |HL| has been smoothed based on a 25 %
bandwidth moving filter (Baars et al. 2016). This is done to remove the noise emerging
from the mathematical operations in (3.2), which are conducted on a per-scale basis. It
is evident that |HL| is non-zero across a broadband range of T+ when z is close to the
lower bound of the log region. However, |HL| gets restricted to relatively large scales
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with an increase in z+, essentially acting as a z-dependent low-pass filter conforming to
larger scales with increasing z, in a manner consistent with Townsend’s wall-scaled eddy
hypothesis (refer § 2). These trends also align with the |HL| computed previously using
long time-series signals from the Melbourne wind-tunnel data (Deshpande & Marusic
2021; Deshpande et al. 2024), confirming they are physical and not artefacts of insufficient
convergence.

Significantly, for both the LES and SLTEST data, |HL| extends to sufficiently large T+
values where the corresponding f φ+

uτ uτ
is negligible beyond the considered range. This

ensures proper estimation of the very-large-scale ũia signal. Similarly, the time resolution
and frequency response of the wall-shear-stress sensor at high Reτ , despite limiting the
measurement of the wall-shear-stress spectrum to T+ � 1000 (figures 1a and 4b), is
sufficient to resolve ũia considering |HL| ∼ 0 at T+ � 1000. The efficacy of extracting
the inactive contributions is demonstrated by examining the scaling characteristics of
the premultiplied uia-spectra ( f φ+

uiauia
; also see Deshpande et al. 2021). Figure 4(d)

depicts f φ+
uiauia

estimated for various z/δ in the log region for the two data sets, and it
is plotted against z-scaled streamwise wavelengths (T+U+(z+)/z+) computed based on
Taylor’s hypothesis (well accepted for inertial scales below 6δ; Dennis & Nickels 2008).
Considering that inactive contributions at any z are associated with wall-scaled eddies
across O(z) � H � O(δ), f φ+

uiauia
is expected to exhibit z-scaling only in the relatively

small-scale range, consistent with the trends in figure 4(d). Further, it is evident that the
relatively large-scale contributions to f φ+

uiauia
decrease with z/δ across both data sets,

which is also consistent with the inverse-logarithmic variation of u2
ia expected based on

the wall-scaled eddy hypothesis (refer to § 2 and Deshpande et al. 2021).
Once ũia is obtained via (3.1), its time-domain equivalent can be calculated simply

by taking the inverse Fourier transform (Deshpande & Marusic 2021) uia(z+; t+) =
F−1(ũia(z+; T+)). Considering the discussion on the past hypotheses in § 2, the novel
analysis here is not to establish the correlation of uia with τw (which is imposed
by definition in (3.1)), but to investigate the variation of simultaneously acquired
uia-signals across various z-locations in the log region (see § 4.1). Estimation of uia also
permits calculation of the ua-time series by simple subtraction, ua(z+; t+) = u(z+; t+) –
uia(z+; t+), thereby associating ua with the u-subset that is incoherent with the wall (i.e.
uτ ). Similar to the investigation of f φ+

uiauia
, we can examine the premultiplied ua-spectrum

( f φ+
uaua

) for its expected scaling arguments. Per Townsend’s (1976) hypothesis, active
contributions at z are solely associated with wall-scaled eddies of H ∼ O(z), suggesting
f φ+

uaua
should exhibit z-scaling irrespective of the flow Reτ . Figure 4(c) depicts reasonably

good z-scaling of the premultiplied ua-spectra across O(103) � Reτ � O(106), consistent
with the previous findings in Deshpande et al. (2021). This ability to estimate ua enables
computation of the Reynolds shear stresses associated exclusively with the active motions
(uaw(z+; t+)), which should correspond closely with the net Reynolds shear stresses
(uw(z+; t+)) per Townsend’s (1961) hypothesis. These hypotheses are tested in this study
using simultaneously acquired time-series signals, across the log region, for the first time
(see § 4.1).

4. Results and discussions

4.1. Active and inactive contributions to the wall-shear stress
This section focuses on responding to research question (i) raised in § 1, regarding the
role played by inactive motions in transporting large-scale energy from the outer region
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to the wall (to explain τw-signatures at large T+). Figure 5(a, f ) plots a small subset of
the full u+-time series sampled in the log region, synchronously with that of τ+

w , from the
LES and SLTEST data sets, respectively. These data are used to obtain the corresponding
active (figure 5c,h) and inactive components (figure 5e, j) of u+ by following the procedure
described in § 3.1. As expected based on (3.1), uia-signals correspond predominantly to
low-frequency features (i.e. large T+) that are highly correlated with τw, while ua-signals
are representative of the intermediate-frequency phenomena that are uncorrelated with
τw. This, however, should not be misinterpreted to imply negligible contributions
of intermediate-scaled coherent structures to τw. Considering that the active–inactive
classification is relative to z (refer § 2), subsets of the structures that are active at z ∼
z1 would be associated with inactive contributions much closer to the wall (z � z1),
and consequently influence τw from that location. Also plotted in figure 5(b,g) are the
w+-signals corresponding to the same instants as those considered for the u+-signals.
Notably, the w-signals exhibit the same characteristics as those of ua across the log
region. This is consistent with Townsend’s description of ua and w being associated
with wall-scaled eddies local to z (i.e. H ∼ z), while uia corresponds to relatively taller
and larger wall-scaled eddies (O(z) � H � O(δ)) whose contributions extend to the wall
(refer § 2). It is worth noting here that active motions are deemed ‘local’ relative to their
distance from the wall (i.e. z � 0). This should not be confused with the well-known
localized behaviour of the Kolmogorov scales, which are spatially much smaller than the
active–inactive motions (the latter being subsets of inertia-dominated motions). Hence,
the active motions are bound to have a notable wall-normal coherence despite their
‘localization’, which is evident through the simultaneously acquired ua- and w-signals
across the log region in figure 5.

Townsend’s (1976) hypothesis is mainly centred on the fact that the active components
are solely responsible for the shear stresses and TKE production across the log region
– this is clearly evident from figure 5(d,i) comparing uaw (in red) with uw (in thicker
black lines). The good overlap of the two signals, across 103 � Reτ � 106, is a testament
to the capability of the SLSE-based methodology of extracting the active components
from simultaneously acquired signals across the log region. The observations from
figure 5(i) have been reaffirmed statistically in figure 6(a), where we compare the
premultiplied co-spectra of the full Reynolds shear stress ( f φ+

uw) with that associated
solely with the active component ( f φ+

uaw), across various z/δ for the Reτ ∼ O(106)
data set. The horizontal axis in this figure has been chosen to test for z-scaling of
the co-spectra, by invoking Taylor’s hypothesis (Dennis & Nickels 2008) similar to
figure 4(c,d). In figure 6(a), f φ+

uw and f φ+
uaw agree very well in the intermediate-scale

range for all z/δ, with the co-spectrum peak exhibiting wall scaling at T+U+(z+) ≈ 15z+.
This reinforces the association of ua with the active components per the definition of
Townsend (1976).

There are, however, slight disagreements between f φ+
uw and f φ+

uaw at the larger scales.
This can be associated with the differences observed between the uaw- and uw-time series
in figure 5(d,i), at instants indicated by a green background. These are representative of
the nonlinear interactions between the active motions and inactive superstructures (i.e.
uiaw), which become non-negligible only at time instants corresponding to high-amplitude
signatures in uia (also highlighted by the green background in figure 5e, j). Notably, the
magnitudes of these nonlinear interactions (i.e. uiaw) are nominally of the same magnitude
at Reτ ≈ 2000 and O(106), across various z/δ, which is consistent with the weak
Reτ -dependence of the inter-scale/nonlinear interactions reported by Mathis, Hutchins
& Marusic (2009) across the log region. Hence, figure 6(a) reaffirms that the nonlinear
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Figure 6. (a) Premultiplied co-spectra of the full Reynolds shear stress ( f φ+
uw; in black) compared against

those associated with the active component ( f φ+
uaw; in red) at various z/δ. Spectrum profiles for increasing

z/δ are vertically offset by 0.2 for convenience of comparison. Dashed green line indicates z-scaling of the
co-spectrum peak at T+U+(z+) ≈ 15z. (b) Cross-correlation between uia at zref = 0.0025δ and z > zref , with
the maximum Ruiauia highlighted by green circles.

interactions between the active and inactive components contribute towards a minor
subset of the Reynolds shear stresses (and consequently, the u2 production), associated
with the very large scales. These contributions, however, cannot be explained based on
Townsend’s wall-scaled eddy framework and is a shortcoming, requiring consideration in
future upgrades of the model/framework.

Another notable observation from figure 5(e, j) is the discernible increase in
uia-fluctuation magnitudes with decreasing z/δ, which can be compared based on the
dashed grey lines representing zero magnitude (for signals at each z location). This
suggests a wall-ward transport of streamwise momentum by the inactive components
(indicated by the dashed black arrows) that is locally produced at each z by the active
component (conceptualized in figure 2c–e). Since the correlation between uia and τw
has already been quantified by |HL| via (3.2), we know that this transport occurs all
the way down to the wall. The novel result here is the time-synchronized increment in
uia magnitude with decreasing z, which is revealed only after the flow decomposition. It
presents direct evidence of the non-local transfer of momentum/energy in the wall-normal
direction across a broad Reτ -range, which was previously noted only via spectral
distributions at low Reτ (Cho et al. 2018; Lee & Moser 2019). The average time delay/offset
for the increase in uia magnitude, with decreasing z, can be estimated by computing the
two-point correlation (Ruiauia) defined as follows:

Ruiauia(z, zref ;�t) = uia(zref ≈ 0.0025δ, t)uia(z, t + �t)√
u2

ia(zref ≈ 0.0025δ)

√
u2

ia(z)
. (4.1)

Figure 6(b) depicts Ruiauia for the Reτ ∼ O(106) data at various z > zref . It is evident that
the maxima of Ruiauia , which are highlighted by green circles, are found for a non-zero |�t|
that increases with increasing z/δ. This can be interpreted as the average increase in time
needed for the wall-normal energy transport, from z to zref .

The significance of this empirical evidence is highlighted by quoting text directly
from de Giovanetti et al. (2016), who hypothesized that: ‘the energy-containing motions,
which essentially reside in the logarithmic and outer regions, transport the streamwise
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momentum to the near-wall region through their inactive part, while generating Reynolds
shear stress with their wall-detached wall-normal velocity component in the region much
further from the wall’. Here, de Giovanetti et al. (2016) use ‘wall detached’ to essentially
refer to the active component responsible for the w-fluctuations, given that it does not
physically extend down to the wall. Hence, figure 5(d,e,i, j) cumulatively provides strong
empirical evidence in support of the hypotheses proposed by Bradshaw (1967) and de
Giovanetti et al. (2016). They also align with the recent conjecture by Lee & Hwang
(2024), regarding the ‘origin’ of the large-scale τw-signatures based on outer energy
transported to the wall.

Unfortunately, the data considered in this study do not permit a direct comparison of u2
ia

with τ 2
w for increasing Reτ , owing to mismatched z+ and z/δ for the two data sets, alongside

the under-resolved measurement of τw (both spatially and temporally). Interested readers
may refer to discussions and analyses presented in Deshpande et al. (2021), wherein it
is suggested that u2

ia at a fixed z/δ would be expected to increase with Reτ due to the
broadening of the wall-scaled eddy hierarchy (see also figures 2b,e and 3). This insight
potentially explains the Reynolds-number dependency of the low-frequency/large-scale
signatures in the τw-spectra (T+ > 1000), as noted in figure 1(a) and discussed in the
literature (Örlü & Schlatter 2011; Mathis et al. 2013). These large-scale contributions,
however, only correspond to a subset of the total inertial velocity signatures, i.e. the ones
that are physically coherent with the wall. This, combined with the statistically dominant
contribution from the near-wall streaks (T+ � O(103)) is likely responsible for the weak
Reτ -growth of the τw-spectra in the intermediate scales (O(102) � T+ � O(103)).

Besides testing past hypotheses, analysis in this section also demonstrates the
unique capability to segregate instantaneous flow components associated with two
key energy-transfer mechanisms in high Reτ wall flows – TKE production and its
wall-normal transport. This is a promising development for design of real-time control
strategies targeting either of these mechanisms. However, more work is required with
respect to identifying three-dimensional flow features/motions responsible for these
mechanisms before such strategies can be actualized. As is evident from figure 5(b,g),
the wall-normal transport cannot be explained purely based on the w-time series sampled
across limited (and large) wall-normal offsets. But it could be possible by analysing
velocity fluctuations/gradients acquired with good wall-normal resolution. This, however,
is beyond the scope of the present study.

4.2. Active and inactive contributions to the wall pressure
This section focuses on addressing research question (ii) raised in § 1, regarding the inertial
motions responsible for the Reτ -growth of the pw-spectra. For this, we compute the linear
coherence spectrum (Gibeau & Ghaemi 2021; Baars et al. 2024) between the fluctuating
wall-pressure and velocity fluctuations according to the following:

γ 2
uipw

(z+; T+) = |{ũi(z+; T+)p̃w
∗(T+)}|2

{ũi(z+; T+)ũi
∗(z+; T+)}{p̃w(T+)p̃w

∗(T+)} , (4.2)

where ui can be either u, w, uia or ua, (| · |) represents absolute values, while all other
notations are the same as in (3.2). Note that γ 2

uipw
can be interpreted as the spectral

equivalent of a physical two-point correlation between pw and ui, which varies in the range
0 ≤ γ 2

uipw
≤ 1 by definition. Furthermore, γ 2

upw
and γ 2

wpw
have been analysed previously

for a canonical TBL at Reτ ≈ 2000 by Gibeau & Ghaemi (2021), to establish the
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Figure 7. Linear coherence spectrum (γ 2
uipw

; (4.2)) computed between ui(z+) and pw as a function of outer-
or inner-scaled T: (a) γ 2

upw
, (b) γ 2

wpw
, (d,g) γ 2

uiapw
and (e,h) γ 2

uapw
. (a,b,d,e) Depict γ 2

uipw
computed from Reτ ≈

2000 LES data compared against the (c, f ) outer-scaled pw-spectrum plotted vs outer-scaled T . Panels (g,h),
respectively, depict γ 2

uiapw
and γ 2

uapw
contours for data across various Reτ , which are compared against (i) f φ+

pwpw

plotted vs T+. Panels show (a) γ 2
upw

, (b) γ 2
wpw

, (d) γ 2
uiapw

, (e) γ 2
uapw

, (g) γ 2
uiapw

= 0.02, 0.09, (h) γ 2
uapw

= 0.07.

scale-based coupling between the inertial motions and the large-scale pressure (LSP; 0.8 <

TU∞/δ < 7), as well as the very-large-scale pressure (VLSP; TU∞/δ > 7) regions of the
pw-spectrum. To validate our analysis, we recompute γ 2

upw
and γ 2

wpw
(figure 7a,b) from the

LES data set at Reτ ≈ 2000 and compare it with the outer-scaled pw-spectrum (figure 7c).
The coherence spectrum depicts characteristics consistent with those reported by Gibeau
& Ghaemi (2021): the VLSP region is associated with relatively strong coherence between
u and pw, but not between w and pw. While, in case of LSP, reasonable coherence can be
noted between both u and pw and w and pw. If the same spectrograms were plotted as a
function of streamwise wavelengths based on Taylor’s hypothesis (i.e. λ+x = T+U+(z+)),
the energetic ridges of γ 2

upw
and γ 2

wpw
would respectively exhibit distance-from-the-wall

scalings: λx/z = 14 and λx/z = 8.5 (not shown here), consistent with Baars et al. (2024).
Exhibition of this scaling confirms the association of the pw-spectrum with the wall-scaled
eddy hierarchy coexisting in the inertial/large-scale range.

Connecting the differences between γ 2
upw

and γ 2
wpw

with the characteristics of active
and inactive components discussed in § 2, it can be hypothesized that the pw-spectrum
in the LSP and VLSP ranges, is, respectively, correlated to the active and inactive
motions. The availability of decomposed ua and uia components, for the same data as
in figure 7(a,b), permits us to directly test this hypothesis by analysing the γ 2

uiapw
and

γ 2
uapw

results of figure 7(d,e), respectively. It is evident that the coherence between uia

and pw is limited to the VLSP range, while that between ua and pw (in the inertial
region) is predominantly in the LSP range, similar to γ 2

wpw
. All the observations are

consistent with our hypothesis above, with the similarity between γ 2
wpw

and γ 2
uapw

expected,
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considering that w-signatures are predominantly from active contributions (see (2.2)).
The present results offer phenomenological explanations for the conclusions drawn
by Gibeau & Ghaemi (2021), who associated pw-fluctuations in the LSP range with
Reynolds shear-stress-carrying ejection and sweep events in the log region, i.e. the active
components of the wall-scaled eddies. Conversely, pw-fluctuations in the VLSP range
were linked with the large δ-scaled motions and superstructures, which correspond to the
inactive components transporting energy from the outer region to the wall. The results
also confirm the dependency of pw on velocity signatures that are coherent (akin to uia,
amongst others) as well as incoherent (akin to ua, amongst others) with the wall, consistent
with the pressure Poisson equation (Tsuji et al. 2007).

Since the wall-scaled eddy hierarchy grows by coexisting in a physically taller log region
with increasing Reτ (figure 2b,e; Deshpande et al. 2021), the association of the LSP and
VLSP ranges, with ua and uia, can be used to explain the Reτ -variation of the pw-spectrum.
To this end, figure 7(g,h) plots the constant energy contours of γ 2

uiapw
and γ 2

uapw
vs T+ for

1000 � Reτ � 2000, each of which exhibit their unique Reτ -trends. Notably, the contours
of γ 2

uapw
can be seen to grow and widen across a larger T+ range with Reτ (indicated by

green arrows), which explains the Reτ -growth of the pw-spectrum in the intermediate-scale
range: O(102) � T+ � O(103). It suggests that a physically taller log region comprises
a broader hierarchy of TKE-producing active motions, which subsequently increases
contributions to the pw-spectrum. This is analogous to the broadening of the uw-plateau
(∼ − 1) in the log region with increasing Reτ ((2.1), Marusic & Perry 1995; Baidya et al.
2017). In contrast, the active motions do not contribute to the τw-spectrum since they do
not physically extend down to the wall, and consequently do not influence the near-wall
velocity gradient (de Giovanetti et al. 2016). It is thus obvious that the Reτ trend of f φ+

pwpw

is governed by a broader range of inertial motions than those influencing f φ+
τwτw

, likely
explaining the stronger Reτ -growth of the former compared with the latter. Note that
arriving at this realization was made possible by decomposing the u–pw coherence into
its active and inactive components.

Similar to the behaviour of γ 2
uapw

, the contours of γ 2
uiapw

can also be seen extending
across a larger z+-range with Reτ . This is predominantly associated with the energization
and increasing wall-normal extent of the large wall-scaled eddies and superstructures
(Mathis et al. 2013; Lee & Moser 2019). At very high Reτ ∼ O(106), these energetic
superstructures along with a broad hierarchy of wall-scaled eddies (figure 2e) contribute
to the significantly enhanced VLSP signatures of the pw-spectrum through their inactive
component (figure 7i). The present analysis, hence, encourages future detailed multi-point
measurements and high-fidelity simulations that can quantify the pressure–velocity
coupling at high-Reτ (� 104), with particular focus on velocity signatures superimposed
by the inertia-dominated motions. Consequently, it also motivates high-Reτ investigations
of the nonlinear interactions between the large-scale velocity signatures and pw (Thomas
& Bull 1983; Tsuji, Marusic & Johansson 2015), which have previously been limited to
Reτ � O(103).

5. Concluding remarks

This study clarifies the Reτ -dependent, intermediate- and large-scale contributions
to the τw- and pw-spectra by invoking the attached (wall-scaled) eddy framework
(Townsend 1976), based on active and inactive motions. Unique multi-point data sets are
analysed using an energy-decomposition methodology to reveal the contributions from
TKE-producing (active) and non-producing (inactive) components, at any wall-normal
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position in the log region, to the τw- and pw-spectra. Inactive components of wall-scaled
eddies are found to be responsible for the non-local wall-normal transport of the large-scale
inertia-dominated energy, from its origin in the log region (i.e. produced by active
components) to the wall. On the other hand, the majority of the TKE-producing (i.e.
active) motions in the log region are localized and physically detached from the wall,
not influencing τw. These results provide strong empirical evidence for the hypotheses
proposed by Bradshaw (1967) and de Giovanetti et al. (2016). They also explain the
appearance and Reτ -growth of the large-scale signatures in the τw-spectra, despite the
insignificant large-scale TKE production occurring in the near-wall region. In terms of
their contribution to wall pressure, the active and inactive components are respectively
correlated with the intermediate- and large-scale portions of the pw-spectrum. Both
components exhibit growth with increasing Reτ , which is attributed to the broadening
of the wall-scaled eddy hierarchy. This is plausibly responsible for the rapid Reτ -growth
of the pw-spectra relative to τw (figure 1a,b). These phenomenological explanations
carry potential to influence future real-time control strategies, aimed at achieving
energy-efficient drag and flow-noise reduction.

While this study demonstrates the new found capability to extract the instantaneous
active and inactive components, also shedding light on their role in the large-scale
energy-transfer mechanisms, it does not delve into the nonlinear/inter-scale interactions
between these motions. These interactions, which have been previously discussed in
the literature to a certain extent (Cho et al. 2018; Lee & Moser 2019), can likely
explain the transfer of TKE produced by active components to the inactive component
of the wall-scaled eddies, before being transported downward to the wall (figure 2). At
this stage, these interactions are not accounted for within Townsend’s wall-scaled eddy
framework, which is inherently limited to the linear superposition of velocity signatures
induced by the eddy structures. It does, however, highlight the opportunity for future
upgrades/modifications to the model by incorporating the inter-scale interactions between
the wall-scaled eddy hierarchy.
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