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Abstract

This paper presents a model specification for group comparisons regarding a functional trend over time
within a trial and learning across a series of trials in intensive binary longitudinal eye-tracking data.
The functional trend and learning effects are modeled using by-variable smooth functions. This model
specification is formulated as a generalized additive mixed model, which allowed for the use of the freely
available mgcv package (Wood in Package ‘mgcv.’ https://cran.r-project.org/web/packages/mgcv/mgcv.pdf,
2023) in R. The model specification was applied to intensive binary longitudinal eye-tracking data, where
the questions of interest concern differences between individuals with and without brain injury in their real-
time language comprehension and how this affects their learning over time. The results of the simulation
study show that the model parameters are recovered well and the by-variable smooth functions are
adequately predicted in the same condition as those found in the application.

Keywords: by-variable smooth function; eye-tracking data; generalized additive mixed model; group comparisons; intensive
binary longitudinal data

1. Introduction

1.1. Empirical Motivation
This paper is motivated by the need for statistical analysis methods that can facilitate group comparisons
regarding trends in eye-fixation data over time and learning across a series of trials in intensive (many
time points; e.g., 252 time points) binary longitudinal eye-tracking data. The present work uses an
established paradigm in which eye fixations provide insight into the language processing, popularly
known as the visual world paradigm (Tanenhaus et al., 1995). Visual world paradigm involves tracking
eye gaze to images in visual displays as research participants produce or interpret language that is related
to the viewed images. The time course with which participants gaze at, e.g., a picture of a “sandwich”
as they interpret the sentence “The girl will eat the sandwich”, as opposed to an “apple” or a “piano”
can offer insights into the cognitive mechanisms involved in understanding language as it unfolds over
time. A primary goal of the present analysis is to leverage fixation data from the visual world paradigm
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to examine differences between individuals with and without brain injury in their ability to understand
language in the moment, and how this supports learning over time.

1.2. Data Complexities and Limitations of Existing Model Specification
In comparing trend and learning effects among groups, it is crucial to acknowledge the following data
complexities in intensive binary longitudinal eye-tracking data. First, there exists a temporal dependency
in such data, which reflects the stability of fixation on a given fixation area over time. Cho et al. (2018)
addressed this issue by considering the observation-driven autoregressive (AR) effect (Cox & Snell,
1989, pp. 100–101) for which a target fixation (outcome variable) at the current time point is determined
by target fixations at previous time points. Cho et al. (2018) demonstrated via a simulation study that
neglecting this AR effect in analyses led to biased estimates and standard errors of focal parameters (e.g.,
experimental condition effects) in intensive binary longitudinal eye-tracking data. Second, a common
research question concerns the fixation trend over time in intensive binary longitudinal eye-tracking
data. A time slope parameter can be incorporated to capture the presence and steepness of the fixation
trend, which can indicate slower or faster identification of a target area in question. Third, there are
different uses of the trial variable in experimental designs. The trial variable can either serve as a unique
identifier for each trial or represent an ordered trial variable representing the sequence in which each
participant completed a series of trials. When the trial variable is used to identify unique trials, a random
intercept is considered to account for clustering due to trials. However, when comparing learning effects
across groups, the trial variable should represent the ordered trial number.

In practice, growth curve analysis has been used with proportion-based measures of gaze1 to model
patterns in the proportion of gaze to a given interest area over time using linear, quadratic, and/or
cubic polynomial terms in the growth curve model (e.g., Baker & Love, 2021; Brown et al., 2011;
Hadar et al., 2016). In addition, previous research has addressed the modeling of trend over time in
intensive binary longitudinal eye-tracking data. For instance, Cho et al. (2020) accounted for time
slope parameters of linear and quadratic polynomials of time covariates within a generalized linear
mixed-effects model (GLMM). Furthermore, target fixations over time were fit by a four-parameter
logistic function that captures the asymptotes, slope, and crossover point (Ito and Knoeferle, 2022;
Oleson et al., 2017). Using polynomials and nonlinear functions offers the potential advantage of
assigning a meaningful interpretation to each parameter within the study’s context (Ram and Grimm,
2007). For example, the linear term and the quadratic term in the polynomials reflect a monotonic
change in gaze and the symmetric rise and fall rate around a central inflection point, respectively (e.g.,
Mirman et al., 2008).

As another approach, a functional perspective (Ramsay and Silverman, 2002, 2005) can be adopted
to capture the intrinsic structure of the data, focusing on its underlying nature rather than its explicit
form such as the polynomials and nonlinear functions. For the current study, we chose a functional
perspective using a generalized additive mixed model (GAMM; Lin & Zhang, 1999; Wood, 2017)
because it does not require a priori knowledge of the functional form for modeling group-specific trends
over time and learning across multiple trials. In psycholinguistics, GAMMs have been widely applied
to investigate the temporal dynamics of continuous time series data and group differences using by-
variable smooth functions (Baayen et al., 2017, 2018, 2022; Chuang et al., 2021; Heitmeier et al., 2023;
Ito & Knoeferle, 2022; Porretta et al., 2017; van Rij et al., 2019; Wieling, 2018). As an example of these
studies, Baayen et al. (2017) demonstrated the use of a smooth function of trial orders to model the
functional trend effect while modeling AR in the residuals, and the use of by-variable smooth functions
to investigate gender-group differences in word frequency in continuous (log-transformed) response
time data within a GAMM framework. In addition, Baayen et al. (2022) presented a GAMM to facilitate
individual-specific functional trend effects using by-variable smooth functions, in detecting the fixed

1As an example, Akhavan et al. (2023) defined the proportion by dividing the total duration of gazes on a particular area of
interest by the total duration of a trial.
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effects of within- and between-subjects factors. In psychometrics, Sørensen et al. (2023) presented
generalized additive latent and mixed models (GALAMMs) for longitudinal data with outcome and
latent variables depending smoothly on observed variables. In a recent study, Cho et al. (2022) utilized
a smooth function of time to model the mean functional trend and trial order effects across persons
and items in intensive binary longitudinal eye-tracking data within the GAMM. However, prior studies
employing GAMMs have not investigated the use of by-variable smooth functions for time and trial
orders in group comparisons (e.g., between persons with and without brain injury in an experimental
condition having a within-subjects factor) for binary longitudinal data. This gap highlights the need for
further methodological development, including modeling AR effects and their variability across persons
and items and probing interactions between groups and the experimental condition based on results of
the by-variable smooth function within GAMMs.

Functional data analysis (FDA), as introduced by Ramsay and Silverman (2002, 2005), shares a strong
connection with GAMM when it comes to modeling functional effects (see examples for relations
between FDA and GAMM in Wood 2017, pp. 390–397). FDA and its extensions to mixed-effects
modeling (known as functional mixed-effects modeling [FMEM], Guo 2002) have been applied to
longitudinal or time series data.2 For example, Fine et al. (2019) presented the application of the
FMEM to analyze continuous longitudinal data, enabling the consideration of the population mean and
individual differences in trends over time. In addition, Durbán et al. (2005) and Suk et al. (2019) applied
the mixed-effects penalized spline (as a special case of FMEM or GAMM) to model group-specific (e.g.,
sex) and individual-level functional trend over time in the continuous longitudinal data. As another
example, Staicu et al. (2020) presented the longitudinal dynamic functional regression (as a special case
of FMEM) for both continuous and binary longitudinal data to model group-specific (e.g., young vs.
old sows) trend and time-varying covariate effects using smooth functions. However, these studies did
not consider AR effects and multivariate binary longitudinal data (e.g., from multiple trials and items),
which are commonly found in visual world eye-tracking data. In this study, GAMM was chosen over
FDA or FMEM because the by-variable smooth functions to model group-specific functional effects of
interest were developed within a GAMM framework.

1.3. Study Purposes and Novel Methodological Contributions
The current study has three main purposes. First, we aim to present a model specification for comparing
functional trends over time and learning over multiple trials among groups, along with the AR effect,
in intensive binary longitudinal eye-tracking data. This is achieved by utilizing by-variable smooth
functions of GAMM. The by-variable smooth function estimates a smooth function for each diagnostic
group, such as non-injured comparison (NC) participants or participants with traumatic brain injury
(TBI) in our motivating data set, in an experimental condition. To the best of our knowledge, these by-
variable smooth functions have not been applied to intensive binary longitudinal data for the purpose of
group comparisons. In addition, psycholinguistics research has widely advocated for the use of crossed
random person and item effects to simultaneously account for person and item heterogeneity (e.g.,
Baayen et al., 2008). Thus, such heterogeneity is considered in the model specification. Furthermore,
we demonstrate how to model variability in trend and learning and in AR effects using random slopes
within GAMM, which may differ across individuals and/or items.

Second, when detecting group differences in trend and learning in the experiment, it is important
to probe interactions between diagnostic group (TBI vs. NC) and conditions, and to identify the time
and trial order ranges in which differences in the effects on target fixations can be observed between
the diagnostic groups. Therefore, we present a procedure to detect the interaction and the ranges for the

2Both longitudinal data and time series data involve observations taken over time. However, in the literature, they are often
used differently in terms of focus, purpose, and structure in analyses. For the eye-tracking data we focus on in the current
study, we use the terms ‘intensive (many time points) binary longitudinal data’ and ‘binary time-series data’ interchangeably.
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differences in this study, based on the results of the by-variable functions. We employ statistical testing
methods and present differences-between-smooths plots as part of this purpose.

For parameter estimation, the bam function of the mgcv package (Wood, 2023) in R (R Core Team,
2023) is used. While the bam function is designed to handle a wide range of GAMM specifications, it
may pose challenges for researchers aiming to use it for the specified model from our first aim. Hence,
our third purpose is to provide a detailed explanation of how parameter estimation is implemented
using the mgcv package.

The specified model is applied to a motivating example data set, hypothesizing that there are different
profiles in trend and learning between the diagnostic group (TBI vs. NC) in the data set. In the
motivating example data set, different options for how to code “trials” in the experiment are discussed.
Additionally, a simulation study is conducted to evaluate the recovery of parameters of the specified
model. These aspects have not been previously demonstrated in the literature.

This paper is organized as follows. In Sect. 2, the empirical study that motivated the current paper
is described. In Sect. 3, a model is specified to incorporate a by-variable smooth function of time and
trial orders to model functional trends over time and learning across a series of trials among groups. In
Sect. 4, the specified model is illustrated using an empirical data set. In Sect. 5, the simulation study is
presented to evaluate parameter recovery, and type I error rate and power of testing for a by-variable
smooth function. In Sect. 6, we end with a summary and a discussion.

2. Motivating Empirical Study

In this section, the motivating empirical study is explained. In addition, the different coding options for
trials within the experiment are discussed.

2.1. Samples and Experimental Design
The dataset (Clough et al., 2023) is from a study of 45 individuals with moderate–severe TBI and 44 NC
participants who were matched to the individuals in the TBI group on age, sex, and education (the data
from one person in the NC group was lost due to equipment failure). TBI causes heterogeneous deficits
in cognition, including language deficits (Covington and Duff, 2021; Dahlberg et al., 2006). The study
used a variant of the visual world paradigm (Tanenhaus et al., 1995), in which eye-tracked participants
completed a series of trials where they clicked on objects that were mentioned in a sentence. On each
trial, participants viewed 4 images, such as a “sandwich”, an “apple”, a “piano”, and a “guitar.” A video in
the center of the screen featured a person who said the corresponding sentence, e.g., “The girl will eat
the very nice sandwich”, which always contained a verb that was potentially consistent with two of the
objects on-screen, the named target (sandwich) and a competitor (apple)” (see Fig. 1).

Critically, on half the trials, the speaker used a representative gesture that was consistent with the
target (e.g., a sandwich holding gesture); this gesture was produced at onset of the verb phrase (e.g., will
eat) before the spoken target word “sandwich” and thus provided an early cue to speaker meaning. On
the other half of trials, the speaker used a non-informative grooming movement (e.g., scratching their
arm). The eye-tracking data are analyzed beginning 180 ms after the onset of the gesture or grooming
movement “stroke” in the video, allowing us to capture eye gaze made in response to the combination
of verb and gesture/grooming movement. The end of the analysis window was the average onset of the
spoken target word (e.g., “sandwich”), which was 2700 ms later. The analysis window is delayed by 200
ms due to the time needed to launch an eye movement in response to an external stimulus, minus 20
ms needed in order to calculate a baseline for the AR term in the model (Cho et al., 2018).

The eye-tracking data are coded in binary form, reflecting whether or not the participant was
fixating the target (e.g., “sandwich”) at each 10 ms time point in time during the analysis window. Each
participant completed 240 trials where they viewed a scene with 4 pictures, heard an associated sentence
produced by a speaker in a video, and were tasked with clicking on the associated picture (e.g., the
“sandwich”). As participants completed the 240 trials, the order of those trials (from 1 to 240) may
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Figure 1. Empirical study: Example trial including sandwich (target), apple, piano, and guitar images, and a video still of a person in

the gesture condition making a sandwich gesture.

be relevant to learning within the experiment about the task, and thus we may expect performance
to improve over the course of the 240 trials (or alternatively, if fatigue sets in, for performance to
decline across the 240 trials). When we refer to trial order, we mean the order of the 240 trials that
a given participant completed. On each trial, the sentence referred to one of four pictures, termed the
target picture (e.g., the “sandwich”). Critically, the scenes always contained a competitor picture (e.g.,
the “apple”) which shared some affordances with the target such that both were potential direct objects
of the verb in the sentence. For example, both the target (“sandwich”) and competitor (“apple”) are
possible direct objects of the verb “eat.” Across trials, we varied whether, for a given pair of objects
which was the target and which was the competitor, e.g., on some trials the “sandwich” was the target
(and the “apple” was the competitor) and on other trials the “apple” was the target (and the “sandwich”
was the competitor). There was a total of 40 pairs of target pictures that shared a verb; we refer to
these as the 40 different items in the analysis, and given inter-item differences in features like the
imageability or frequency of the verb and the degree to which it evoked the associated objects, we
can expect dependency in item responses due to item clustering. For each of the 40 items, a version
of the sentence was recorded in both the gesture and grooming movement conditions and for both
possible nouns (i.e., 160 unique sentence-hand movement combinations). We recorded four speakers
(two male, two female) producing each of these 160 sentences, resulting in a total of 640 unique possible
trials. These 640 trials were put into a single randomized order and divided into eight blocks of 80
trials each. From those 8 blocks, a Latin square sampling design was used to create eight stimulus lists
of 240 trials. Participants were randomly assigned to one of these stimulus lists. The trial number is a
unique identifier that captures which of 640 specific combinations of the 80 items (e.g., sandwich, apple,
etc.), gesture condition (with vs. without gesture), and speaker identity were featured in the video on
a given trial. Note that because there were only 80 unique items (e.g., “sandwich/apple; piano/guitar”,
etc.) but each participant completed a sequence of 240 trials, each person experienced each item multiple
times.
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In sum, the empirical data set has a nested and cross-classified multilevel structure: the 252 time
points at level 1 are nested within 240 trial orders at level 2, which are cross-classified by 89 persons
(44 NC participants and 45 TBI participants) and 40 items at level 3. The resulting data have a total of
5,382,720 binary data points (252×240×89 = 5,382,720).

In what follows, we use the term condition to refer to the distinction between gesture and grooming
movements in experiment. We use diagnostic group to describe the distinction between NC and TBI.
Finally, we use the term group for the categorical covariate that forms a by-variable smooth function.
For instance, such groups include NC participants in a grooming movement condition, NC participants
in a gesture condition, TBI participants in a grooming movement condition, and TBI participants in a
gesture condition.

2.2. Empirical Research Questions and Hypotheses
The substantive research question of interest is how moderate–severe TBI impacts online language
processing in rich contexts, and if and how disruptions in online language processing scale up over time
to impact learning over longer time scales. Based on prior findings using similar methods (Altmann and
Kamide, 1999; Cho et al., 2020), we expect to observe a significant positive trend effect such that over
252 time points within a trial, the probability of a target fixation (coded as 1) compared to a non-target
fixation (coded as 0) increases across time points. This effect reflects the successful interpretation of the
sentence over time; as the person interprets the sentence, they become more likely to fixate the target
referent (e.g., “sandwich” in Fig. 1). While we expect target fixations to increase across time, nonlinearity
in the trend can be expected as once the target has been identified on most trials, there is likely to be an
asymptotic effect, and in some cases fixations to the target may drop after persons locate and click the
target and then look away (see Yoon & Brown-Schmidt, 2018). Critically, success in this task requires
integrating the unfolding linguistic signal with the speaker’s gesture, and with the associated visual scene
in order to direct fixations to the target referent. Impairments in the ability to process language, gesture,
the visual scene, or the integration of any of these elements in TBI would likely delay target identification,
a result which we speculate would be reflected in a shallower rise in target fixations over time (a shallower
trend effect in TBI).

We also test for a learning effect across the 240 trial orders, which we hypothesize to be reflected
in an increased probability of a target fixation as trial order increases. Such an effect would represent
learning how to more efficiently process speech and gesture, and locate the target image within the scene
as experience with the task increases across trials. An asymptotic effect in learning may reflect the fact
that at some point, individuals maximize their ability to understand and quickly process the speech
and gesture. If TBI impairs the ability to learn within this task, we would expect a slower increase in
target fixations across the 240 trial orders of the experiment, or even a decrease if participants with TBI
experience more fatigue as the task progresses, compared to non-injured participants.

Lastly, an interaction between trend and learning effects can be expected if efficient processing of
speech and gesture at the trial level (trend) supports efficient learning across trials. If so, we would
expect that the participant group (or individual participants) that shows stronger trend effects (e.g.,
larger increases in target fixations over time within a trial) to show more learning across trials. One
potential outcome is that online processing is impaired in TBI (reflected in shallower trend effects within
trials compared to non-injured participants), and that this in turn is associated with weaker learning
across trials. Another potential outcome is that online processing is intact in TBI (reflected in equivalent
trend effects within trials compared to non-injured participants), but that TBI impairs the ability to
translate in-the-moment processing into longer-term learning gains. If so, participants with TBI may
show equivalent trend effects as non-injured comparison participants, but nonetheless show weaker
learning effects across trials. However, we do not have a strong hypothesis regarding the form of the
group-specific trend and learning effects. We assume that a smooth function could approximate the
underlying nature of the group-specific trend and learning effectively.
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3. Methods

In this section, GAMM specification is provided to answer the substantive research question. Subse-
quently, parameter estimation, model comparisons and evaluation, and testing smooth functions and
plotting differences-between-smooths are described.

3.1. Model Specification
Denote a binary observation at an equally spaced time point t (t = 1, . . . ,T) from trial order l
(l = 1, . . . ,L), person j (j = 1, . . . ,J), and item i (i = 1, . . . ,I) in group g (g = 1, . . . ,G) by ytljig . The first-
order AR (AR1) is considered in model specification for illustrative purpose (also found in the empirical
study). Below, three models are specified to compare functional trend and learning effects among
groups. (a) Model A: fixed AR1 and group-specific functional trend and learning effects using by-
variable smooth functions, (b) Model B: adding variability in AR across participants and items using
random slopes to Model A, and (c) Model C: adding variability in trend and learning effects across
persons and items using random slopes to Model B. Focal effects of interest are group-specific functional
trend and learning effects, controlling for variability in AR, trend, and learning effects across persons
and items.

Model A
The model with fixed AR1 and group-level functional trend and learning effects is written as

logit[P(ytljig =1∣y(t−1)ljig,Xj,timet,trialorderl,α1,α,ζ1,ζ,θj,βi)]
=α1+αXj+ ζ1y(t−1)ljig + ζ(Xjy(t−1)ljig)+θj+βi

+ f (timet)(groupj = g)+ f (trialorderl)(groupj = g)
+ f (timet,trialorderl)(groupj = g), (1)

where ytljig is a binary response; ytljig = 1 when person j looks at a target and ytlji = 0 otherwise, Xj is a
vector of the dummy-coded group covariate, y(t−1)ljig is an AR1 covariate (the first order of the lagged
response variable), groupj is a categorical group covariate (groupj = 1, . . . ,G), timet is a time covariate,
trialorderl is a trial order covariate, α1 is a fixed intercept for a reference group, α = [α2, . . . ,αG]′ is
a vector of the difference between a reference group and another group, ζ1 is a fixed AR1 effect for
a reference group; the AR1 effect can be interpreted as the log-odds ratio for the current response
due to the previous response changing from 0 to 1, ζ = [ζ2, . . . ,ζG]′ is a vector of fixed AR1 effects
for the difference between a reference group and another group, θj is a random person intercept to
allow for individual differences, βi is a random item intercept to allow for differences between the items,
f (timet)(groupj = g) is a by-variable smooth function of timet to model a group-specific functional
trend effect, f (trialorderl)(groupj = g) is a by-variable smooth function of trialorderl to model a group-
specific functional learning effect, and f (timet,trialorderl)(groupj = g) is a two-dimensional by-variable
smooth function of (timet,trialorderl) to model group-specific functional interaction between trend
and learning effect (as in the smooth analysis of variance [ANOVA] model (e.g., Gu, 2013)). Normality
is assumed for θj and βi, respectively: θj ∼ N(0,σθ) and βi ∼ N(0,σβ). In the presence of both trend
and AR effects in the model, our interpretation is that the AR1 effect primarily captures the short-term
dependencies in the data (around the trend), while the trend represents the long-term direction or
pattern.

In Eq. 1, a by-variable smooth function (f (timet)(groupj = g) or f (trialorderl)(groupj = g)) is
specified as a weighted sum of a set of basis functions over the covariate (timet or trialorderl) for each
group. For f (timet)(groupj = g) as an example,

f (timet)(groupj = g) =
K1

∑
k=1

δk.gbk.g(timet)(groupj = g), (2)
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where k is an index for a kth basis function (k = 1, . . . ,K1), δk.g is a basis coefficient for group g,
and bk.g(timet)(groupj = g) is the kth basis function for group g. The by-variable smooth function is
identified with the constraint that the function sum over the observed time values across observations
is 0.

In addition, a by-variable tensor smooth (e.g., Wood, 2017) is used for a two-dimensional by-variable
smooth function (f (timet,trialorderl)(groupj = g)) in Eq. 1 because it has a property that a unit change
in one variable is equivalent to a unit change in another variable. The by-variable tensor smooth function
can be constructed as a weighted sum of a set of basis functions defined over the covariates of timet and
trialorderl for group g:

f (timet,trialorderl)(groupj = g) =
K2

∑
k

K
′

2

∑
k′

γlkk′blkk′(timet,trialorderl)(groupj = g), (3)

=
K2

∑
k

K
′

2

∑
k′

γlkk′blk(timet)blk′(trialorderl)(groupj = g), (4)

where k is an index for a basis function (k = 1, . . . ,K2) for a time covariate timet , k′ is an index
for a basis function (k′ = 1, . . . ,K2

′) for a trial order covariate trialorderl, γlkk′ is a basis coefficient,
and blkk′(timet,trialorderl) is a bivariate basis function. For the two-dimensional by-variable smooth
function, the bivariate basis function is blkk′(timet,trialorderl) = blk(timet)blk′(trialorderl), which is a
tensor product of univariate basis functions in timet and trialorderl directions. For identification, the
marginal smooths of a tensor product are created with sum-to-zero identifiability constraints prior to
constructing the tensor product basis.

Model B: Adding Varying AR1 Effects across Persons and Items to Model A
The random slopes of y(t−1)ljig (ζ1j and ζ2i) are added to Model A to model variability in AR1 the

effect across persons and items, respectively:

logit[P(ytljig = 1∣y(t−1)ljig,Xj,timet,trialorderl,α1,α,ζ1,ζ,ζ1j,ζ2i,θj,βi)]
= α1+αXj+ ζ1y(t−1)ljig + ζ(Xjy(t−1)ljig)+ ζ1jy(t−1)ljig + ζ2iy(t−1)ljig +θj+βi

+ f (timet)(groupj = g)
+ f (trialorderl)(groupj = g)+ f (timet,trialorderl)(groupj = g). (5)

The ζ1j and ζ2i are assumed to follow a normal distribution: ζ1j ∼N(0,σζ1) and ζ2i ∼N(0,σζ2).
Model C: Adding Individual-Level Trend and Learning Random Effects to Model B
The participant-specific random slopes of time and trial orders (θ1j and θ2j) are added to Model

B to model the individual-specific deviation from the group-specific mean for time and trial orders,
respectively:

logit[P(ytljig = 1∣y(t−1)ljig,Xj,timet,trialorderl,α1,α,ζ1,ζ,ζ1j,ζ2i,θj,θ1j,θ2j,βi)]
= α1+αXj+ ζ1y(t−1)ljig + ζ(Xjy(t−1)ljig)+ ζjy(t−1)ljig + ζiy(t−1)ljig +θj+βi

+ f (timet)(groupj = g)+ f (trialorderl)(groupj = g)
+ f (timet,trialorderl)(groupj = g)+θ1jtimet +θ2jtrialorderl. (6)

The θ1j and θ2j are assumed to follow a normal distribution: θ1j ∼N(0,σθ1) and θ2j ∼N(0,σθ2).

3.2. Parameter Estimation
We utilize the bam function to perform the fitting of the specified models to model group-specific
functional trend and learning in the mgcv package. In order to estimate the intercept difference
(α) and group-specific smooth functions (f (timet)(groupj = g), f (trialorderl)(groupj = g), and
f (timet,trialorderl)(groupj = g)) in Models A, B, and C, the group covariate (groupj) should be coded as
factor in R. For the group-specific smooth functions, a cubic regression spline (CRS; Green & Silverman,
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1994) was selected in the mgcv. The CRS is constructed through the utilization of cubic polynomials
that are interconnected at specific points known as knots. The knots are automatically distributed across
the entire range of the observed covariate (timet or trialorderl) at uniform intervals. When using known
CRS basis functions, it is important to select an appropriate number of basis functions (K1 and K2).
In this study, the corrected Akaike’s Information Criterion (corrected AIC; Wood et al., 2016) was
employed for model comparisons with differing Ks. The corrected AIC utilizes the effective degrees
of freedom (edf ) as the number of parameters necessary to represent smooth functions in the penalty
term and accounts for smoothing parameter uncertainty. For the selected model regarding K1 and K2,
the k-index (Wood, 2017) was used to check whether there are any residual patterns that the chosen K1
and K2 are failing to capture.

The “wiggliness” of a univariate smooth function is controlled with a quadratic smoothing penalty.
As an example, the quadratic smoothing penalty for f (timet)(groupj = g) is written as:

λg∫
+∞

−∞
{f
′′

(timet)}2dtime = λgδ
′

gSgδg, (7)

where λg is a smoothing parameter, δg is a vector of basis coefficients, and Sg is a penalty matrix
embedded as a diagonal block in a matrix for group g.

To measure the wiggliness of a tensor product (f (timet,trialorderl)(groupj = g)), we use a marginal
penalty matrix combined with a smoothing parameter. This approach mirrors the construction of a
univariate smooth function for timet and trialorderl (Wood, 2017). That is, the quadratic smoothing
penalty for the tensor product is specified as follows:

∫
time,trialorder

λtime{f
′′

(timet)}2+λtrialorder{f
′′

(trialorderl)}2dtimedtrialorder

≈ λtimeγT S̃timeγ+λtrialorderγT S̃trialorderγ, (8)

where λtime and λtrialorder are smoothing parameters, S̃time is a penalty matrix defined as Stime
′⊗IK2′ (Stime

is the reparameterized basis function for the approximation to the quadratic smoothing penalty,⊗ is the
Kronecker product, and IK2′ is the rank K2

′ identity matrix), and S̃trialorder is a penalty matrix calculated
as IK2 ⊗Strialorder

′ (IK2 is the rank K2 identity matrix and Strialorder
′ is the reparameterized basis function

for the approximation to the quadratic smoothing penalty).
In using mgcv package for GAMM, the random effects are treated as smooth functions with an

identity matrix as penalty matrix (i.e., S = I, where I is an identity matrix). The variance of the random
variable is the inverse of the estimated smoothing parameter: e.g., Var(θj) = (̂λI)−1. The predicted
values of the random effects were estimated as the basis coefficients.

In the mgcv package, the smooth parameters (λ) can be selected by either prediction error (GCV.Cp
and GACV.Cp in the mgcv package) or marginal likelihood (REML and ML in the mgcv package).
REML and ML are preferable to the other criteria, as they are less prone to local minima. In this study,
fast restricted maximum likelihood estimation (fREML) was chosen in the bam function.

Given REML-based smoothing parameters (̂λ) and the estimated variance matrix of the random
effects (e.g., Σ̂ = diag(b = [θj,βi])′ in Eq. 1), parameters (e.g.,ϑ = [α,λ,ζ]′ in Eq. 1) are estimated
using a penalized iteratively re-weighted least squares (PIRLS; Wood, 2017) with a default option,
optimizer=c("outer","newton"), in themgcv package. The following weighted least squares
objective can be minimized to obtain ϑ̂:

D(ϑ)+λϑ
′

Sϑ+ϕb
′

Σ−1b, (9)

where D(ϑ) is the model deviance (D(ϑ) = 2{lmax− l(ϑ)}, where l is the log-likelihood), S is a matrix in
which a zero block matrix is padded for the fixed effects, and the penalty matrix of smooth functions is
padded for the basis coefficients, and ϕ is the scale parameter in an exponential family distribution (for
binary responses, ϕ = 1).
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In AR modeling, the treatment of the initial response variable (y1ljig) is an important issue because
an AR1 covariate does not exist for the initial response variable. In this study, the initial response
variable (y1ljig) was not modeled due to the following two reasons as used in Cho et al. (2018, 2020,
2022). First, there are a large number of time points (252 time points). For models with random effects
and autoregressive responses, the issue of missing initial responses tends to be less pronounced when
the number of time points is substantial (Hsiao, 2003). Second, omitting the initial two time points
(t = 1 [180 ms] and t = 2 [190 ms]) is not anticipated to influence the subsequent responses. The
variation between 180 ms and 220 ms (the initial 40 ms of data) is expected to be minimal. Eye-tracking
studies frequently analyze fixed condition effects in a designated time window starting 200 ms after the
introduction of a pivotal word. In parallel, a pre-200 ms baseline duration is typically scrutinized to
identify existing data patterns before the primary analysis interval (e.g., Brown-Schmidt & Fraundorf,
2015).

3.3. Model Comparisons and Evaluation
Candidate models (Models A, B, and C) were compared based on the corrected AIC. For a selected
model based on the corrected AIC, model adequacy was evaluated using residual analysis. The Pearson
residual was calculated as rtljig = {ytljig −E(ytljig)}/

√
Var(ytljig), where E(ytljig) and Var(ytljig) are the

model-based mean and variance obtained from the selected model. To interpret how well the selected
model explains or predicts responses for a particular trial order, person, or item, a trial-level fit (Ml), a
person-level fit (Wj), and an item-level fit (Zi) were calculated and interpreted as the mean of rtljig by
trial order, person, and item, respectively. In addition, the assumptions of normality for the random
effects were evaluated using Q-Q plots.

3.4. Testing Smooth Functions and Plotting Differences-Between-Smooths
The null hypothesis was tested to detect trend, learning, or their interaction effects for each group at the
nominal level of 0.05. For f (timet)(groupj = g) as example, the null hypothesis H0 ∶ f (timet)(groupj =
g) = 0 indicates that the smooth function is indistinguishable from zero (i.e., no trend effect) for all timet
in the range of interest. Under H0, the test statistic Tr (Wood, 2017, pp. 305–306) follows a Chi-square
distribution with degrees of freedom as the rounded effective degrees of freedom (edf ; Wood, 2013).

For group comparisons, it is important to determine whether there are significant differences in
trend or learning between diagnostic groups (e.g., NC vs. TBI in the motivating example) regarding a
condition (e.g., grooming movement vs. gesture in the motivating example). The interaction between the
diagnostic groups and the condition was derived based on by-variable smooth functions. As the first step
to probe the interaction, the differences in the fitted smooth function between the levels of the condition
are derived for each diagnostic group (NC or TBI in the motivating example) by generating the posterior
distribution of the smooth function (Marra and Wood, 2012). To interpret the differences between the
diagnostic groups, the mean differences between the conditions were added to the differences in the
fitted smooth function. For the trend effect between Condition 1 (Group 1 as a baseline or reference
group; g = 1) and Condition 2 (Group 2; g = 2) in a diagnostic group as an example,

α̂2+{f̃ (timet)(groupj = 2)− f̃ (timet)(groupj = 1)}

= α̂2+[{
K1

∑
k=2

δ̂k.2bk.2(timet)(groupj = 2)}−{
K1

∑
k=2

δ̂k.1bk.1(timet)(groupj = 1)}], (10)

where δ̂k.2 and δ̂k.1 are basis coefficient estimates for Group 2 and Group 1, respectively. In Eq. 10,
summations start with 2 because of the identification constraints. To obtain the posterior distribution,
one thousand replicated basis coefficients were simulated from a multivariate normal distribution
(MVN) for each condition:

δ2 ∼MVN(δ̂2,V̂β2);δ1 ∼MVN(δ̂1,V̂β1), (11)
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where V̂β2 and V̂β1 are covariance matrix of basis coefficient estimates for Group 2 and Group 1,
respectively. For the post hoc comparisons of groups, the standard deviation of differences between
the two fitted smooth functions (e.g., standard deviation of Eq. 10 across one thousand replications)
is calculated to construct 95% credible bands for testing differences in the fitted smooth functions
between the levels of the condition. When the credible band does not include 0, it is concluded that
there are differences in trend or learning between the levels of conditions within each diagnostic group.
Additionally, the range of time and trial orders for the differences can be identified when the credible
band does not encompass 0. In the study, the mgcViz package (Fasiolo et al., 2020) is used to detect
these ranges.

As the second step, significance of the differences in the fitted smooth function (i.e., Eq. 10) between
the diagnostic groups can be inferred. When there are overlapped credible bands over time (for trend)
or over trial orders (for learning) between the diagnostic groups, we can conclude that the condition
effect differs by the diagnostic groups. In the presence of non-overlapped credible bands between the
diagnostic groups, the ranges of time and trial orders for the differences can be detected.

4. Illustration

In this section, the specified models in Sect. 3 are applied to the empirical data set presented in Sect.
2. The data and the R code used in the illustration can be found in the Open Science Framework,
https://osf.io/q3e7u/. To answer the substantive research question, a categorical group covariate was
set as follows: Group 1 (g = 1) for NC participants in a grooming movement condition, Group 2 (g = 2)
for NC participants in a gesture condition, Group 3 (g = 3) for TBI participants in a grooming movement
condition, and Group 4 (g = 4) for TBI participants in a gesture condition. Group 1 was set as the
reference or baseline group.

4.1. Exploratory Analyses of Change Processes
To characterize trend over time graphically, the logit transform of binary outcome variables (called
empirical logit; Cox & Snell, 1989) was calculated for each participant j in group g at a time point t. To
render the empirical logit unbiased, it was defined by adding 0.5/L to each observed proportion (e.g.,
see p. 32, Cox & Snell, 1989):

emlogittjg = log( Proptjg +0.5/L
1−Proptjg +0.5/L), (12)

where Proptjg is the proportion of a fixation “1” across the number of trial orders L. Adding 0.5/L has the
further advantage of ensuring that the empirical logit is defined in cases where Proptjg = 0 or Proptjg = 1.
In a similar way, the empirical logit of the proportion of a fixation ‘1” across the time points T for each
participant j in group g at a trial order l was obtained to explore learning over trial orders graphically as
follows:

emlogitljg = log(
Propljg +0.5/T

1−Propljg +0.5/T ), (13)

where Propljg is the proportion of a fixation “1” across the number of time points T.
Figure 2 (top and middle) presents the time series plots for group-level trend and learning using

emlogittjg and emlogitljg , respectively, by four groups.3 To plot the group-level trend, the smooth
function of the individual-level emlogittjg was fitted using the CRS in the gam function of the mgcv

3On the y axis of the time series plots (top and middle) in Fig. 2, the full ranges of emlogittjg and emlogitltg are presented
to accommodate the models displaying the group-level trend and learning in the ggplot function; individual-level trend and
learning were not included in the time series plots (top and middle) to maintain clarity and avoid overcrowding.
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Figure 2. Empirical study: A time series plot illustrating group-level trend (top), a time series plot demonstrating group-level learning

(middle), and a partial autocorrelation plot for AR1 (bottom).

package. To facilitate comparison, polynomial regressions with quadratic and cubic terms were also
fitted to the same data set. It was observed that the fitted smooth functions deviated from the fitted
polynomial regressions. Additionally, target fixation (on the y axis) was higher in the gesture condition
compared to the grooming movement condition, for both the NC and TBI groups. However, there
were more target fixations at earlier time points in the NC group than in the TBI group. To examine
group-level learning, the smooth function of the individual-level emlogitljg was fitted using the CRS
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method, and a linear regression model was also fitted to the same data set for comparison. In the NC
group, a linear decreasing pattern in target fixation over trial orders was observed. However, in the TBI
group, the fitted smooth function deviated from the linear line and presented a U-pattern, indicating
a decreasing pattern in target fixations at the beginning followed by an increasing pattern in later trial
orders. Figures in “Appendix A” illustrate individual-level trend and learning. It was observed that there
is variability in trend and learning effects among individuals. In the following modeling, we will assess
whether accounting for this variability leads to model-data fit improvement in detecting the group-level
trend and learning effects.

A partial autocorrelation (AC) can be calculated to select the order of ACs (Chatfield, 2004). It was
calculated using emlogittjc by groups. Figure 2 (bottom) shows the plot of the partial AR against the
1–8 time lags and a box plot at each time lag indicates variability in the partial AR across individuals.
As depicted in Fig. 2 (bottom), the partial AC with an order of 1 is noticeably close to 1, while those
with larger lags approach 0. This finding suggests that modeling autocorrelation effects only requires
consideration of AR1. As shown in the box plot of AR1 in Fig. 2 (bottom), there is variability in partial
AC across individuals. In the following analysis, we will assess whether this variability plays a role in
detecting group-level trend and learning effects.

To summarize the exploratory investigation of the change processes, the results suggest the presence
of a nonlinear trend, linear or nonlinear learning differing by diagnostic groups, and an AR1 effect that
differs by groups. These change processes are modeled to investigate group-specific trend and learning
effects.

4.2. Analyses
The specified models, Model A (Eq. 1), Model B (Eq. 5), and Model C (Eq. 6), were each fitted to the same
empirical data set. When fitting these three models, models with different numbers of basis functions
(K1 and K2) ranging from 3 to 12 were considered. For each model, seven basis functions (K1 = K2 = 7)
were chosen for by-variable smooth functions. The K1 = K2 = 7 was chosen because the models with
K1 = K2 = 7 consistently showed the lowest corrected AIC among the candidate models. Additionally,
models with K1 = K2 = 7 had a k-index close to 1 for all by-variable smooth functions. Of the three
models, Model C was selected based on ‘the corrected AIC (refer to Table 1 for the corrected AIC values).

For the selected Model C, model adequacy was evaluated using Pearson residuals. Only 0.171% of
observations exceeded 2 in the absolute value of Pearson residuals.4 No trial orders, participants, or
items exceeded 2 in the absolute value of Pearson residuals. These results indicate that Model C explains
or predicts the data well. In the Q-Q plots of the predicted random effects in Model C (the Q-Q plots are
shown in “Appendix B”), all quantile points were within the 95% confidence bands, with some deviations
from normality for a few points for random slopes of AR1 in the lower extreme (having residuals falling
slightly outside the 95% confidence bands). This suggests that the assumptions of normality for the
random effects were generally met.

4.3. Results of the Selected Model
In the following, results of Model C in Table 1 are interpreted. The estimates in Table 1 are on the
logit scale. The patterns of target fixations in NC participants in a grooming movement condition
(Group 1) served as the baseline. The average log odds of a target fixation in Group 1 was −7.933
(SE=0.189, p < 2e− 16), holding all other covariates constant. Significant differences in mean target
fixations were found between the NC participants in the grooming movement condition (Group 1) and
NC participants in the gesture condition (Group 2) (EST = 0.700, SE = 0.043, p < 2e−16), reflecting a

4The Pearson residual from a single observation, taken from a trial order, an individual, or an item, may deviate significantly
from a normal distribution. Nonetheless, any observation with an absolute standardized residual value greater than 2 can be
closely examined for discrepancies.
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Table 1. Empirical study: results of the specified models

Model A

EST SE

Fixed Effects

Intercept[α1] −7.652 0.138

ylag1[ζ1] 10.678 0.051

Group2[α2] 0.702 0.043

Group3[α3] 0.217 0.192

Group4[α4] 0.734 0.191

ylag1:Group2[ζ2] −0.291 0.065

ylag1:Group3[ζ3] 0.310 0.072

ylag1:Group4[ζ4] −0.119 0.065

Random Effects

Person

SD of θj[
√σθ] 0.871

SD of ylag1[
√σζ1

] −

SD of θ1j [
√σθ1

] −

SD of θ2j [
√σθ2

] −

Item

SD of βi[
√σβ] 0.110

SD of ylag1[
√σζ2

] −

Ref.edf Tr (p-value)

Smooth Functions

s(timecoded):Group1[f(timet)(groupj = 1)] 5.766 344.178(<2e-16)

s(timecoded):Group2[f(timet)(groupj = 2)] 5.869 577.658(<2e-16)

s(timecoded):Group3[f(timet)(groupj = 3)] 5.370 196.383(<2e-16)

s(timecoded):Group4[f(timet)(groupj = 4)] 5.920 480.671(<2e-16)

s(trialorder):Group1[f(trialordert)(groupj = 1)] 3.189 15.385(0.002)

s(trialorder):Group2[f(trialordert)(groupj = 2)] 4.170 11.549(0.027)

s(trialorder):Group3[f(trialordert)(groupj = 3)] 3.424 27.896(9.39e-06)

s(trialorder):Group4[f(trialordert)(groupj = 4)] 5.561 60.667(<2e-16)

ti(timecoded,trialorder):Group1[f(timet,trialorderl)(groupj = 1] 6.164 16.345(0.013)

ti(timecoded,trialorder):Group2[f(timet,trialorderl)(groupj = 2] 5.425 8.683(0.145)

ti(timecoded,trialorder):Group3[f(timet,trialorderl)(groupj = 3] 8.473 8.137(0.463)

ti(timecoded,trialorder):Group4[f(timet,trialorderl)(groupj = 4] 6.620 5.590(0.551)

df 193.7

LL −59034.3

Corrected AIC 118456.1

(Continued)

Downloaded from https://www.cambridge.org/core. 29 Apr 2025 at 16:39:41, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Psychometrika 15

Table 1. Continued

Model B

EST SE

Fixed Effects

Intercept[α1] −7.918 0.186

ylag1[ζ1] 11.333 0.168

Group2[α2] 0.707 0.043

Group3[α3] 0.244 0.260

Group4[α4] 0.780 0.259

ylag1:Group2[ζ2] −0.346 0.066

ylag1:Group3[ζ3] 0.161 0.233

ylag1:Group4[ζ4] −0.238 0.231

Random Effects

Person

SD of θj[
√σθ] 1.194

SD of ylag1[
√σζ1

] 1.008

SD of θ1j [
√σθ1

] −

SD of θ2j [
√σθ2

] −

Item

SD of βi[
√σβ] 0.099

SD of ylag1[
√σζ2

] 0.072

Ref.edf Tr (p-value)

Smooth Functions

s(timecoded):Group1[f(timet)(groupj = 1)] 5.728 351.052(<2e-16)

s(timecoded):Group2[f(timet)(groupj = 2)] 5.693 612.884(<2e-16)

s(timecoded):Group3[f(timet)(groupj = 3)] 5.551 266.411(<2e-16)

s(timecoded):Group4[f(timet)(groupj = 4)] 5.892 524.634(<2e-16)

s(trialorder):Group1[f(trialordert)(groupj = 1)] 2.944 9.379(0.020)

s(trialorder):Group2[f(trialordert)(groupj = 2)] 3.695 8.064(0.009)

s(trialorder):Group3[f(trialordert)(groupj = 3)] 3.387 29.384(3.99e-06)

s(trialorder):Group4[f(trialordert)(groupj = 4)] 5.294 41.995(<2e-16)

ti(timecoded,trialorder):Group1[f(timet,trialorderl)(groupj = 1] 7.091 18.751(0.010)

ti(timecoded,trialorder):Group2[f(timet,trialorderl)(groupj = 2] 11.651 19.147(0.073)

ti(timecoded,trialorder):Group3[f(timet,trialorderl)(groupj = 3] 9.536 12.213(0.235)

ti(timecoded,trialorder):Group4[f(timet,trialorderl)(groupj = 4] 10.048 12.222(0.278)

df 284.2

LL −58256.1

Corrected AIC 117080.6

(Continued)
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Table 1. Continued

Model C

EST SE

Fixed Effects

Intercept[α1] −7.933 0.189

ylag1[ζ1] 11.289 0.168

Group2[α2] 0.700 0.043

Group3[α3] 0.233 0.264

Group4[α4] 0.776 0.263

ylag1:Group2[ζ2] −0.363 0.066

ylag1:Group3[ζ3] 0.153 0.234

ylag1:Group4[ζ4] −0.251 0.232

Random Effects

Person

SD of θj[
√σθ] 1.136

SD of ylag1[
√σζ1

] 1.011

SD of θ1j [
√σθ1

] 0.002

SD of θ2j [
√σθ2

] 0.003

Item

SD of βi[
√σβ] 0.098

SD of ylag1[
√σζ2

] 0.046

Ref.edf Tr (p-value)

Smooth Functions

s(timecoded):Group1[f(timet)(groupj = 1)] 5.781 245.300(<2e-16)

s(timecoded):Group2[f(timet)(groupj = 2)] 5.896 446.700(<2e-16)

s(timecoded):Group3[f(timet)(groupj = 3)] 5.489 184.900(<2e-16)

s(timecoded):Group4[f(timet)(groupj = 4)] 5.943 397.400(<2e-16)

s(trialorder):Group1[f(trialordert)(groupj = 1)] 1.931 11.040(0.006)

s(trialorder):Group2[f(trialordert)(groupj = 2)] 3.250 7.397(0.082)

s(trialorder):Group3[f(trialordert)(groupj = 3)] 3.262 25.640(1.96e-05)

s(trialorder):Group4[f(trialordert)(groupj = 4)] 5.176 40.330(1.69e-06)

ti(timecoded,trialorder):Group1[f(timet,trialorderl)(groupj = 1] 5.451 17.490(0.006)

ti(timecoded,trialorder):Group2[f(timet,trialorderl)(groupj = 2] 6.316 12.710(0.057)

ti(timecoded,trialorder):Group3[f(timet,trialorderl)(groupj = 3] 8.947 10.590(0.298)

ti(timecoded,trialorder):Group4[f(timet,trialorderl)(groupj = 4] 5.699 7.565(0.241)

df 378.3

LL −58026.4228

Corrected AIC 116809.5

-indicates that an effect or a smooth function is not modelled; Significance for fixed effects is presented in bold at .05; LL indicates a log-likelihood
value; NumP indicates the number of parameters; Group 1 (g = 1) is for NC participants in a grooming movement condition, Group 2 (g = 2) is for
NC participants in a gesture condition, Group 3 (g = 3) is for TBI participants in a grooming movement condition, and Group 4 (g = 4) is for TBI
participants in a gesture condition
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Figure 3. Empirical study: Predicted two-dimensional by-variable smooth function of (timet,trialorderl). Note. In the figure, lines in

the contour plot are drawn connecting the (timet,trialorderl) coordinates where the same value (the logit transform of probability)

occurs, with the effect of the interaction increasing as the color of the contour plot becomes warmer (from blue to yellow); no credible

bands were added to avoid cluttered figures (Color figure online).

benefit of gesture in the NC group. In addition, there was a significant difference in mean target fixations
between NC participants in the grooming movement condition (Group 1) and TBI participants in the
gesture condition (Group 4, EST = 0.776, SE = 0.263, p = 0.003), showing a benefit of gesture in the TBI
group compared to the NC group in the grooming condition. Furthermore, there was no significant
mean difference between the NC participants the a grooming movement condition (Group 1) and
TBI participants in the grooming movement condition (Group 3) (EST=0.233, SE=0.264, p = 0.379).
These findings indicate that in the absence of a helpful gesture, that participants with and without TBI
identified and fixated the target referent at a similar rate on average, and that in addition the gesture was
helpful in directing participants with and without TBI toward the target.

As shown in Table 1, the two-dimensional by-variable smooth function of (timet,trialorderl)(groupj =
g) was significant only for the NC participants in the grooming movement condition (Group 1). This
significant interaction between time and trial orders indicates that the trend over time within a trial
changed across trial orders of the experiment. Figure 3 displays the predicted two-dimensional by-
variable smooth function for Group 1. In the figure, higher target fixations are evident toward the
middle and end of the time variable within the [1, 125] trial order range. In contrast, increased fixations
appear at the beginning and later-middle sections of the time variable in the [126, 240] range. The
pattern in the early trials of the experiment may be due to participants fixating the video of the actor (at
the expense of target fixations) at the beginning of the trial (corresponding to the moment the speaker
is producing the grooming movement), then alternating between the target and video thereafter. At
these early trials in the experiment participants may still be learning that grooming movements are not
providing an informative cue, and therefore still be looking to the video initially. As trial order increases
in the [126, 240] range, participants may be less likely to gaze at the video initially as they may have
learned that the video is not informative, which allows for serendipitous early target fixations.

In addition, the by-variable smooth functions of timet and trialorderl were significant for all four
groups, except for the by-variable smooth function of trialorderl of the NC participants in the gesture
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Figure 4. Empirical study: Predicted by-variable smooth function of timet for Group 1 (top, left), Group 2 (top, right), Group 3 (bottom,

left), and Group 4 (bottom, right). Note. The dotted lines indicate the 95% credible bands of the predicted values; each tick mark in the

x-axis represents time points.

condition (Group 2). Figures 4 and 5 present the predicted by-variable smooth functions of timet and
trialorderl, respectively. As shown in Fig. 4, all four groups show a generally increasing pattern of target
fixations across time within the trial that generally plateaus at later time points. The initial increase
observed between time points 0 and 150 reflects the interpretation of the verb and gesture (in Groups
2 and 4). The plateau after time point 150 likely reflects the fact that many participants have identified
the target by this time point. Across trial orders, three of the four groups (all but Group 2) showed
generally decreasing target fixations across trial orders within the experiment. We speculate that this
decreasing target fixations may reflect either fatigue, or possibly increased efficiency in identifying the
target across trial orders. If participants learn to quickly identify the target, it may require fewer or
shorter fixations; if so, this could explain the general decrease across trial orders in target fixations.
Lastly, random variability in deviations from functional group differences across individuals was small,
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Figure 5. Empirical study: Predicted by-variable smooth function of trialorderl for Group 1 (top, left), Group 2 (top, right), Group 3

(bottom, left), and Group 4 (bottom, right). Note. The dotted lines indicate the 95% credible bands of the predicted values; each tick

mark in the x-axis represents trial orders.

as evidenced by the small standard deviations of random slopes for timet and trialorderl (0.002 and
0.003, respectively).

To probe the interaction between diagnostic groups (NC vs. TBI) and conditions (grooming
movement vs. gesture) over time, differences between the two condition levels were derived from the
predicted by-variable smooth functions of timet and the fixed group difference effects for each diagnostic
group (as shown in Eq. 10). Figure 6 (top) displays the differences (represented by lines) along with
their 95% credible bands (dotted lines) for each diagnostic group over time. We infer significance from
intervals that do not encompass 0.5 As depicted in Fig. 6 (top), significant differences between the
two condition levels (gesture–grooming movement) emerged in the time course of [21, 251] for the

5In this setting, the two diagnostic groups (NC vs. TBI) were compared. Thus, the Type I error was not controlled for the
comparison.
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Figure 6. Empirical study: Differences in trend (top) and learning (bottom) between grooming movement and gesture conditions by

NC versus TBI. Note. The dotted lines indicate the 95% credible bands of the fitted values; dotted vertical lines in the differences in

trend (top) indicate the range of significance for the diagnostic group differences.

NC group and in the time course of [26, 251] for the TBI group (indicated by the fact that the 95%
credible bands did not encompass 0 in these ranges). In both diagnostic groups, a similar pattern in
the differences between the two experimental conditions (gesture–grooming movement) was observed:
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the differences were large, then they decreased, only to increase again toward the end. However, larger
differences were found in the earlier time course in the NC group compared to the TBI group, which
suggests that participants in the NC group were better able to take advantage of the meaningful gesture
cue early in the trial compared to the TBI group. In addition, the differences between the two conditions
differed between the diagnostic groups for the time range of [62, 69] (presented with dotted vertical lines
in Fig. 6 [top]), as indicated by non-overlapped 95% credible bands. This result suggests that participants
in the NC group benefitted from the gesture cue in terms of identifying the target more than participants
with TBI in the short time range of [62, 69].

Similarly, to further explore the interaction between the diagnostic groups (NC vs. TBI) and
conditions (grooming movement vs. gesture) over trial orders, differences between the two condition
levels were derived. These differences were obtained from the predicted by-variable smooth functions
of trialorderl combined with the fixed group difference effects for each diagnostic group. As depicted in
Fig. 6 (bottom), significant differences between the two condition levels (gesture–grooming movement)
emerged over trial orders in both diagnostic groups. This is indicated by the fact that the 95% credible
bands did not encompass 0. The differences between the two condition levels generally increased over
successive trial orders in the NC group. This suggests that the benefit of the gesture over the grooming
movement grew over time across trials for NC participants—this finding is consistent with the fact
that NC participants learned to take advantage of the gesture across trials. In contrast, these differences
fluctuated within the TBI group, where an increasing trend was noted between the 50th and 140th
trial orders. This fluctuation may reflect less stability in use of gesture information in the TBI group
across trials or increased fatigue diminishing the benefit of gesture at later trials in the experiment.
Furthermore, the change over trials in the gesture versus grooming benefit did not differ between NC
and TB groups, as evidenced by overlapping 95% credible bands across trial orders.

Estimates of AR1 and standard deviation of random slopes for AR1 in Model 3 in Table 1 are
interpreted below. The mean AR1 effect for NC participants in the grooming movement condition
(Group 1) was 11.289 (SE=0.168, p < 2e−16), which is the log-odds ratio for the current response due
to the previous response changing from 0 (non-fixation) to 1 (fixation) (holding all other covariates
constant). These large effects of the AR1 (exp (11.289) log-odds ratio) indicate that there are strong
carryover effects: from target at time point t− 1 to target at time point t, and from non-target at time
point t−1 to non-target at time point t. Significant differences in the mean AR1 effect were found only
between the NC participants in the grooming movement condition (Group 1) and NC participants in
the gesture condition (Group 2) (EST=−0.363, SE=0.066, p = 3.72e−08). The attenuated AR1 in Group
2 may reflect greater potential for change over time in this group as there was more information in the
visuo-linguistic signal to drive changes in fixations. The standard deviations of the random slope of AR1
across persons and items were 1.011 and 0.046, respectively, which indicates that there is non-ignorable
variability in AR1 mainly across participants.

5. Simulation Study

A simulation study was designed to demonstrate accuracy of parameter estimates and predictions of
the selected model implemented in the magv package.

5.1. Simulation Design and Analysis
For the parameter recovery study, the estimates from Model 3 in Table 1 were taken as the true
parameters. The covariates from the illustrations were then used to generate five hundred data sets.
Bias and root mean square error (RMSE) were obtained to evaluate the accuracy of the parameter
estimates. Furthermore, the mean standard error estimates (M(SE)) of fixed effects across five hundred
replications were compared with the standard deviations (SD) of the estimates of fixed effects to evaluate
the accuracy of standard error (SE) estimates.
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To evaluate the accuracy of the regenerated smooth functions, the root mean prediction
error (RMPE) was calculated by comparing predicted values (derived from basis coefficient
estimates) to true values (based on the basis coefficient parameters). For instance, in the
case of functional trend effect of Group 1 (g = 1), RMPE can be calculated as√
{∑k=2 K1δ̂k.1bk.1(timet)(groupj = 1)− f (timet)(groupj = 1)}2/N, where N is the number of obser-

vations. The RMD is interpreted as the standard deviation of the differences between predicted and the
generated by-variable smooth functions.

There were no convergence problems in any simulation replications. With K1 = K2 = 7 (used in data
generation), the k-index was close to 1 for smooth functions and the corrected AIC was the smallest for
a model with K1 = K2 = 7 among candidate models with K1 = K2 = 5,7,9 for all replications.

5.2. Simulation Results
Table 2 presents the results of parameter recovery and RMPE of by-variable smooth functions. The
biases in the fixed effect estimates and in the SDs of random effects were nearly zero. The RMSEs of
these estimates were comparable to those of the estimates of GAMM for binary data (e.g., Cho et al.,
2022). In addition, the ratio of M(SE) to SD was close to 1 for the fixed effect estimates, which indicates
that SEs are approximately correct. For each smooth function by variable, the average RMPE across 500
replications is presented in Table 2. The average RMPE of 12 by-variable smooth functions ranged from
0.004 to 0.019, which suggests that the predicted smooth functions are close to the generated smooth
functions. Taking all results together, parameters and by-variable smooth functions of Model 3 were
recovered well.

6. Summary and Discussion

In this study, a model specification was provided to model group-specific functional trend and learning
effects using by-variable smooth functions of time and trial orders. The model specification was
formulated as GAMM, which allowed for the use of the freely available mgcv package in R. The model
specification was motivated and applied to explore the differences in real-time language comprehension
abilities between individuals with and without brain injury, and how these abilities facilitate learning
over time. The empirical study showed that the by-variable smooth functions allowed for a numerical
evaluation of a curve across the entire span of time and trial orders. This in turn facilitated the
examination of subtle, yet significant, patterns in trend and learning. In addition, methods to test
differences-between-smooths plots were provided and illustrated to detect differences in trend and trial
orders within and between diagnostic groups and conditions. Furthermore, the parameters of specified
models were accurately recovered, and the by-variable smooth functions were adequately predicted
under simulation conditions that mirrored the empirical study, in using the mgcv package.

6.1. What Did We Learn from the Specified Models?
We went into this project hypothesizing that individuals with TBI may experience disruptions in
processing language in real time and in context, and in integrating the unfolding linguistic signal with
gesture to derive meaning. We also speculated that TBI may impair the ability to learn from language
processing experiences in the moment, leading to deficits in learning over time. The results of Model 3
revealed that non-injured comparison participants benefitted from the informative gesture cue, making
more target (e.g., “sandwich”) fixations as they interpreted the unfolding sentence, e.g., “She will eat the
very good. . .” when the speaker in the video produced a sandwich-eating gesture around the time of
the verb, in comparison to a grooming gesture. Participants with TBI did not differ from non-injured
comparison participants in the overall level of target fixations when processing sentences in the absence

Downloaded from https://www.cambridge.org/core. 29 Apr 2025 at 16:39:41, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Psychometrika 23

Table 2. Simulation study: results of fixed and random effects (top) and RMPE of by-variable smooth functions (bottom)

Bias RMSE Ratio(M(SE)/SD)

Fixed Effects

Intercept[α1] 0.032 0.136 1.075(0.142/0.132)

ylag1[ζ1] −0.032 0.060 0.973(0.050/0.051)

Group2[α2] −0.035 0.055 1.017(0.043/0.042)

Group3[α3] −0.033 0.202 0.996(0.198/0.199)

Group4[α4] −0.029 0.200 0.996(0.197/0.198)

ylag1:Group2[ζ2] 0.003 0.065 0.982(0.064/0.065)

ylag1:Group3[ζ3] −0.007 0.071 0.976(0.069/0.071)

ylag1:Group4[ζ4] 0.001 0.064 0.987(0.063/0.064)

Random Effects

Person

SD of θj[
√σθ] −0.055 0.167

SD of ylag1[
√σζ1

] 0.040 0.081

SD of θ1j [
√σθ1

] −0.001 0.001

SD of θ2j [
√σθ2

] −0.001 0.001

Item

SD of βi[
√σβ] −0.030 0.045

SD of ylag1[
√σζ2

] 0.051 0.091

Smooth Functions RMPE

s(timecoded):Group1[f(timet)(groupj = 1)] 0.011

s(timecoded):Group2[f(timet)(groupj = 2)] 0.010

s(timecoded):Group3[f(timet)(groupj = 3)] 0.011

s(timecoded):Group4[f(timet)(groupj = 4)] 0.008

s(trialorder):Group1[f(trialordert)(groupj = 1)] 0.007

s(trialorder):Group2[f(trialordert)(groupj = 2)] 0.007

s(trialorder):Group3[f(trialordert)(groupj = 3)] 0.019

s(trialorder):Group4[f(trialordert)(groupj = 4)] 0.011

ti(timecoded,trialorder):Group1[f(timet,trialorderl)(groupj = 1] 0.014

ti(timecoded,trialorder):Group2[f(timet,trialorderl)(groupj = 2] 0.004

ti(timecoded,trialorder):Group3[f(timet,trialorderl)(groupj = 3] 0.008

ti(timecoded,trialorder):Group4[f(timet,trialorderl)(groupj = 4] 0.007

of helpful gesture. Participants with TBI did show a benefit from gesture compared to non-injured
participants without the gesture.

Other aspects of the findings point to differences in how language processing unfolded in the two
groups. Non-injured participants had significantly smaller AR1 in the gesture condition compared to
the grooming condition, which may indicate greater potential for responsivity in gaze with gesture in
the NC group. The AR1 effect did not differ between the NC participants in the grooming condition
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(Group 1) and participants with TBI in either the grooming or gesture conditions (Groups 3 and 4).
Both participant groups in both conditions showed an increasing pattern of target fixations across time
within the trial that generally plateaued at later time points in the trial. This temporal effect points to
similarity across groups in processing the speech (and gesture when available) over time within the
trial. Across trial orders, three of the four groups (all but Group 2—NC participants in the gesture
condition) showed generally decreasing target fixations across trials within the experiment. This finding
was a surprise, as we expected that there would be more target fixations at later trials, due to greater
learning. Instead, this could reflect fatigue, or possibly increased efficiency in later trials. In this study,
the participants experienced each item multiple times across trials of the experiment, so upon hearing
the verb, e.g., “eat” they may have quickly identified the two possible targets (“sandwich” and “apple”).
Exploring whether fatigue or efficiency (potentially in tandem with learning) explains changes across
trials remains a question for future work.

Lastly, direct comparisons between grooming and gesture conditions across time within and across
trials in the two groups revealed that the benefit of the informative gesture over the uninformative
grooming movement grew over time both within and across trials for NC participants. Within a trial,
NC participants benefitted more than TBI participants from the gesture, particularly early in the trial.
Across trials in the experiment, NC participants showed greater gains in target fixations, compared to
TBI participants. In the context of an overall decreasing trend for target fixations across trials (except
for NC participants with gesture), these findings suggest that NC participants may have benefitted
more from gesture in the moment (particularly early in the trial as they processed the verb) and then
NC participants showed a greater propensity to learn to take advantage of the gesture across trials. In
contrast, this advantage for gesture over grooming movements was less stable and fluctuated within the
TBI group. These findings point to the importance of considering not just overall changes across time
when learning can be expected but how different groups may differently learn to take advantage of useful
cues in the environment.

6.2. Discussion and Methodological Limitations of the Current Study
In this study, we considered the functional group trend and learning effects using by-variable smooth
functions and random effects to account for individual deviations from the group effects (i.e., the pop-
ulation mean). In our empirical analysis, we demonstrated that the random effects (i.e., the individual-
specific deviation from the group-specific mean) can be considered based on checks for normality and
model-data fit. For other empirical data sets, both the population mean and individual-specific trend
and learning effects can be modeled using smooth functions (e.g., Durbán et al. (2005) for intensive
continuous longitudinal data). It is feasible to fit the model, accounting for both functional group and
individual trends and learning effects, using the mgcv package. Example code in R can be found in the
Open Science Framework, https://osf.io/q3e7u/. However, modeling these effects, especially in intensive
binary longitudinal data, may lead to computational challenges.

In PIRLS, there is no need for marginalization of random effects, leading to computational efficiency
when dealing with intensive binary longitudinal data sets. However, a limitation of the PIRLS estimation
method is that it does not allow for estimating correlations between random intercepts and random
slopes. When an alternative estimation method becomes available, further studies are needed to assess
the consequences of the limitation. This can be done by comparing parameter recovery across different
estimation methods.

In line with intensive binary eye-tracking studies (e.g., Cho et al., 2018, 2020), AR1 effects were
pronounced in the empirical data set. This is attributed to the serial correlation within a trial, inherent
to the way our eyes move (fixations and saccades). In addition, there were non-ignorable trend effects
over time within a trial in the empirical data set. There are two methodological issues in these non-
stationary time series data with strong AR effects.6 The first issue concerns the interpretation of trend

6The first author thanks Dr. Gregory Camilli for addressing these issues.
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and AR effects in non-stationary time series data. It is often recommended to de-trend time series data
by employing a difference parameter to allow for a more accurate interpretation of AR effects. This
is because trend is considered to be random variation (noise) rather than systematic change in some
applications (e.g., Box et al., 2008). However, de-trending introduces AR effects and does not allow for
modeling trend effects that are of interest (see Huitema 2011, pp. 414–424 for an example). Without de-
trending, both trend and AR effects have been modeled simultaneously in non-stationary binary time
series data (e.g., Gao et al., 2018; Kedem, & Fokianos, 2002). A challenge with having trend and AR
effects simultaneously is that the trend can be interpreted through AR effects. In the current study, our
interpretation is that the AR1 effect primarily captures the short-term dependencies in the data (around
the trend), while the trend represents the long-term direction or pattern.

The second issue is that the use of lagged response variables (e.g., y(t−1)ljig in this study) can artificially
suppress the effects of other covariates in continuous time series data when using ordinary least squares
(Achen, 2000). This means that the effects of covariates of interest (e.g., trend and experimental
condition effects) can be underestimated in the presence of the AR effects of the lagged response variable
in a model. However, Keele and Kelly (2006) showed that the use of the lagged response variable remains
appropriate in stationary continuous time series data when the past matters for the current values of the
process being studied (a dynamic study), as is the case in eye-tracking data. Yet, for binary time series
data, the challenges associated with lagged response variables remain less well explored. To be best of our
knowledge, the most widely used currently available approach is to include the lagged response variable
to account for AR in the binary time series data (e.g., Cox & Snell, 1989; Diggle et al., 1994; Fokianos
& Kedem, 2003; Zeger & Qaqish, 1988); and alternative methods for modeling AR effects in binary
time series data are still in the nascent stages. In the present study, we considered AR effects because
excluding them leads to biased estimates and standard errors of fixed effects of interest (Cho et al.,
2018). In addition, including the lagged response variables is theoretically appropriate due to the fact
that the eyes tend to move in a rapid, ballistic fashion, and then linger on behaviorally relevant interest
areas during the period of fixation, features which are captured in detail due to the high-resolution of
modern eye-trackers. Kedem and Fokianos (2002) showed via a simulation study that the estimates
and standard errors of trend and AR1 from the lagged response variable in a logistic regression model
were accurately estimated in the non-stationary binary time series data having time points of 200, 300,
and 1000. In addition, recent findings by Wang et al. (2023) from a simulation study suggested that the
trend effect in GLMM remained unbiased in the presence of strong AR1 effects from the lagged response
variable in non-stationary binary time series data, as long as the data have a substantial number of time
points (greater than 200).

In psycholinguistics, the empirical logit transformation of the proportion over a series of binned
time points, based on the number of observations per bin, has been utilized for continuous time series
modeling from the visual world paradigm (e.g., Porretta et al., 2017; Ito & Knoeferle, 2022). In such
modeling, AR effects can be incorporated into the residuals of the continuous time series data (e.g.,
Baayen et al., 2017). Consequently, this allows for the separation of trends from AR effects, enabling
direct interpretation of the trend. However, unlike the case with reaction time (Baayen et al., 2017, 2018;
Chuang et al., 2021), modeling the empirical logit of eye-tracking data in a continuous time framework
presents challenges. As Porretta et al. (2017) noted, the number of observations per bin for the empirical
logit transformation is inherently linked to the sampling rate of eye-trackers and the size of the bin.
Moreover, an adjustment factor (typically, 0.5, Ito & Knoeferle, 2022) must be added to the proportion
to render it unbiased and to prevent the return of infinite values. In addition, applying the empirical logit
transformation to proportions often leads to a significantly non-normal distribution of data, unless the
temporal window of aggregation is quite large. This stems from the pronounced AR process in the eye-
tracking data—with small temporal windows, the empirical logit is applied to ratios such as 1/0 or 0/1,
in addition to an adjustment factor included to render it unbiased and to prevent infinite values. While
employing larger temporal windows may increase normality, doing so would hinder our ability to detect
the dynamic signals that make eye-tracking data valuable.
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To summarize, the two approaches to model AR processes have their respective strengths and
weaknesses: (a) the use of a lagged response variable for binary responses and (b) the incorporation
of AR effects in the residuals using the empirical logit. Comparing the relative performance of these
methods in capturing change processes (both trend and AR) in eye-tracking data is beyond the scope
of the current study. In sum, the present study contributes to one of several methods for modeling AR
in binary time series data.

While our simulation study results indicated that the mgcv package can accurately estimate parame-
ters and standard errors, and predict by-variable smooth functions under conditions that mimic the
empirical study as a case study, further research is needed to extend these findings to other data
structures. These include varying (a) the number of time points, trial orders, persons, and items; (b)
the magnitudes of effects; and (c) the shapes of by-variable smooth functions.

6.3. Broad Impact of the Current Study
A key unanswered question regarding the origins of cognitive-communicative deficits following brain
injury is how these deficits arise in the moment as communication is ongoing, and if and how
those deficits accrue to generate deficits over larger time scales. In the present work we examine the
impact of moderate–severe TBI on the online processing of gesture-accompanied speech in context,
and changes in processing over larger time scales. The modeling techniques used here revealed that
participants with TBI do significantly benefit from informative gesture when processing speech. This
finding points to the potential utility of gesture when communicating with individuals with cognitive-
communicative impairment. However, detailed analyses of the first several hundred milliseconds of
language processing, as well as analyses of how processing changed over tens of minutes within the
experiment revealed new insights into the nature of the processing deficits in TBI. Of particular interest
was the novel finding that during online processing within a trial, participants with TBI did not benefit
from gesture as much as non-injured participants, and as the experiment progressed, participants
with TBI showed weaker gains in the use of gesture. These findings tentatively suggest that deficits
in capitalizing on meaningful communicative cues within rich communicative contexts in TBI may
weaken the ability to learn to take advantage of those cues across time. These findings point to the
importance of considering how different groups may process informative cues differently and, in turn,
differ in the ability to learn to take advantage of those cues more efficiently over time.
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Appendix A

See Fig. 7.
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Figure 7. Empirical study: individual-level trend (top) and individual-level learning (bottom). Note. NC participants have an ID in the

1000’s and participants with TBI have an ID in the 5000’s.
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Appendix B

See Fig. 8.
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Figure 8. Empirical study: Q-Q plots of the predicted random effects in model C. Note. The dotted lines indicate the 95% confidence

bands of the quantiles (dots).
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