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ABSTRACT 
Transforming data into added-value information is a recurrent issue in the context of “big data” 
phenomenon, as new sources of data become increasingly available. This paper proposes to offer a 
fresh look on how data and added-value information are linked through the design of specific models. 
This investigation is based on design theory, used as an analysis framework, and on a historical 
example in the Earth science field. It aims at unveiling the reasoning logic behind the design process 
of models combining data science and domain knowledge in specific ways, especially involving not 
only knowledge about the physical phenomena but also on the measuring instrument itself. More 
specifically, this paper shows how specific efforts on exploring the originality of the new instrument 
compared to existing ones can result in designing performant models to transform new sources of data 
into information. This also suggests several important competencies to be involved in the model-
design process: (1) a detailed understanding of the limitations of existing models (2) the ability to 
explore both the originality of the new source of data compared to existing ones (3) the ability of 
leveraging independent data sources. 
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1 INTRODUCTION 

In the 1980s, within a European research project, three research teams were asked to participate to a 

kind of scientific competition, to make use of a new source of data to transform it into added-value 

information - an issue that seems very contemporary today with the rise of “big data” phenomenon and 

organisation of specific challenges to address it (Sitruk and Kazakçi, 2018). In the 80s project, the 

three teams had the same starting point and objective: given a set of satellite data (new data source), 

propose the best possible model to predict solar radiation received on ground (already measured by 

in-situ sensors or other empirical methods), the performance criteria being clearly defined as 

minimizing the prediction error. The difference between the teams thus lied in the way they designed 

their respective model. A synthetic document was published to shed light on each of the three models 

and compare them. It is particularly interesting as it opens the “black box” of the modelling activity: 

not only does it illustrate the classic opposition between so-called “data-driven” and “physics-driven” 

approaches, but it also illustrates how significantly better a model can be designed when building on 

the two previous approaches and going beyond each of them. Moreover, details of the approaches give 

hints on how to design a powerful model linking physical phenomena and data - and how to get a 

strong performance by creatively make use of all available knowledge, in particular knowledge of the 

physics of the instrument (the satellite) and not only knowledge of the physics of radiation throughout 

the Earth atmosphere. This example is fascinating insofar as (1) it addresses in the 1980s, almost 40 

years ago, a really contemporary issue: making sense of data to get precise, unquestionably added-

value information; (2) it addresses also a problem that is as old as science: the design of scientific 

measures (information) based on a new instrument (new source of data).  

This paper proposes to investigate this historical example to give insights on a surprising blind spot in 

the successful development of data-based services, that is describing the design efforts that remain 

even when the type of information to be derived from data and its related value are already identified. 

Indeed, even when data are available (open data for instance) and when their added-value for the 

service is unquestionable (taking the form of valuable information), there can still be an issue in 

transforming available data into added-value information. This apparently small step in the chain 

linking data to value formally consists in using or building a model that relates data  to information in 

a reliable way. As for model building in data science, two recent trends have emerged: on the one 

hand, it can be considered as a “technical” statistical black box that can be addressed by relying on the 

most advanced data-science algorithms (GAN, CNN..); on the other hand, more recently, scholars 

remind that the wealth of scientific knowledge should be leveraged in data science models (Karpatne 

et al., 2017; Reichstein et al., 2019). In these two trends, it is clear that models are designed, but the 

design process and its underlying reasoning logic that intertwines data science and domain knowledge 

remain allusive. Moreover, the specific role of domain knowledge related to the instrument itself is not 

explicitly described.  Our paper thus aims at investigating the specific process of designing models to 

transform a new source of data into information, more specifically addressing the following question: 

in which possible ways can new sources of data be leveraged in the process of designing models to 

transform data into added-value information?  

To investigate this question, in a first part we show how literature proposed many models relating data 

to added-value information but leaves a blind spot on the question of the reasoning logic behind the 

design process of these models, and its specific link with the new instrument. In a second part we 

propose to build a theoretical framework derived from design theory to analyse the design process 

associated to model design in the historical case mentioned above, that is then elucidated in a third 

part. A fourth part highlights contributions and limitations of this paper. 

2 LITERATURE REVIEW AND RESEARCH QUESTIONS  

2.1 Data-driven design: new opportunities stemming from the use of data 

In recent years, the development of internet, new sensors, and computational means has dramatically 

increased the flow of data in almost every business, industry and research area. This phenomenon, 

commonly referred as “big data”, has largely been discussed in the literature, shedding light on its 

definition, opportunities and challenges, especially the issue of how value can be created out of this 

new flow of data (Gandomi and Haider, 2015; Günther et al., 2017). Literature in design has also 

largely described the new opportunities arising from the use of data. (Parraguez and Maier, 2017) 
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highlight the potential benefits of using open-data from various sources (e.g. patents, publications, 

business registries, company websites, social networks) for the engineering design research. The 

variety of usages that could be made from data is often emphasized, for example through the 20 

contributions of the special issue of the Journal of Mechanical Design (Kim et al., 2017) covering 

topics as various as discovering future design and technological opportunities thanks to patent mining 

techniques, modelling complex parts of the body in new manners, giving new insights on the critical 

functions to be included in the design of new products and services. Literature in design also more 

specifically reports on the beneficial use of data in the concept development phase of the design 

process (Escandón-Quintanilla et al., 2018; Bertoni, 2020). 

The transformation of data into usages is often described through the “Data Information Knowledge 

Wisdom” hierarchy (Rowley, 2007) or more recently the “data-information-knowledge” chain (Abbasi 

et al., 2016). Despite different definitions of these terms (Zins, 2007), they describe in a similar way 

the different types of design efforts to be made in order to effectively turn data into usages: (1) 

transforming data (that is contextualized, related to the measuring settings) into information (that 

should be more generally understandable, and meaningful in the context of reuse) ; (2) transformation 

of information into knowledge, generally referring to information used in a certain context. Thus 

knowledge refers to a certain “usage” or “value”. These two terms will be preferred in the present 

paper, to avoid confusions with the term “knowledge” used in C-K design theory.  

In design literature, an important stream of works has focused on the way information could be 

transformed into usages, through the design of appropriate content management or visualisation tools 

(Huron et al., 2014; Dammak and Gardoni, 2018). Regarding the transformation of data into 

information, scholars report on several issues. (Bertoni, 2020) notices the tendency to rather resort to 

relatively easy-to-use data (such as text mining of social networks) rather than building new data 

generation methods that would bring more valuable information (such as resorting to the use of 

sensors giving information on the product in use) because of the higher complexity of such 

approaches. The design effort to be made for extracting new types of data is also reported as an issue 

by (Montecchi and Becattini, 2020) in the context of using data to encourage sustainable behaviours. 

These issues are often related to the ability of implementing complex algorithms and specific data 

science techniques, that are said to be sometimes poorly understood (Parraguez and Maier, 2017). So 

this stream of works suggests well the significant design effort to be made to transform data into 

information, however it does not fully describe the design process underlying this transformation. 

2.2 Designing models to transform data into information 

Other branches of literature offer insights on how information is designed, highlighting the importance 

of designing appropriate models. First, literature about instrumentation design and metrology reminds 

us that information coming from a measuring system is always designed (even for basic direct-reading 

instruments). Indeed, designing specific models of the measurement process is required to adequately 

relate the “indication” given by the instrument and the “measurement outcome”, that is information 

that can be attributable to the object under consideration and not to other factors related to the 

instrument or the environment (Mari et al., 2012; Giordani and Mari, 2012; Tal, 2017). This literature 

also highlights that several model-design approaches might exist, emphasizing two extreme archetypal 

cases: considering the system as a “black-box”  where the model is derived from measures done for a 

number of known standard states, or considering the system as a “white box” where the model is 

determined by representing the physical process in details (Tal, 2017). This literature distinguishes 

two types of models and describes how to parameterize a (given) model in certain situations - still the 

question of the design of the base model remains unanswered.  

Second, these considerations on how models are designed are also discussed in the literature related to 

the use of data for scientific activities. The question on how to build good models is common in 

science. To give a few examples, already in the nineties, reflexive works of several disciplines around 

Earth science on their modelling practices were carried out, e.g. in hydrology (Beven, 1989; Barnes, 

1995), or for solar irradiance estimation for which different approaches - classified as either physical 

or statistical - were listed and compared (Noia et al., 1993a, 1993b). More recently, (Karpatne et al., 

2017) made a similar distinction between “physics-only” (or “theory-only”) models, that are built by 

modelling the different underlying physical processes, and “data-only” models, that are built without 

using scientific theories by leveraging the large amount of available data through various data science 

techniques. The same authors emphasize the limitations of both approaches, calling for a new “theory-
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guided data science” paradigm, that would consist in combining scientific knowledge and data 

science. This article also gives a broad overview of the different combination possibilities by 

categorizing them in five main types: (1) theory-guided design of data science model families, (2) 

theory-guided learning of data science models given a model family, (3) theory-guided refinement of 

data science models outputs, (4) constructing hybrid models, (5) improving theory-based models 

according to observational data. Hence the authors propose two main types of models and explain how 

to combine them. But it remains unclear, what is the design logics in “data-only” and “physics-only” 

and, more importantly, whether there might another type of model-design, different from the two 

previous ones and their combinations. This calls for more explicitly showing the underlying reasoning 

logic of the design process, especially the specific manner domain and data science knowledge bases 

are leveraged and might interact and evolve during the process. In this perspective, a quick analysis of 

“physics-only” and “data-only” models reveals for instance that the role played by the domain 

knowledge related to the new instrument (and not only on the physical phenomena) remains unclear. 

The present paper will therefore address the following research question: how are new sources of data 

leveraged to design an appropriate model transforming these data into added-value information? In 

particular, we will wonder what is the specific role played by the domain knowledge related to the 

instrument and how this instrument domain knowledge could help design specific model(s) 

transforming instrument data into added-value information.  

3 METHOD 

As underlined in the literature presented above, transforming data into information involves designing 

a specific model, leveraging both domain and data science knowledge. Our methodology is twofold: 

first, C-K design theory is used as a theoretical framework to represent this model-design process, 

second this framework is applied on a specific historical case study to further unveil interesting 

features of what makes a relevant model-design logic. 

3.1 C-K theory to represent the reasoning logic of designing models 

Our investigation relies on C-K theory as it sheds light on the reasoning logic underlying a design 

process (Hatchuel and Weil, 2003, 2009).  Such a process is indeed described as the interaction and 

the expansion of two spaces: a space K of knowledge and a space C of concepts. The K-space gathers 

all the knowledge the designers activate and progressively acquire during the design process (technical 

knowledge, user preferences, standards and regulations, etc). The C-space is the space where new 

ideas, concepts are explored. The interactions between the two spaces are represented through four 

different operators: K→C (“disjunction” where C-space is expanded thanks to available knowledge in 

K-space), C→K (“conjunction” where available knowledge in K is expanded and triggered by the 

concept expansion in C), K→K (self-expansion of knowledge based on logic rules, e.g. proving new 

theorems), C→C (expansion of concepts through partitioning of concepts).  

Thanks to this framework, we can represent the problem of designing a model (M) to better estimate a 

certain information (Y) based on new sources of data (X) as follows (see Figure 1): 

(a) The starting point is the initial concept C0 “designing a model M for a better estimation of Y 

through the use of X” 

(b) This calls for investigating in K-space (C→K) what are the available models to estimate Y 

(knowledge base on models) and how to use X in those models (knowledge base on the instrument, i.e.  

existing and new sources of data). Two main types of models can be considered:  

• The existing physics-driven models M_physics based on parameters describing the atmosphere 

(cloud properties, aerosols, etc.), where previously existing sources of data are used to estimate 

the parameters of the model. 

• The existing data-driven models M_data (e.g. multiple linear regression) whose parameters are 

statistically estimated based on known pairs of (X,Y). 

(c) Based on these knowledge base on models, a subsequent operation K→C makes appear the two 

archetypal approaches called “physics-driven” or “data-driven”, corresponding respectively to the 

concepts “M built on M_physics using X to better estimate physical parameters of M_physics” and “M 

built on M_data using X to estimate the parameters of the statistical model M_data”. Regarding the 

domain knowledge on the instrument, these approaches only rely on the capacity of the instrument to 
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be integrated in existing models, i.e. the dimension of the instrument that can be expressed relatedly to 

the existing sources of data (referred as the knowledge base “correlation” in Figure 1). 

(d) A third approach, coined “hybrid”, can be generated by leveraging both knowledge of M_physics 

and M_data and their respective limitations, as mentioned in literature with the approach of “theory-

guided data science”. This concept could be formulated as “M built by using X to overcome limitations of 

existing models”. In this third approach, the role of the domain knowledge on the instrument remains 

unclearly described in literature. C-K design theory helps us to formulate some first insights. Indeed, it 

predicts that a good design process relies on the use of independent knowledge bases: thus the best 

approach should investigate to what extent the new source of data is “orthogonal” to the existing ones, 

i.e. what are the additional independent knowledge it could bring compared to the previously used data 

sources. The analysis of the historical case study aims at further elucidating these elements. 

 

Figure 1. C-K theory used to represent the model-design reasoning logic 

3.2 Case study: comparison of three model-design approaches  

The case study used in this paper is particularly adapted to investigate the research question 

formulated above. Indeed, it corresponds to a situation where there is a new source of data with an 

already identified usage: it thus allows us to avoid other debates in literature related to the 

identification of usages for new data and to rather focus on the design efforts that remain to be made to 

transform data into information, already identified as useful. Our case study is based on the research 

work of a research organisation based in Sophia-Antipolis (France) on solar radiation estimation from 

satellite data, carried out in the 1980s. As mentioned in the introduction, this organisation was 

involved in a project supported by the European Commission’s Solar Energy R&D Programme. The 

project aimed at assessing solar radiation more precisely and reliably, especially by integrating new 

data coming from satellites (whereas at the time solar radiation was mainly derived from networks of 

“in-situ” solar instruments, that were installed in a limited number of locations). Within this project, 

Sophia-Antipolis research institute, along with two other research teams, were in charge of developing 

a model to link solar radiation estimates and Earth observation data including new satellite data. Each 

research team developed a different model, based on its respective expertise. Their different model-

design approaches were compared in the final report of the project for the European Commission 

(Grüter et al., 1986). We also had access to the PhD thesis detailing the specific modelling approach 

developed by the Sophia-Antipolis team, and conducted semi-structured interviews (6 hours in total) 

with the researcher of this team who had been working on the development of the solar radiation 

methods from this European project in the 80s up to 2018.  
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4 ANALYSIS OF THE CASE STUDY: SPECIFIC ROLE OF THE DOMAIN 

KNOWLEDGE RELATED TO THE INSTRUMENT 

4.1 Three teams corresponding to the three archetypal approaches found in literature 

The three approaches developed by the different teams correspond well to the different archetypal 

approaches found in literature: a physics-driven approach (Cologne team), a data-driven approach 

(Stuttgart team) and a hybrid approach (Sophia-Antipolis team) - see also Figure 2: 

• Physics-driven approach (Cologne team): this team designed a model based on a “radiative 

transfer model” that explicitly describes the physical processes (e.g. absorption, scattering) 

occurring in the atmosphere. In this approach, satellite data are used to estimate existing 

parameters of the physical model. The limitations of this approach lie in the need of additional 

sources of data coming from other sources to determine some of the parameters of the model, that 

usually involves averaging the results over larger areas thus degrading the resolution of the final 

product. 

• Data-driven approach (Stuttgart team): this team resorted to a statistical approach: the model is 

based on statistical regressions between satellite data and solar radiation measurements at the 

Earth’s surface, measured by “in-situ” stations within the considered area. Satellite data are used 

to estimate the coefficients of the statistical law (starting with 360 features describing each 

satellite image, 25 parameters were kept, being most correlated to the ground solar radiation). 

The limitations of the approach result from the large number of regression parameters to be 

estimated without considering much physical-consistency, as the parameters are mainly deduced 

from the texture analysis of the satellite images. 

• Hybrid approach (Sophia-Antipolis team): this team resorted to an approach aiming at 

overcoming the limitations of the two previous approaches. This approach more specifically 

relied on the introduction of an intermediary variable coined “cloud index”, describing the level 

of cloudiness. This hybrid approach had proved to be the most efficient one, in terms of quality 

of the estimation (see error histograms on Figure 1) but also easiness of processing (almost ten 

times quicker than the physical one). Our empirical materials help us to further elucidate the role 

played by the domain knowledge on the instrument in this approach. 

 

Figure 2.  The three competing approaches and their respective results (histograms of 
errors - difference between predicted estimation and measurement at ground level)  
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4.2 Closer look at the domain knowledge related to the instrument: intertwined 
exploration of the originality of the new instrument and the way of taking 
advantage of it to overcome identified limitations of existing models 

 

Based on what predicts C-K theory, the performance of such an approach could be explained by the 

way domain knowledge on the instrument is leveraged, especially investigating the “orthogonal” 

dimension of the new instrument compared to existing sources of data. The introduction of the “cloud 

index” by Sophia-Antipolis team corresponds to such an approach of investigating the originality of 

satellite data compared to existing sources of data. Indeed, (Cano, 1982) explicitly mentions that this 

cloud index is specifically built in order to be only determined by satellite data, without resorting to 

other parameters that would require to be assessed through other data sources. To do so, the estimation 

of this variable takes advantage of a specific property of the satellite data, i.e. the provision of time 

series (images of the same location at different moments in time). It is thus clear that Sophia-Antipolis 

team resorts to domain knowledge on the new instrument in a very specific way: rather than relying on 

the dimension of new sources of data correlated to existing ones, the researchers explore the 

originality of the instrument, here exploiting a specific property of satellite data. 

A second interesting element to be noted is that this knowledge expansion about the possibilities of the 

instrument is made in close interaction with the exploration of how existing models’ limitations can be 

addressed. Indeed, Sophia-Antipolis researchers highlight in (Grüther et al., 1986) that the cloud index 

can then be statistically linked to solar radiation with a simple linear relationship, thus reducing the 

number of regression parameters compared to fully statistical approaches, and avoiding rough 

estimation of some parameters of the physical approach that could not be directly estimated by 

satellite data. These conclusions lead us to refine the “hybrid” approach by distinguishing between two 

forms of “hybrid” models (see Figure 3): 

• “Combinatory” hybrid models that would combine parts of physics-driven and parts of data-

driven models relying on a partial domain knowledge of the instrument, related to its dimensions 

that can be correlated to existing sources of data. 

• “Expansive” hybrid models that would leverage the originality of the new instrument compared 

to existing ones to generate expansion on how the model is designed, as highlighted in this 

Sophia-Antipolis case. 

 

Figure 3. Representation of the model-design reasoning logic using C-K theory, completed 
with the case study analysis 
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5 DISCUSSION AND CONCLUSION 

This paper proposes several contributions. First, it gives particular insights on the current academic 

discussions related to data-driven economy, where a lot of attention is either directed to the potential 

usages that new flows of data could create, or the new types of data to be exploited or created in order 

to address defined use cases. The case of solar radiation estimation offers an interesting configuration 

where these two considerations are already addressed: indeed, there is already a clearly identified type 

of information (solar radiation) to be derived from new data sources (satellite data), for a known usage 

(solar radiation information being of direct interest for the European Commission building at that time 

a European Solar Radiation Atlas). This example allows us to concentrate on the design efforts to be 

made to transform data into information and to show interesting features of the reasoning logic behind 

the design of a “hybrid” model combining domain and data science knowledge. In particular, this 

paper highlights the specific role of the domain knowledge related to the instrument in designing 

models to transform new sources of data into information. More specifically, it shows that a 

performant approach can result from making specific efforts on exploring and leveraging the 

originality of the new instrument compared to existing ones, suggesting a specific way of building 

hybrid models that goes beyond a simple combinatory logic.  

These considerations can be helpful to better understand some elements found in literature. First, the 

difficulties of resorting to new types of data mentioned by (Bertoni, 2020) and (Montecchi and 

Becattini, 2020) can be better understood: our results indeed suggest that the tendency to avoid 

resorting to new data might result from the intricate design effort to be made with specific 

competencies in order to transform new data into added-value information. The importance of 

orienting the design process in a way that takes into account specific limitations of the usual models 

can also be found in other contexts, e.g. in (Kazakçı, 2015) highlighting that in the context of 

“HiggsML challenge organised to gain insights into the study of Higgs boson in particle physics by 

means of machine learning algorithms”, the participants who succeeded were the ones that did not 

simply apply the usual workflow of machine learning techniques but were able to take into account the 

specificity of the challenge involving an usual objective function. More interestingly, some examples 

of a “theory-guided data science” approach given in (Karpatne et al., 2017) can be better understood as 

either “combinatory” or “expansive” hybrid approaches, by considering the way domain knowledge 

related to the instrument is leveraged. For example, the problem of mapping surface water dynamics 

with satellite data starts with the analysis of the limitations of “data-only” models: “Remote sensing 

data from Earth observing satellites presents a promising opportunity for monitoring the dynamics of 

surface water body extent at regular intervals of time. It is possible to build predictive models that use 

multi-spectral data from satellite images as input features to classify pixels of the image as water or 

land. However, these models are challenged by the poor quality of labeled data, noise and missing 

values in remote sensing signals, and the inherent variability of water and land classes over space and 

time.” From this analysis, a way of addressing these challenges is investigated thanks to additional 

domain knowledge, noticing that “locations at a lower elevation are filled up first before the water 

level reaches locations at higher elevations”. Thus, to improve the model, information on the elevation 

is identified as a new variable to be estimated to assist classification models (it would be used as a 

constraint of the classifier minimizing training errors). However, such information obtained from other 

instruments (sonar instruments) is not available at the required granularity. Thus, a new way of using 

satellite data is imagined to derive information on the elevation, by “using the history of imperfect 

water/land labels produced by a data science model at every location over a long period of time”, 

suggesting here an “expansive” hybrid approach. 

This paper also contributes to practice as these results shed light on several interesting competencies 

that a model designer should have to successfully develop a model combining domain and data 

science knowledge. It is first highlighted that domain knowledge does not only involve understanding 

the physical processes but also understanding and exploring the potential of the instrument providing 

new sources of data. Second, the competencies of model designers should not be described as only 

picking in a model manual (either physics-based or data-based) given a certain situation, but should 

rather involve (1) a detailed understanding of the limitations of existing models - either “physics-

driven” or “data-driven” ; (2) the ability to explore both the originality of the new source of data 

compared to existing ones and on how it could help overcome the limitations of existing models. This 

might lead to introduce new variables to be estimated from data, which might also consequently 
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involve building new ways of considering the output data of the new instrument. Finally, these 

elements also suggest a third competency:  (3) the ability of leveraging together independent, 

potentially heterogeneous, data sources. Indeed, the analysis of the model limitations and originality 

of the instrument can result in building new variables to be estimated from data, that would require 

looking for several new independent sources of data. This specific competency could be related to 

“data fusion”, that had been interestingly investigated by the same Sophia-Antipolis team (Wald, 

1998), as “a formal framework in which are expressed means and tools for the alliance of data 

originating from different sources, in order to obtain information of greater quality”. 

Several limitations of our research can be identified. First, the paper relies on a specific case study, 

highlighting the relevance of an expansive hybrid approach that leverages domain knowledge related 

to the new instrument by exploring its originality compared to existing sources of information. 

However, other interesting approaches could also result from other types of expansion that are not 

only related the instrument domain knowledge expansion, but that could come from the enrichment of 

knowledge bases related to the physics-driven or data-driven models (especially through new machine 

learning techniques that are currently developed). These types of expansions could be further 

described through other case studies corresponding to such contexts. Moreover, as highlighted in this 

paper, our case study corresponds to a situation where the new source of data and its usage 

(transformation into a certain type of added-value information) are already given. It would be 

interesting to investigate how the design process described in this paper could be leveraged in cases 

where the usefulness of information or the type of instrument to be used are still be to be explored. 

Finally, it is also worth noticing that our case study relies on a specific type of data (i.e. scientific or 

instrumental type). The relevance of our results for other types of data (such as data bases of patents or 

data on consumers’ preferences) could be discussed. At first sight, we could consider our case study as 

an extreme case that helps rediscuss basic notions. In this perspective, even with non-scientific types 

of data, we could assume that information is also derived from data through the use of specific models 

(although maybe not as complex as for Earth science). In some contexts, these models might be 

implicitly used and little designed, and the specific model-design competencies highlighted in this 

paper could open up new possibilities, by designing models that makes most use of knowledge about 

limitations of data-science techniques and description of the considered phenomenon (not necessarily 

physical processes, but for example modelling of customer behaviours), and exploration of the 

specificities of the data collection process (that might be different from scientific instruments). Further 

investigations would be interesting to further examine this question. 
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