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ON SIZE AND POWER OF
HETEROSKEDASTICITY AND

AUTOCORRELATION ROBUST TESTS
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University of Vienna

Testing restrictions on regression coefficients in linear models often requires
correcting the conventional F-test for potential heteroskedasticity or autocorrelation
amongst the disturbances, leading to so-called heteroskedasticity and autocor-
relation robust test procedures. These procedures have been developed with the
purpose of attenuating size distortions and power deficiencies present for the
uncorrected F-test. We develop a general theory to establish positive as well as
negative finite-sample results concerning the size and power properties of a large
class of heteroskedasticity and autocorrelation robust tests. Using these results we
show that nonparametrically as well as parametrically corrected F-type tests in
time series regression models with stationary disturbances have either size equal to
one or nuisance-infimal power equal to zero under very weak assumptions on the
covariance model and under generic conditions on the design matrix. In addition
we suggest an adjustment procedure based on artificial regressors. This adjustment
resolves the problem in many cases in that the so-adjusted tests do not suffer from
size distortions. At the same time their power function is bounded away from zero.
As a second application we discuss the case of heteroskedastic disturbances.

1. INTRODUCTION

So-called autocorrelation robust tests have received considerable attention in the
econometrics literature in the last two and a half decades. These tests are Wald-
type tests which make use of an appropriate nonparametric variance estimator that
tries to take into account the autocorrelation in the data. The early papers on such
nonparametric variance estimators in econometrics date from the late 1980s and
early 1990s (see, e.g., Newey and West, 1987, 1994; Andrews, 1991; Andrews and
Monahan, 1992) and typically consider consistent variance estimators. The ideas
and techniques underlying this literature derive from the much earlier literature
on spectral estimation and can be traced back to work by Bartlett (1950), Jowett
(1955), Hannan (1957), and Grenander and Rosenblatt (1957), the latter explicitly
discussing what would now be called autocorrelation robust tests and confidence
intervals (Grenander and Rosenblatt, 1957, Sect. 7.9). For book-length treatments
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of spectral estimation see the classics Hannan (1970) or Anderson (1971).
Autocorrelation robust tests for the location parameter also play an important rôle
in the field of simulation, see, e.g., Heidelberger and Welch (1981) or Flegal and
Jones (2010). In a similar vein, so-called heteroskedasticity robust variance esti-
mators and associated tests have been invented by Eicker (1963, 1967) and have
later been introduced into the econometrics literature. As mentioned before, the
autocorrelation robust test statistics considered in the above cited econometrics
literature employ consistent variance estimators leading to an asymptotic chi-
square distribution under the null. It soon transpired from Monte Carlo studies
that these tests (using as critical values the quantiles of the asymptotic chi-square
distribution) are often severely oversized in finite samples. This has led to the pro-
posal to use a test statistic of the same form, but to obtain the critical values from
another (nuisance parameter-free) distribution which arises as the limiting distri-
bution in an alternative asymptotic framework (“fixed bandwidth asymptotics”)
in which the variance estimator is no longer consistent, see Kiefer, Vogelsang,
and Bunzel (2000) and Kiefer and Vogelsang (2002a, 2002b, 2005). The idea
of using “fixed bandwidth asymptotics” can be traced back to earlier work by
Neave (1970). Monte Carlo studies have shown that these tests typically are also
oversized, albeit less so than the tests mentioned earlier.1 This improvement, how-
ever, is often achieved at the expense of some loss of power. In an attempt to better
understand size and power properties of autocorrelation robust tests, higher-order
asymptotic properties of these tests have been studied (Velasco and Robinson,
2001; Jansson, 2004; Sun, Phillips, and Jin, 2008, 2011; Zhang and Shao, 2013a).

The first-order as well as the higher-order asymptotic results in the literature
cited above are all pointwise asymptotic results in the sense that they are de-
rived under the assumption of a fixed underlying data-generating process (DGP).
Therefore, while these results tell us something about the limit of the rejection
probability, or the rate of convergence to this limit, for a fixed underlying DGP,
they do not necessarily inform us about the size of the test or its asymptotic behav-
ior (e.g., limit of the size as sample size increases) nor about the power function
or its asymptotic behavior. The reason is that the asymptotic results do not hold
uniformly in the underlying DGP under the typical assumptions on the feasible set
of DGPs in this literature. Of course, one could restrict the set of feasible DGPs in
such a way that the asymptotic results hold uniformly, but this would require the
imposition of unnatural and untenable assumptions on the set of feasible DGPs as
will transpire from the subsequent discussion; cf. also Section 3.2.2.

In Section 3 of the present paper we provide a theoretical finite-sample analysis
of the size and power properties of autocorrelation robust tests for linear restric-
tions on the parameters in a linear regression model with autocorrelated errors.
Being finite-sample results, the findings of the paper apply equally well regardless
of whether we fancy that the variance estimator being used would be consistent or
not would sample size go to infinity. Under a mild assumption on the richeness of
the set of allowed autocorrelation structures in the maintained model, the results
in Section 3 imply that in most cases the size of common autocorrelation robust
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tests is 1 or that the worst case power is 0 (or both). The richness assumption just
mentioned only amounts to requiring that all correlation structures correspond-
ing to stationary Gaussian autoregressive processes of order 1 are allowed for in
the model. Compared to the much wider assumptions on the DGP appearing in
the literature on autocorrelation robust tests cited above, this certainly is a very
mild assumption. [Not including all stationary Gaussian autoregressive models
of order 1 into the set of feasible disturbance processes appears to be an unnat-
ural restriction in a theory of autocorrelation robust tests, cf. also the discussion
in Section 3.2.2.] A similar negative result is derived for tests that do not use
a nonparametric variance estimator but use a variance estimator derived from a
parametric model as well as for tests based on a feasible generalized least squares
estimator (Section 3.3). We also show that the just mentioned negative results
hold generically in the sense that, given the linear restrictions to be tested, the
set of design matrices such that the negative results do not apply is a negligible
set (Propositions 3.6 and 3.16). Furthermore, we provide a positive result in that
we isolate conditions (on the design matrix and on the restrictions to be tested)
such that the size of the test can be controlled. While this result is obtained un-
der the strong assumption that the set of feasible correlation structures coincides
with the correlation structures of all stationary autoregressive process of order 1,
it should be noted that the negative results equally well hold under this parametric
correlation model. The positive result just mentioned is then used to show how
for the majority of testing problems autocorrelation robust tests can be adjusted
in such a way that they do not suffer from the “size equals 1” and the “worst case
power equals 0” problem. In Section 4 we provide an analogous negative result
for heteroskedasticity robust tests and discuss why a (nontrivial) positive result is
not possible.

The above mentioned results for autocorrelation/heteroskedasticity robust tests
can of course also be phrased in terms of properties of the confidence sets that are
obtained from these tests via inversion. For example, the “size equals one” results
for the tests translate into “infimal coverage probability equals zero” results for
the corresponding confidence sets.

We next discuss some related literature. Problems with tests and confidence
sets for the intercept in a linear regression model with autoregressive disturbances
have been pointed out in Dufour (1997, Sect. 5.3) (in a somewhat different setup).
These results are specific to testing the intercept and do not apply to other linear
restrictions. This is, in particular witnessed by our positive results for certain test-
ing problems. Furthermore, there is a considerable body of literature concerned
with the properties of the standard F-test (i.e., the F-test constructed without
any correction for autocorrelation) in the presence of autocorrelation, see the ref-
erences cited in Krämer, Kiviet, and Breitung (1990) and Banerjee and Magnus
(2000). Much of this literature concentrates on the case where the errors follow
a stationary autoregressive process of order 1. As the correlation in the errors is
not accounted for when considering the standard F-test, it is not too surprising
that the standard F-test typically shows deplorable performance for large values
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of the autocorrelation coefficient ρ, see Krämer (1989), Krämer et al. (1990),
Banerjee and Magnus (2000), and Section 3.4 for more discussion. Section 3 of
the present paper shows that autocorrelation robust tests, which despite having
built into them a correction for autocorrelation, exhibit a similarly bad behavior.
Finally, in a different testing problem (the leading case being testing the correla-
tion of the errors in a spatial regression model) Martellosio (2010) has studied the
power of a class of invariant tests including standard tests like the Cliff-Ord test
and observed somewhat similar results in that the power of the tests considered
typically approaches (as the strength of the correlation increases) either 0 or 1.
While his results are similar in spirit to some of our results, his arguments are
unfortunately fraught with a host of problems. See Preinerstorfer and Pötscher
(2014) for discussion, corrections, and extensions.

The results in Section 3 for autocorrelation robust tests and in Section 4 for
heteroskedasticity robust tests are derived as special cases of a more general the-
ory for size and power properties of a larger class of tests that are invariant under
a particular group of affine transformations. This theory is provided in Section
5. One of the mechanisms behind the negative results in the present paper is
a concentration mechanism explained subsequent to Theorem 3.3 and in more
detail in Section 5.2, cf. also Corollary 5.17. A second mechanism generating
negative results is described in Theorem 5.19. The theory underlying the positive
results mentioned above is provided in Section 5.3 and in Theorem 5.21 as well as
Proposition 5.23. Furthermore, the results in Section 5 allow for covariance struc-
tures more general than the ones discussed in Sections 3 and 4. For example, from
the results in Section 5 results similar to the ones in Section 3 could be derived for
heteroskedasticity/autocorrelation robust tests of regression coefficients in spatial
regression models or in panel data models; for an overview of heteroskedastic-
ity/autocorrelation robust tests in these models see Kelejian and Prucha (2007,
2010) and Vogelsang (2012). We do not provide any such results for lack of
space. We note that for the uncorrected standard F-test in this setting negative
results have been derived in Krämer (2003) and Krämer and Hanck (2009).

2. THE HYPOTHESIS TESTING FRAMEWORK

Consider the linear regression model

Y = Xβ +U, (1)

where X is a (real) nonstochastic regressor (design) matrix of dimension n × k
and β ∈ Rk denotes the unknown regression parameter vector. We assume rank
(X) = k and 1 ≤ k < n. The n × 1 disturbance vector U = (u1, . . . ,un)′ is nor-
mally distributed with mean zero and unknown covariance matrix σ 2�, where
0 < σ 2 < ∞ holds (and σ always denotes the positive square root). The matrix �
varies in a prescribed (nonempty) set C of symmetric and positive definite n × n
matrices.2 Throughout the paper we make the assumption that C is such that σ 2
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and � ∈ C can be uniquely determined from σ 2�. [For example, if the first diag-
onal element of each � ∈ C equals 1 this is satisfied; alternatively, if the largest
diagonal element or the trace of each � ∈ C is normalized to a fixed constant, C
has this property.] Of course, this assumption entails little loss of generality and
can, if necessary, always be achieved by a suitable reparameterization of σ 2�.

The linear model described above induces a collection of distributions on Rn ,
the sample space of Y. Denoting a Gaussian probability measure with mean
μ ∈ Rn and (possibly singular) covariance matrix � by Pμ,� and setting M =
span(X), the induced collection of distributions is given by{

Pμ,σ 2� : μ ∈M,0 < σ 2 < ∞,� ∈ C
}
. (2)

Note that each Pμ,σ 2� in (2) is absolutely continuous with respect to (w.r.t.)
Lebesgue measure on Rn , since every � ∈ C is positive definite by assumption.
We consider the problem of testing a linear (better: affine) restriction on the pa-
rameter vector β ∈ Rk , namely the problem of testing the null Rβ = r versus the
alternative Rβ �= r , where R is a q ×k matrix of rank q, q ≥ 1, and r ∈Rq . To be
more precise and to emphasize that the testing problem is in fact a compound one,
the testing problem needs to be written as

H0 : Rβ = r,0 < σ 2 < ∞,� ∈ C vs. H1 : Rβ �= r,0 < σ 2 < ∞,� ∈ C. (3)

This is important to stress, because size and power properties of tests critically
depend on nuisance parameters and, in particular, on the complexity of C. Define
the affine space

M0 = {μ ∈M : μ = Xβ and Rβ = r}
and let

M1 =M\M0 = {μ ∈M : μ = Xβ and Rβ �= r} .
Adopting these definitions, the above testing problem can also be written as

H0 : μ ∈M0,0 < σ 2 < ∞,� ∈ C vs. H1 : μ ∈M1,0 < σ 2 < ∞,� ∈ C. (4)

Two remarks are in order: First, the Gaussiantiy assumption is not really a re-
striction for the negative results in the paper, since they hold a fortiori in any
enlarged model that allows not only for Gaussian but also for non-Gaussian dis-
turbances. Furthermore, a large portion of the results in the paper (positive or
negative) continues to hold for certain classes of non-Gaussian distributions such
as, e.g., elliptical distributions, see Section 5.5. Second, if X were allowed to
be stochastic but independent of U, the results of the paper apply to size and
power conditional on X . Because X is observable, one could then argue in the
spirit of conditional inference (see, e.g., Robinson, 1979) that conditional size
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and power and not their unconditional counterparts are the more relevant charac-
teristics of a test.

Recall that a (randomized) test is a Borel-measurable function ϕ from the
sample space Rn to [0,1]. If ϕ = 1W , the set W is called the rejection re-
gion of the test. As usual, the size of a test ϕ is the supremum over all
rejection probabilities under the null hypothesis H0 and thus is given by
supμ∈M0

sup0<σ 2<∞ sup�∈C Eμ,σ 2� (ϕ) where Eμ,σ 2� refers to expectation un-
der the probability measure Pμ,σ 2� .

Throughout the paper we shall always reserve the symbol β̂(y) for(
X ′ X

)−1
X ′y, where X is the design matrix appearing in (1) and y ∈ Rn .

Furthermore, random vectors and random variables are always written in bold
capital and bold lower case letters, respectively. Lebesgue measure on Rn will be
denoted by λRn , whereas Lebesgue measure on an affine subspace A of Rn (but
viewed as a measure on the Borel-sets of Rn) will be denoted by λA, with zero-
dimensional Lebesgue measure being interpreted as point mass. We shall write
int(A), cl(A), and bd(A) for the interior, closure, and boundary of a set A ⊆ Rn ,
respectively, taken with respect to the Euclidean topology. The Euclidean norm is
denoted by ‖·‖, while d(x, A) denotes the Euclidean distance of the point x ∈ Rn

to the set A ⊆ R
n . Let B ′ denote the transpose of a matrix B and let span (B)

denote the space spanned by the columns of B. For a linear subspace L of Rn we
let L⊥ denote its orthogonal complement and we let 	L denote the orthogonal
projection onto L. For a vector x in Euclidean space we define the symbol 〈x〉 to
denote ±x for x �= 0, the sign being chosen in such a way that the first nonzero
component of 〈x〉 is positive, and we set 〈0〉 = 0. The j-th standard basis vector
in Rn is denoted by ej (n). The set of real matrices of dimension m ×n is denoted
by Rm×n . We also introduce the following terminology.

DEFINITION 2.1. Let C be a set of symmetric and positive definite n × n ma-
trices. An l-dimensional linear subspace Z of Rn with 0 ≤ l < n is called a con-
centration space of C, if there exists a sequence (�m)m∈N in C, such that �m → �̄
and span(�̄) = Z .

While we shall in the sequel often refer to C as the covariance model, one
should keep in mind that the set of all feasible covariance matrices corresponding
to (2) is given by

{
σ 2� : 0 < σ 2 < ∞,� ∈ C}. In this context we note that two

covariance models C and C∗ can be equivalent in the sense of giving rise to the
same set of feasible covariance matrices, but need not have the same concentration
spaces.3

3. SIZE AND POWER OF TESTS OF LINEAR RESTRICTIONS IN
REGRESSION MODELS WITH AUTOCORRELATED DISTURBANCES

In this section we investigate size and power properties of autocorrelation ro-
bust tests that have been designed for use in case of stationary disturbances.
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Studies of the properties of such tests in the literature (Newey and West, 1987,
1994; Andrews, 1991; Andrews and Monahan, 1992; Kiefer et al., 2000; Kiefer
and Vogelsang, 2002a, 2002b, 2005; Jansson, 2002, 2004; Sun et al., 2008, 2011)
maintain assumptions that allow for nonparametric models for the spectral dis-
tribution of the disturbances. For example, a typical nonparametric model results
from assuming that the disturbance vector consists of n consecutive elements of a
weakly stationary process with spectral density equal to

f (ω) = (2π)−1

∣∣∣∣∣∣
∞∑

j=0

cj exp(−ιjω)

∣∣∣∣∣∣
2

,

where the coefficients cj are not all equal to zero and, for ξ ≥ 0 a given number,
satisfy the summability condition

∑∞
j=0 j ξ

∣∣cj
∣∣ < ∞. Here ι denotes the imagi-

nary unit. Let Fξ denote the collection of all such spectral densities f . The corre-
sponding covariance model Cξ is then given by

{
�( f ) : f ∈ Fξ

}
where �( f ) is

the n ×n correlation matrix

�( f ) =
(∫ π

−π
exp(−ιω (i − j)) f (ω)dω

/∫ π

−π
f (ω)dω

)n

i, j=1
.

Certainly, Fξ contains all spectral densities of stationary autoregressive moving
average models of arbitrary large order. Hence, the following assumption on the
covariance model C that we shall impose for most results in this section is very
mild and is satisfied by the typical nonparametric model allowed for in the above
mentioned literature. It certainly covers the case where C= Cξ or where C corre-
sponds to an autoregressive model of order p ≥ 1.

Assumption 1. CAR(1) ⊆ C.

Here CAR(1) denotes the set of correlation matrices corresponding to n succes-
sive elements of a stationary autoregressive processes of order 1, i.e., CAR(1) =
{�(ρ) : ρ ∈ (−1,1)} where the (i, j)-th entry in the n × n matrix �(ρ) is given
by ρ|i− j |. As hinted at in the introduction, parameter values

(
μ,σ 2,�

)
with

� = �(ρ) where ρ gets close to ±1 and σ 2 is constant will play an important
rôle as they will be instrumental for establishing the bad size and power proper-
ties of the tests presented below.4 We want to stress here that, as ρ → ±1, the
corresponding stationary process does not converge to an integrated process but
rather to a harmonic process.5 But see also Remark B(i) in Section 3.2.2 for a
discussion that holding σ 2 constant is actually not a restriction.

For later use we note that under Assumption 1 the matrices e+e′+ and e−e′−
are limit points of the covariance model C where e+ = (1, . . . ,1)′ and e− =
(−1,1, . . . , (−1)n)′ are n × 1 vectors (since �(ρm) converges to e+e′+ (e−e′−,
respectively) if ρm → 1 (ρm → −1, respectively)). Other singular limit points of
C are possible, but e+e′+ and e−e′− are the only singular limit points of CAR(1).
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3.1. Some Preliminary Results for the Location Model

Before we present the results for common nonparametrically based autocorrela-
tion robust tests in the next subsection and for parametrically based tests in Sec-
tion 3.3, it is perhaps helpful to gain some understanding for these results from
a very special case, namely from the location model. We should, however, warn
the reader that only some, but not all, phenomena that we shall later observe in the
case of a general regression model will occur in the case of the location model,
because it represents an oversimplification of the general case. Hence, while
gaining intuition in the location model is certainly helpful, this intuition does
not paint a complete and faithful picture of the situation in a general regression
model.

Consider now the location model, i.e., model (1) with k = 1 and X = e+.
Let Assumption 1 hold and assume that we want to test β = β0 against the alter-
native β �= β0. Consider the commonly used autocorrelation robust test statistic

τloc(y) = (β̂(y)−β0)
2/ω̂2 (y)

where β̂(y) is the arithmetic mean n−1e′+y and where ω̂2 (y) is one of the usual
autocorrelation robust estimators for the variance of the least squares estimator.
As usual, the null hypothesis is rejected if τloc(y) ≥ C for some user-specified crit-
ical value C satisfying 0 < C < ∞. For definiteness of the discussion assume that
one has chosen the Bartlett estimator, although any estimator based on weights
satisfying Assumption 2 given below could be used instead. It is then not difficult
to see (cf. Lemma 3.1 given below) that ω̂2 (y) is positive, and hence τloc(y) is
well-defined, except when y is proportional to e+; in this case we set τloc(y) equal
to 0, which, of course, is a completely arbitrary choice, but has no effect on the
rejection probability of the resulting test as the event that y is proportional to e+
has probability zero under all the distributions in the model.

Consider now the points (β0,1,�(ρ)) in the null hypothesis, where we
have set σ 2 = 1 for simplicity and where we let ρ ∈ (−1,1) converge to 1.
Writing Pρ for Pe+β0,�(ρ), i.e., for the distribution of the data, observe that
under Pρ the distribution of β̂(y)−β0 = n−1e′+y −β0 is N

(
0,n−2e′+�(ρ)e+

)
.

Noting that �(ρ) → e+e′+ for ρ → 1, we see that under Pρ the distribution
of the numerator of the test statistic converges weakly for ρ → 1 to a chi-
square distribution with one degree of freedom. Concerning the denominator,
observe that ω̂2 (y) is a quadratic form in the residual vector y − e+β̂(y) =(
In −n−1e+e′+

)
y, this vector being distributed under Pρ as N (0, A (ρ)) with

A (ρ) = (In −n−1e+e′+
)
�(ρ)

(
In −n−1e+e′+

)
. Now for ρ → 1 we see that A (ρ)

converges to the zero matrix, and therefore the distribution of the residual vec-
tor under Pρ converges to pointmass at zero. Consequently, the distribution of
the quadratic form ω̂2 (y) under Pρ collapses to pointmass at zero. But this
shows that all of the mass of the distribution of the test statistic τloc under Pρ

escapes to infinity for ρ → 1, entailing convergence of the rejection probabil-
ities Pρ (τloc(y) ≥ C) to 1, although the distributions Pρ correspond to points

https://doi.org/10.1017/S0266466614000899 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000899


SIZE AND POWER OF HAR-TESTS 269

(β0,1,�(ρ)) in the null hypothesis. This of course then implies that the size of
the test equals 1.

In a similar vein, consider the points (β0,1,�(ρ)) in the null hypothesis where
now ρ converges to −1. Note that Pρ then converges weakly to N

(
e+β0,e−e′−

)
which is the distribution of e+β0 + e−g where g is a standard normal random
variable. Similar computations as before show that under Pρ the distribution of
the numerator of the test statistic now converges weakly to the distribution of
n−2

(
e′+e−

)2 g2 and that the distribution of the residual vector converges weakly to
the distribution of

(
In −n−1e+e′+

)
e−g, the weak convergence occurring jointly.

Because of ω̂2 (y) = ω̂2
((

In −n−1e+e′+
)

y
)
, it follows from the continuous map-

ping theorem that the distribution of the denominator of the test statistic under
Pρ converges weakly to the distribution of ω̂2

((
In −n−1e+e′+

)
e−g
)

(and con-
vergence is joint with the numerator). Note that ω̂2

((
In −n−1e+e′+

)
e−g
)

equals
ω̂2
(
e− −n−1e+e′+e−

)
g2 by homogeneity of ω̂2. Now, if sample size n is even,

we see that e′+e− = 0, entailing that the distribution of the test statistic under Pρ

converges to pointmass at zero for ρ → −1 (since ω̂2 (e−)g2 is almost surely
positive). As a consequence, if sample size n is even the rejection probabilities
Pρ (τloc(y) ≥ C) converge to zero as ρ → −1 since C > 0. Next consider the case
where n is odd. Then e′+e− = −1 and the limiting distribution of the test statis-
tic is pointmass at n−2ω̂−2

(
e− +n−1e+

)
which is positive (and is well-defined

since ω̂2
(
e− +n−1e+

)
> 0 as e− +n−1e+ is not proportional to e+). Hence, if n

is odd, we learn that the rejection probabilities Pρ (τloc(y) ≥ C) converge to zero
or one as ρ → −1 depending on whether C satisfies C > n−2ω̂−2

(
e− +n−1e+

)
or C < n−2ω̂−2

(
e− +n−1e+

)
.

In summary we have learned that the size of the autocorrelation robust test in
the location model is always equal to one, an “offending” sequence leading to
this result being, e.g., (β0,1,�(ρ)) with ρ → 1. We have also learned that if n is
even, or if n is odd and the critical value C is larger than n−2ω̂−2

(
e− +n−1e+

)
,

the test is severely biased as the rejection probabilities get arbitrarily close to zero
in certain parts of the null hypothesis; of course, this implies dismal power prop-
erties of the test in certain parts of the alternative hypothesis. The “offending”
sequence in this case being again (β0,1,�(ρ)), but now with ρ → −1. It is worth
noting that in the case where n is odd and C < n−2ω̂−2

(
e− +n−1e+

)
holds, this

“offending” sequence does not inform us about biasedness of the test, but rather
provides a second sequence along which the null rejection probabilities converge
to 1. We note here also that due to certain invariance properties of the test statistic
in fact any sequence

(
β0,σ

2,�(ρ)
)

with ρ → ±1 and arbitrary behavior of σ 2,
0 < σ 2 < ∞, is an “offending” sequence in the same way as (β0,1,�(ρ)) is. The
results obtained above heavily exploit the fact that ρ can be chosen arbitrarily
close to ±1 (entailing that �(ρ) becomes singular in the limit). To what extent
an assumption restricting the parameter space C in such a way, that the matrices
� ∈ C do not have limit points that are singular, can provide an escape route avoid-
ing the size and power problems observed above is discussed in Section 3.2.2.
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We would like to stress once more that not all cases that can arise in a general
regression model (see Theorems 3.3 and 3.7) appear already in the location model
discussed above. For example, for other design matrices and/or linear hypothesis
to be tested, the roles of the “offending” sequences ρ → 1 and ρ → −1 may
be reversed, or both sequences may lead to rejection probabilities converging to
1, etc. Furthermore, there exist cases where the above mentioned sequences are
not “offending” at all, see Theorem 3.7.

We close this subsection with some comments on a heuristic argument that
tries to explain the above results. The argument is as follows: Suppose one en-
larges the model by adjoining the limit points

(
β,σ 2,�(ρ)

)
with ρ = 1. Then

the test problem now also contains the problem of testing β = β0 against β �= β0

in the family P1 =
{

Pe+β,σ 2�(1) : β ∈ R,0 < σ 2 < ∞
}

as a subproblem.6 Be-

cause of �(1) = e+e′+, this subproblem is equivalent to testing β = β0 against
β �= β0 in the family

{
N
(
β,σ 2

)
: β ∈ R,0 < σ 2 < ∞}. Obviously, there is no

“reasonable” test for the latter testing problem, and thus for the test problem in
the family P1. The intuitively appealing argument now is that the absence of
a “reasonable” test in the family P1 should necessarily imply trouble for tests,
and in particular for autocorrelation robust tests, in the original test problem in

the family Porig =
{

Pe+β,σ 2�(ρ) : β ∈ R,0 < σ 2 < ∞, |ρ| < 1
}

whenever ρ is

close to one. While this argument has some appeal, it seems to rest on some sort
of tacit continuity assumption regarding the rejection probabilities at the point
ρ = 1, which is unjustified as we now show: If ϕ is any test, i.e., is a measur-
able function on Rn with values in [0,1], then any test ϕ∗ that coincides with
ϕ on Rn\span(e+) has the same rejection probabilities in the model Porig as
has ϕ; and any test ϕ∗∗ that coincides with ϕ on span(e+) has the same rejec-
tion probabilities in the model P1 as has ϕ. This is so since the distributions
in P1 are concentrated on span(e+), whereas this set is a null set for the dis-
tributions in Porig . As a consequence, the sequence of rejection probabilities of
a test ϕ under Pρ with ρ < 1 but ρ → 1 is unaffected by modifying the test
on span(e+), whereas such a modification will substantially affect the rejection
probability under P1 (e.g., we can make it equal to 0 or to 1 by suitable modifi-
cations of ϕ on span(e+)). This, of course, then shows that rejection probabilities
of a test ϕ will in general not be continuous at the point ρ = 1. Put differently,
in the case of the test statistic τloc the rejection probabilities under P1 depend
only on the (completely arbitrary) way τloc is defined on span (e+), while the
rejection probabilities under Porig are completely unaffected by the way τloc is
defined on span (e+). Hence, any attempt to obtain information on the behavior
of Pρ (τloc(y) ≥ C) for ρ → 1 from the rejection probabilities of the test statistic
under the limiting family P1 alone is necessarily futile. [At the heart of the matter
lies here the fact, that while the distributions in P1 can be approximated by distri-
butions in Porig in the sense of weak convergence, this has little consequences for
closeness of rejection probabilities in general, especially since the distributions in
P1 and Porig are orthogonal and the tests one is interested in are not continuous

https://doi.org/10.1017/S0266466614000899 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000899


SIZE AND POWER OF HAR-TESTS 271

everywhere.] In a similar way one could try to predict the behavior of the rejection
probabilities for ρ → −1 from the limiting experiment corresponding to the fam-

ily P−1 =
{

Pe+β,σ 2�(−1) : β ∈ R,0 < σ 2 < ∞
}

, the argument now being as fol-

lows: Since n > 1 is always assumed, the parameter β can be estimated without
error in the model P−1. Thus, we can test the hypothesis β = β0 without com-
mitting any error, seemingly suggesting that Pρ (τloc(y) ≥ C) should converge to
zero for ρ → −1. However, as we have shown above, Pρ (τloc(y) ≥ C) does not
always converge to zero for ρ → −1, namely it converges to one if n is odd and
C < n−2ω̂−2

(
e− +n−1e+

)
holds.7 Summarizing we see that, while the heuristic

arguments are interesting, they do not really capture the underlying mechanism;
cf. the discussion following Theorem 3.3. Furthermore, the heuristic arguments
just discussed are specific to the location model (i.e., to the case X = e+), whereas
severe size distortions can also arise in more general regression models as will be
shown in the next subsection.

3.2. Nonparametrically Based Autocorrelation Robust Tests

Commonly used autocorrelation robust tests for the null hypothesis H0 given by
(3) are based on test statistics of the form (Rβ̂(y)−r)′�̂−1 (y)(Rβ̂(y)−r), with
the statistic typically being undefined if �̂(y) is singular. Here

�̂(y) = nR(X ′ X)−1�̂(y)(X ′ X)−1 R′ (5)

and �̂ is a nonparametric estimator for n−1
E(X ′UU′ X). The type of estimator

�̂ we consider in this subsection is obtained as a weighted sum of sample auto-
covariances of v̂t (y) = ût (y)x ′

t ·, where ût (y) is the t-th coordinate of the least
squares residual vector û(y) = y − X β̂(y) and xt · denotes the t-th row vector of
X . That is

�̂(y) = �̂w(y) =
n−1∑

j=−(n−1)

w( j,n)�̂j (y) (6)

for every y ∈ Rn with �̂j (y) = n−1∑n
t= j+1 v̂t (y)v̂t− j (y)′ if j ≥ 0 and �̂j (y) =

�̂− j (y)′ else. The associated estimator �̂ will be denoted by �̂w. We make the
following assumption on the weights.

Assumption 2. The weights w( j,n) for j = −(n − 1), . . . ,n − 1 are data-
independent and satisfy w(0,n) = 1 as well as w(− j,n) = w( j,n). Furthermore,
the symmetric n × n Toeplitz matrix Wn with elements w(i − j,n) is positive
definite.8

The positive definiteness assumption onWn is weaker than the frequently em-
ployed assumption that the Fourier transform w†(ω) of the weights is nonnega-
tive for all ω ∈ [−π,π ].9 It certainly implies that �̂w(y), and hence �̂w (y), is
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always nonnegative definite, but it will allow us to show more, see Lemma 3.1.
In many applications the weights take the form w( j,n) = w0 (| j |/Mn), where the
lag-window w0 is an even function with w0(0) = 1 and where Mn > 0 is a trun-
cation lag (bandwidth) parameter. In this case the first part of the above assump-
tion means that we are considering deterministic bandwidths only (as is the case,
e.g., in Newey and West, 1987; Andrews, 1991, Sect. 3–5, Hansen, 1992, Kiefer
and Vogelsang, 2002b, 2005; Jansson, 2002, 2004). Extensions of the results in
this subsection to data-dependent bandwidth choices and prewhitening will be dis-
cussed in Preinerstorfer (2014). Assumption 2 is known to be satisfied, e.g., for the
(modified) Bartlett, Parzen, or the Quadratic Spectral lag-window, but is not satis-
fied, e.g., for the rectangular lag-window (with Mn > 1).10 See Anderson (1971)
or Hannan (1970) for more discussion. It is also satisfied for many exponentiated
lag-windows as used in Phillips, Sun, and Jin (2006, 2007) and Sun et al. (2011).

In the typical asymptotic analysis of this sort of tests in the literature the event
where the estimator �̂w is singular is asymptotically negligible (as �̂w converges
to a positive definite or almost surely positive definite matrix), and hence there
is no need to be specific about the definition of the test statistic on this event.
However, if one is concerned with finite-sample properties, one has to think about
the definition of the test statistic also in the case where �̂w (y) is singular. We thus
define the test statistic as follows:11

T (y) =
{

(Rβ̂(y)− r)′�̂−1
w (y)(Rβ̂(y)− r) if det�̂w (y) �= 0,

0 if det�̂w (y) = 0.
(7)

Of course, assigning the test statistic T the value zero on the set where �̂w (y) is
singular is arbitrary. However, it will be irrelevant for size and power properties
of the test provided we can ensure that the set of y ∈Rn for which det�̂w (y) = 0
holds is a λRn -null set (since all relevant distributions Pμ,σ 2� are absolutely con-
tinuous w.r.t. λRn due to the fact that every element of � ∈ C is positive definite
by assumption). We thus need to study under which circumstances this is ensured.
This will be done in the subsequent lemma. It will prove useful to introduce the
following matrix for every y ∈ Rn

B(y) = R(X ′ X)−1 X ′ diag
(
û1(y), . . . , ûn(y)

)
= R(X ′ X)−1 X ′ diag

(
e′

1(n)	span(X)⊥ y, . . . ,e′
n(n)	span(X)⊥ y

)
, (8)

as well as the following assumption on the design matrix X (and on the restriction
matrix R):

Assumption 3. Let 1 ≤ i1 < .. . < is ≤ n denote all the indices for which
eij (n) ∈ span(X) holds where ej (n) denotes the j-th standard basis vector in Rn .
If no such index exists, set s = 0. Let X ′ (¬(i1, . . . is)) denote the matrix which is
obtained from X ′ by deleting all columns with indices i j , 1 ≤ i1 < .. . < is ≤ n
(if s = 0 no column is deleted). Then rank

(
R(X ′ X)−1 X ′ (¬(i1, . . . is))

)= q holds.
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The lemma is now as follows. Note that the matrix B (y) does not depend on
the weights w( j,n).

LEMMA 3.1. Suppose Assumption 2 is satisfied. Then the following holds:

1. �̂w (y) is nonnegative definite for every y ∈ Rn.
2. �̂w (y) is singular if and only if rank(B(y)) < q.
3. �̂w (y) = 0 if and only if B(y) = 0.
4. The set of all y ∈Rn for which �̂w (y) is singular (or, equivalently, for which

rank(B(y)) < q) is either a λRn -null set or the entire sample space Rn.
The latter occurs if and only if Assumption 3 is violated.

Remark 3.2.

(i) Setting R = X ′ X and q = k shows that a necessary and sufficient condition
for �̂w to be λRn -almost everywhere nonsingular is that ei (n) /∈ span(X)
for all i = 1, . . . ,n. [If this condition is not satisfied �̂w(y) is singular
for every y ∈ Rn .] In particular, it follows that under this simple condi-
tion �̂w (y) is nonsingular λRn -almost everywhere for every choice of the
restriction matrix R.

(ii) In the case q = 1 Assumption 3 is easily seen to be violated if and only if

R(X ′ X)−1 X ′ei (n) = 0 or ei (n) ∈ span(X) holds for every i = 1, . . . ,n.

We learn from the preceding lemma that, provided Assumption 3 is satisfied
(which only depends on X and R and hence can be verified by the user), our
choice of defining the test statistic T to be zero on the set where �̂w is singu-
lar is immaterial and has no effect on the size and power properties of the test.
We also learn from that lemma that, in case Assumption 3 is violated, the com-
monly used autocorrelation robust tests break down completely in a trivial way as
�̂w(y) is then singular for every data point y. We are therefore forced to impose
Assumption 3 on the design matrix X if we want commonly used autocorrelation
robust tests to make any sense at all. We shall thus impose Assumption 3 in the
following development. We also note that, given a restriction matrix R, the set of
design matrices that lead to a violation of Assumption 3 is a “thin” subset in the
set of all n × k matrices of full rank.

As usual, the test based on T rejects H0 if T (y) ≥ C where C > 0 is an ap-
propriate critical value. In applications the critical value is usually taken from the
asymptotic distribution of T (obtained either under assumptions that guarantee
consistency of �̂w or under the assumption of a “fixed bandwidth”, i.e., Mn/n > 0
independent of n). In the subsequent theorem, which discusses size and power
properties of autocorrelation robust tests based on T , we allow for arbitrary
(nonrandom) critical values C > 0.12 Because of this, and since the theorem is
a finite-sample result, it applies equally well to standard autocorrelation robust
tests (for which one fancies that Mn → ∞ and Mn/n → 0 if n would increase
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to infinity) and to so-called “fixed-bandwidth” tests (which assume Mn/n > 0
independent of n).

THEOREM 3.3. Suppose Assumptions 1, 2, and 3 are satisfied. Let T be the
test statistic defined in (7) with �̂w as in (6). Let W (C) = {y ∈ Rn : T (y) ≥ C}
be the rejection region where C is a real number satisfying 0 < C < ∞. Then the
following holds:

1. Suppose rank(B(e+)) = q and T (e+ +μ∗
0) > C hold for some (and hence

all) μ∗
0 ∈M0, or rank(B(e−)) = q and T (e− +μ∗

0) > C hold for some (and
hence all) μ∗

0 ∈M0. Then

sup
�∈C

Pμ0,σ 2� (W (C)) = 1 (9)

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞. In particular, the size of
the test is equal to one.

3. Suppose rank(B(e+)) = q and T (e+ +μ∗
0) < C hold for some (and hence

all) μ∗
0 ∈M0, or rank(B(e−)) = q and T (e− +μ∗

0) < C hold for some (and
hence all) μ∗

0 ∈M0. Then

inf
�∈C Pμ0,σ 2� (W (C)) = 0 (10)

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞, and hence

inf
μ1∈M1

inf
�∈C Pμ1,σ 2� (W (C)) = 0

holds for every 0 < σ 2 < ∞. In particular, the test is biased. Furthermore,
the nuisance-infimal rejection probability at every point μ1 ∈M1 is zero,
i.e.,

inf
0<σ 2<∞

inf
�∈C Pμ1,σ 2�(W (C)) = 0.

In particular, the infimal power of the test is equal to zero.
3. Suppose B(e+) = 0 and Rβ̂(e+) �= 0 hold, or B(e−) = 0 and Rβ̂(e−) �= 0

hold. Then

sup
�∈C

Pμ0,σ 2� (W (C)) = 1 (11)

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞. In particular, the size of
the test is equal to one.

Remark 3.4.

(i) As a point of interest we note that the rejection probabilities Pμ,σ 2�(W (C))

can be shown to depend on
(
μ,σ 2,�

)
only through ((Rβ − r)/σ,�)

(in fact, only through (〈(Rβ − r)/σ 〉 ,�)), see Lemma A.1 in Ap-
pendix A.
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(ii) Because of (i), the rejection probabilities Pμ0,σ 2� (W (C)) are constant
w.r.t.

(
μ0,σ

2
) ∈M0 × (0,∞) for every � ∈ C. Consequently, we could

have equivalently written (9) and (11) by inserting an infimum over(
μ0,σ

2
) ∈M0 × (0,∞) in between the supremum and Pμ0,σ 2� (W (C)).

Similarly, we could have inserted a supremum over
(
μ0,σ

2
) ∈ M0 ×

(0,∞) in between the infimum and Pμ0,σ 2� (W (C)) in (10). A similar re-
mark also applies to other results in the paper such as, e.g., Theorems 3.12,
3.15, 4.2, and Corollary 5.17.

(iii) Although trivial, it is useful to note that the conclusions of the preceding
theorem also apply to any rejection region W ∗ ∈B(Rn) which differs from
W (C) by a λRn -null set.

(iv) By the way T is defined in (7), the condition T (e+ + μ∗
0) > C

(T (e− +μ∗
0) > C , respectively) in Part 1 of the preceding theorem already

implies rank(B(e+)) = q (rank(B(e−)) = q, respectively). For reasons of
comparability with Part 2 we have nevertheless included this rank condi-
tion into the formulation of Part 1.

Remark 3.5.

(i) Inspection of the proof of Theorem 3.3 shows that Assumption 1 can obvi-
ously be weakened to the assumption that C contains AR(1) correlation ma-
trices �(ρ

(1)
m ) and �(ρ

(2)
m ) for two sequences ρ

(i)
m ∈ (−1,1) with ρ

(1)
m → 1

and ρ
(2)
m → −1. In fact, this can be further weakened to the assumption that

there exist �
(i)
m ∈ C with �

(1)
m → e+e′+ and �

(2)
m → e−e′− for m → ∞.

(ii) For a discussion on how Theorem 3.3 has to be modified in case only e+e′+
(or e−e′−) arises as a singular accumulation point of C see Section 3.2.2.

The conditions in Parts 1–3 of the theorem only depend on the design matrix X ,
the restriction (R,r), the vector e+ (e−, respectively), the critical value C , and the
weights w( j,n) (via T (e+ +μ∗

0) or T (e− +μ∗
0), respectively). Hence, in any par-

ticular application it can be decided whether (and which of) these conditions are
satisfied. Furthermore, as will become transparent from the examples to follow
and from Proposition 3.6, in the majority of applications at least one of these con-
ditions will be satisfied, implying that common autocorrelation robust tests have
size 1 and/or have power arbitrarily close to 0 in certain parts of the alternative hy-
pothesis. Before we turn to these examples, we want to provide some intuition for
Theorem 3.3: Consider a sequence ρm ∈ (−1,1) with ρm → 1 (ρm → −1, respec-
tively) as m → ∞. Then �m = �(ρm) ∈ C by Assumption 1 and �(ρm) → e+e′+
(e−e′−) holds. Consequently, Pμ0,σ 2�m

concentrates more and more around the
one-dimensional subspace span (e+) (span(e−), respectively) in the sense that it
converges weakly to the singular Gaussian distribution Pμ0,σ 2e+e′+ (Pμ0,σ 2e−e′− ,
respectively). The conditions in Part 1 (or Part 3) of the preceding theorem then
essentially allow one to show that (i) the measure Pμ0,σ 2e+e′+ (Pμ0,σ 2e−e′− , respec-
tively) is supported by W (C) (more precisely, after W (C) has been modified by
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a suitable λRn -null set), and (ii) that Pμ0,σ 2e+e′+ (Pμ0,σ 2e−e′− , respectively) puts no
mass on the boundary of the (modified) set W (C). By the Portmanteau theorem
we can then conclude that the sequence of measures Pμ0,σ 2�m

puts more and more
mass on W (C) in the sense that Pμ0,σ 2�m

(W (C)) → 1 as m → ∞, which estab-
lishes the conclusion of Part 1 of the theorem. The proof of the first claim in Part 2
works along similar lines but where concentration is now on the complement of
the rejection region W (C). For more discussion see Section 5.2. The remaining
results in Part 2 are obtained from the first claim in Part 2 exploiting invariance
and continuity properties of the rejection probabilities. While concentration of
the probability measures Pμ0,σ 2�m

constitutes an important ingredient in the proof
of Theorem 3.3, it should, however, be stressed that there are also other cases
(cf. Theorems 3.7 and 3.8), where despite concentration of Pμ0,σ 2�m

as above,
the conditions for an application of the Portmanteau theorem are not satisfied; in
fact, in some of these cases size < 1 and infimal power > 0 can be shown.

We now consider a few examples that illustrate the implications of the preced-
ing theorem. As in most applications the regression model contains an intercept,
we concentrate on this case in the examples.

Example 3.1 (Testing a restriction involving the intercept)
Suppose that Assumptions 1, 2, and 3 hold. For definiteness assume that the
first column of X corresponds to the intercept (i.e., the first column of X is e+).
Assume also that the restriction involves the intercept, i.e., the first column of R
is nonzero. Then it is easy to see that B (e+) = 0 and Rβ̂(e+) �= 0 holds (the latter
since β̂(e+) = e1 (k)). Consequently, Part 3 of Theorem 3.3 applies and shows
that the size of the test T is always 1. Additionally, the power deficiency results in
Part 2 of the theorem will apply whenever rank(B(e−)) = q and T (e− +μ∗

0) < C
hold. [Whether or not this is the case will depend on C , X , R, and the weights.]

Example 3.2 (Location model)
Suppose that Assumptions 1 and 2 hold. Suppose X = e+ and the hypothesis is
β = β0 (hence k = q = 1). As just noted in Example 3.1, the size of the test T
is then always 1 (as Assumption 3 is certainly satisfied). In this simple model the
conditions for the power deficiencies to arise can be made more explicit: Note
that B(e−) �= 0 clearly always holds, and hence rank B(e−) = 1 = q. If n is even,
it is also easy to see that T (e− + β0e+) = 0 < C always holds. Consequently,
Part 2 of Theorem 3.3 applies and shows that the power of the test gets arbitrarily
close to zero in certain parts of the parameter space as described in the theorem.
If n is odd, then T (e− +β0e+) = n−1�̂−1

w (e−) and the same conclusion applies
provided this quantity is less than C .13 For example, for the (modified) Bartlett
lag-window numerical computations show that n−1�̂−1

w (e−) is less than 1.563 for
every odd n in the range 1 < n < 1000 and every choice of Mn/n ∈ (0,1]; hence,
if C has been chosen to be larger than or equal to 1.563, which is typically the
case at conventional nominal significance levels, the power deficiencies are also
guaranteed to arise. We note here that this simple location model is often used in
Monte Carlo studies that try to assess finite-sample properties of autocorrelation
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robust tests. Furthermore, autocorrelation robust testing of the location parameter
plays an important rôle in the field of simulation, see, e.g., Heidelberger and
Welch (1981) and Flegal and Jones (2010).

Example 3.3 (Testing a zero restriction on a slope parameter)
Consider the same regression model as in Example 3.1 with the same assump-
tions, but now suppose that the hypothesis is βi = 0 for some i > 1, i.e., we are in-
terested in testing a slope parameter. Since in this case B(e+) = 0 and Rβ̂(e+) = 0
obviously hold, where R = e′

i (k), we need to investigate the behavior of B(e−) in
order to be able to apply Theorem 3.3. If rank B(e−) = 1 holds (which will generi-
cally be the case) then size equals 1 in case T (e−) > C and the power deficiencies
arise in case T (e−) < C .

Example 3.4 (Testing for a change in mean)
A special case of the preceding example is the case where k = 2, the first column
of X is e+ and the second column has entries xt2 = 0 for 1 ≤ t ≤ t∗ and xt2 = 1
else. We assume t∗ to be known and to satisfy 1 < t∗ < n. The hypothesis to be
tested is β2 = 0. It is then easy to see that Assumption 3 is satisfied. Furthermore,
some simple computations show that rank B(e−) = q = 1 always holds. Hence,
the test T has size 1 if T (e−) > C and the power deficiencies arise if T (e−) < C .
In case n as well as n − t0 are even, the latter case always arises since T (e−) = 0
holds. [If n or n − t0 is odd, T (e−) can of course be computed and depends only
on n, t0, and �̂−1

w (e−). We omit the details.]

The cases in Theorem 3.3 leading to size 1 or to power deficiencies of the
test based on T , while not being exhaustive, are often satisfied in applications.
We make this formal in the subsequent proposition in that we prove that, for given
restriction (R,r) and critical value C , the conditions in Theorem 3.3 involving X
are generically satisfied. The first part of the proposition shows that these condi-
tions are generically satisfied in the universe of all possible n × k design matrices
of rank k. Parts 2 and 3 show that the same is true if we impose that the regression
model has to contain an intercept. In the subsequent proposition the dependence
of B (y), of T (y), as well as of �̂w (y) on X will be important and thus we shall
write BX (y), TX (y), and �̂w,X (y) for these quantities in the result to follow.

PROPOSITION 3.6. Suppose Assumption 1 holds. Fix (R,r) with rank(R) =
q, fix 0 < C < ∞, and fix the weights w( j,n) which are assumed to satisfy
Assumption 2. Let T be the test statistic defined in (7) with �̂w as in (6) and
let μ∗

0 ∈M0 be arbitrary.

1. Define

X0 =
{

X ∈ Rn×k : rank(X) = k
}
,

X1 (e+) = {X ∈ X0 : rank(BX (e+)) < q} ,
X2 (e+) = {X ∈ X0\X1 (e+) : TX

(
e+ +μ∗

0

)= C
}
,
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and similarly define X1 (e−), X2 (e−). [Note that X2 (e+) and X2 (e−) do
not depend on the choice of μ∗

0.] Then X1 (e+), X2 (e+), X1 (e−), and
X2 (e−) are λRn×k -null sets. The set of all design matrices X ∈ X0 for
which Theorem 3.3 does not apply is a subset of (X1 (e+)∪X2 (e+)) ∩
(X1 (e−)∪X2 (e−)) and hence is a λRn×k -null set. It thus is a “negligible”
subset ofX0 in view of the fact thatX0 differs fromRn×k only by a λRn×k -null
set.

2. Suppose k ≥ 2, X has e+ as its first column, i.e., X = (e+, X̃
)
, and suppose

the first column of R consists of zeros only. Define

X̃0 =
{

X̃ ∈ Rn×(k−1) : rank
((

e+, X̃
))= k

}
,

X̃1 (e−) =
{

X̃ ∈ X̃0 : rank

(
B(

e+,X̃
)(e−)

)
< q

}
,

X̃2 (e−) =
{

X̃ ∈ X̃0\X̃1 (e−) : T(
e+,X̃

)(e− +μ∗
0

)= C

}
,

and note that X̃2 (e−) does not depend on the choice of μ∗
0. Then X̃1 (e−) and

X̃2 (e−) are λRn×(k−1)-null sets (with the analogously defined sets X̃1 (e+)

and X̃2 (e+) satisfying X̃1 (e+) = X̃0 and X̃2 (e+) = ∅.). The set of all ma-
trices X̃ ∈ X̃0 such that Theorem 3.3 does not apply to the design matrix
X = (e+, X̃

)
is a subset of X̃1 (e−)∪ X̃2 (e−) and hence is a λRn×(k−1) -null

set. It thus is a “negligible” subset of X̃0 in view of the fact that X̃0 differs
from Rn×(k−1) only by a λRn×(k−1) -null set.

3. Suppose k ≥ 2, X = (e+, X̃
)
, and suppose the first column of R is nonzero.

Then Theorem 3.3 applies to the design matrix X = (e+, X̃
)

for every X̃ ∈ X̃0

(provided X satisfies Assumption 3).14

The proof of the proposition actually shows more, namely that the set of design
matrices for which Theorem 3.3 does not apply is contained in an algebraic set.
We also remark that if the regressor matrix X is viewed as randomly drawn from
a distribution that is absolutely continuous w.r.t. λRn×k , Proposition 3.6 implies
that then the conditions of Theorem 3.3 are almost surely satisfied; if X is also in-
dependent of U, Theorem 3.3 then establishes negative results for the conditional
rejection probabilities for almost all realizations of X .

We next discuss an exceptional case to which Theorem 3.3 does not apply and
which is interesting in that a positive result can be established, at least if the
covariance model C is assumed to be CAR(1) or is approximated by CAR(1) near
the singular points in the sense of Remark 3.10(i). This positive result will then
guide us to an improved version of the test statistic T .

THEOREM 3.7. Suppose C = CAR(1) and suppose Assumptions 2 and 3 are
satisfied. Let T be the test statistic defined in (7) with �̂w as in (6). Let W (C) =
{y ∈ Rn : T (y) ≥ C} be the rejection region where C is a real number satisfying
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0 < C < ∞. If e+,e− ∈M and Rβ̂(e+) = Rβ̂(e−) = 0 is satisfied, then the
following holds:

1. The size of the rejection region W (C) is strictly less than 1, i.e.,

sup
μ0∈M0

sup
0<σ 2<∞

sup
−1<ρ<1

Pμ0,σ 2�(ρ) (W (C)) < 1.

Furthermore,

inf
μ0∈M0

inf
0<σ 2<∞

inf−1<ρ<1
Pμ0,σ 2�(ρ) (W (C)) > 0.

2. The infimal power is bounded away from zero, i.e.,

inf
μ1∈M1

inf
0<σ 2<∞

inf−1<ρ<1
Pμ1,σ 2�(ρ)(W (C)) > 0.

3. For every 0 < c < ∞
inf

μ1∈M1,0<σ 2<∞
d(μ1,M0)/σ≥c

Pμ1,σ 2�(ρm )(W (C)) → 1

holds for m → ∞ and for any sequence ρm ∈ (−1,1) satisfying |ρm | → 1.
Furthermore, for every sequence 0 < cm < ∞ and every 0 < ε < 1

inf
μ1∈M1,

d(μ1,M0)≥cm

inf−1+ε≤ρ≤1−ε
Pμ1,σ 2

m�(ρ)(W (C)) → 1

holds for m → ∞ whenever 0 < σ 2
m < ∞ and cm/σm → ∞. [The very

last statement holds even without the conditions e+,e− ∈M and Rβ̂(e+) =
Rβ̂(e−) = 0.]

4. For every δ, 0 < δ < 1, there exists a C(δ), 0 < C(δ) < ∞, such that

sup
μ0∈M0

sup
0<σ 2<∞

sup
−1<ρ<1

Pμ0,σ 2�(ρ)(W (C(δ))) ≤ δ.

The first statement of the theorem says that, in contrast to the cases considered
in Theorem 3.3, the size of the test T is now bounded away from 1 for any choice
of the critical value C . Moreover, the last part of the theorem shows that the size
can be controlled to be less than or equal to any prespecified significance level δ
by a suitable choice of the critical value C(δ). Because Pμ0,σ 2�(ρ)(W (C)) does
not depend on μ0 and σ 2 but only on ρ (see Proposition 5.4) and because this
probability can be computed via simulation, the supremum of this probability
over μ0, σ 2, and ρ can be easily found by a grid search; exploiting monotonicity
of the probability with respect to C , the value of C(δ) can then be found by a
simple search algorithm. The theorem furthermore shows that, again in contrast
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to the scenario considered in Theorem 3.3, the infimal power of the test is at least
bounded away from zero. The power even approaches 1 if either

∥∥(Rβ(1) − r
)
/σ
∥∥

is bounded away from zero and |ρ| → 1, or if
∥∥(Rβ(1) − r

)
/σ
∥∥→ ∞ and |ρ| is

bounded away from 1. [Here β(1) is the parameter vector corresponding to μ1.
Note that d (μ1,M0) is bounded from above as well as from below by multiples
of
∥∥Rβ(1) − r

∥∥, where the constants involved are positive and depend only on
X , R, and r .]

The preceding theorem required e+,e− ∈ M and Rβ̂(e+) = Rβ̂(e−) = 0.
To illustrate, these conditions are, e.g., satisfied if e+ and e− constitute the
first two columns of the matrix X and the hypothesis tested only involves
coefficients βi with i ≥ 3 (i.e., the first two columns of R are zero). While an
intercept will typically be present in a regression model and thus e+ appears
as one of the regressors (and hence satisfies e+ ∈ M), e− will not necessar-
ily be an element of M, and hence the preceding theorem will not apply.
However, the following theorem shows how we can nevertheless extend the
same positive results to this case if we apply a simple adjustment to the test
statistic T .

THEOREM 3.8. Suppose C = CAR(1) and suppose Assumption 2 is satisfied.
Suppose one of the following scenarios applies:

1. e+ ∈M with Rβ̂(e+) = 0 and e− /∈M. Furthermore, k +1 < n holds and the
n × (k +1) matrix X̄ = (X,e−) (which necessarily has rank k + 1) satisfies
Assumption 3 relative to the q ×(k +1) restriction matrix R̄ = (R,0). Define

β̄ (y) = (Ik,0)
(
X̄ ′ X̄

)−1
X̄ ′y.

2. e+ /∈M and e− ∈M with Rβ̂(e−) = 0. Furthermore, k +1 < n holds and the
n × (k +1) matrix X̄ = (X,e+) (which necessarily has rank k + 1) satisfies
Assumption 3 relative to the q ×(k +1) restriction matrix R̄ = (R,0). Define

β̄ (y) = (Ik,0)
(
X̄ ′ X̄

)−1
X̄ ′y.

3. e+ /∈M and e− /∈M with rank(X,e+,e−) = k +2. Furthermore, k +2 < n
holds and the n × (k +2) matrix X̄ = (X,e+,e−) (which necessarily has
rank k + 2) satisfies Assumption 3 relative to the q × (k +2) restriction

matrix R̄ = (R,0,0). Define β̄ (y) = (Ik,0,0)
(
X̄ ′ X̄

)−1
X̄ ′y.

4. e+ /∈M and e− /∈M with rank(X,e+,e−) = k +1. Furthermore, k +1 < n
holds and the n × (k +1) matrix X̄ = (X,e+) (which necessarily has rank
k + 1) satisfies Assumption 3 relative to the q × (k +1) restriction matrix

R̄ = (R,0). Suppose further that R̄
(
X̄ ′ X̄

)−1
X̄ ′e− = 0 holds. Define β̄ (y) =

(Ik,0)
(
X̄ ′ X̄

)−1
X̄ ′y.

5. e+ /∈M and e− /∈M with rank(X,e+,e−) = k +1. Furthermore, k +1 < n
holds and the n × (k +1) matrix X̄ = (X,e−) (which necessarily has rank
k + 1) satisfies Assumption 3 relative to the q × (k +1) restriction matrix

R̄ = (R,0). Suppose further that R̄
(
X̄ ′ X̄

)−1
X̄ ′e+ = 0 holds. Define β̄ (y) =

(Ik,0)
(
X̄ ′ X̄

)−1
X̄ ′y.
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In all five scenarios define

T̄ (y) =
{

(Rβ̄(y)− r)′�̄−1
w (y)(Rβ̄(y)− r) if det�̄w (y) �= 0,

0 if det�̄w (y) = 0,

where �̄w (y) = n R̄(X̄ ′ X̄)−1�̄w(y)(X̄ ′ X̄)−1 R̄′, and �̄w(y) is computed from (6)
based on v̄t (y) = ūt (y)x̄ ′

t · instead of v̂t (y). Here ūt (y) are the residuals from the
regression of y on X̄ , and x̄t · are the rows of X̄ . Let W̄ (C) = {y ∈ Rn : T̄ (y) ≥ C

}
be the rejection region where C is a real number satisfying 0 < C < ∞. Then
for each of the five scenarios the conclusions of Theorem 3.7 hold with W (C)
replaced by W̄ (C).

Theorem 3.3 together with Proposition 3.6 has shown that generically the com-
monly used test based on the statistic T has severe size or power deficiencies even
for C = CAR(1), while Theorem 3.7 has isolated a special case where this is not
so. Theorem 3.8 now shows that in many of the cases falling under the wrath
of Theorem 3.3 the ensuing problems can be circumvented (if C = CAR(1)) by
making use of the adjusted version T̄ of the test statistic. The adjustment mech-
anism is simple and amounts to basing the test statistic on estimators β̄ and �̄w

that are obtained from a “working model” that always adds the regressors e+
and/or e− to the design matrix. Note that these regressors effect a purging of
the residuals from harmonic components of angular frequency 0 and π . This
purging effect together with the fact that the restrictions to be tested do not in-
volve the coefficients of the “purging” regressors e+ and e− lies at the heart of
the positive results expressed in Theorems 3.7 and 3.8. Numerical results that
will be presented elsewhere support the theoretical result and show that the ad-
justed test based on T̄ considerably improves over the unadjusted one based
on T .

We next illustrate Theorems 3.7 and 3.8 in the context of Examples 3.1–3.4:
In Examples 3.1 and 3.2 we have e+ ∈M but Rβ̂(e+) �= 0, hence neither The-
orem 3.7 nor Theorem 3.8 is applicable. In contrast, in Example 3.3 we have
e+ ∈M and Rβ̂(e+) = 0 since R = e′

i (k) with i > 1. In case e− /∈M, which
is the typical case and which is, in particular, satisfied in Example 3.4, we can
then use the adjusted test statistic T̄ which is obtained from the auxiliary model
using the enlarged design matrix X̄ = (X,e−). Part 1 of Theorem 3.8 then in-
forms us that the so-adjusted test does not suffer from the severe size/power dis-
tortions discussed in Example 3.3 for the unadjusted autocorrelation robust test
(provided the conditions on X̄ in the theorem are satisfied, which generically will
be the case). In case e− ∈M, Theorem 3.7 applies to the problem considered
in Example 3.3 whenever Rβ̂(e−) = 0 holds, showing that in this case already
the unadjusted test does not suffer from the severe size/power distortions. Note
that here the condition Rβ̂(e−) = 0 will hold, for example, if e− is one of
the columns of X and the slope parameter that is subjected to test is not the
coefficient of e−.
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Remark 3.9.

(i) Suppose the scenario in Part 1 of the above theorem applies except that
k + 1 = n holds or X̄ = (X,e−) does not satisfy Assumption 3. Then the
test statistic T̄ is identically zero and the adjustment procedure does not
work. A similar remark applies to Parts 2–5.

(ii) Suppose the scenario of Part 4 of the above theorem applies except that

R̄
(
X̄ ′ X̄

)−1
X̄ ′e− �= 0 holds. Applying Part 3 of Theorem 3.3 to T̄ shows

that this test has size 1 and hence the adjustment procedure fails. A similar
comment applies to the scenario of Part 5.

Remark 3.10.

(i) The results in Theorems 3.7 and 3.8 have assumed C= CAR(1). The results
immediately extend to other covariance models C as long as C is norm-
bounded, the only singular accumulation points of C are e+e′+ and e−e′−,
and for every �m ∈ C converging to one of these limit points there exists
a sequence (ρm)m∈N in (−1,1) such that �−1/2(ρm)�m�−1/2(ρm) → In

for m → ∞ (that is, near the “singular boundary” the covariance model
C behaves similar to CAR(1)). This can be seen from an inspection of the
proof. An extension of Theorems 3.7 and 3.8 to even more general covari-
ance models will be discussed elsewhere.

(ii) For a discussion of a version of Theorem 3.7 for the case where
C= C+

AR(1) = {�(ρ) : 0 ≤ ρ < 1} or C= {�(ρ) : −1+ ε < ρ < 1}, ε > 0,
see Section 3.2.2.

3.2.1. Alternative Nonparametric Estimators for the Variance Covariance
Matrix. We next discuss test statistics of the form (7) that use estimators other
than �̂w.

A. (General quadratic estimators based on v̂t ) The estimator �̂w given by (6)
is a special case of general quadratic estimators �̂G Q (y) of the form

�̂G Q (y) =
n∑

t,s=1

w(t,s; n) v̂t (y)v̂s(y)′

for every y ∈ Rn , where the n ×n weighting matrixW∗
n = (w (t,s; n))t,s is sym-

metric and data-independent. While estimators of this more general form have
been studied in the early literature on spectral estimation, much of the literature
has focused on the special case of weighted autocovariance estimators of the form
�̂w (partly as a consequence of a result in Grenander and Rosenblatt (1957) that
the restriction to the smaller class of estimators does not lead to inferior esti-
mators in a certain asymptotic sense). However, if the data are preprocessed by
tapering before an estimator like �̂w is computed from the tapered data, the fi-
nal estimator belongs to the class of general quadratic estimators. Also, many
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modern spectral estimators studied in the engineering literature fall into this class
(see Thomson, 1982), but not into the more narrow class of weighted autocovari-
ance estimators. Another example are the estimators proposed in Phillips (2005),
Sun (2013), and Zhang and Shao (2013b). We now distinguish two cases:

Case 1: The weighting matrixW∗
n = (w (t,s; n))t,s is positive definite. Inspec-

tion of the proofs then shows that all results given above for the tests T based on
�̂w remain valid as they stand if �̂w is replaced by �̂G Q in the definition of the
test statistic.

Case 2: The weighting matrixW∗
n = (w (t,s; n))t,s is only assumed to be non-

negative definite (as is, e.g., the case for the estimators considered in Phillips,
2005 and Sun, 2013). Arguing similar as in the proof of Lemma 3.1 one can show
the following:

LEMMA 3.11. SupposeW∗
n = (w (t,s; n))t,s is nonnegative definite and define

�̂G Q (y) = nR(X ′ X)−1�̂G Q(y)(X ′ X)−1 R′.

Then the following hold:

1. �̂G Q (y) is nonnegative definite for every y ∈ Rn.
2. �̂G Q (y) is singular if and only if rank

(
B(y)W∗

n

)
< q (or, equivalently, if

rank
(

B(y)W∗1/2
n

)
< q).

3. �̂G Q (y) = 0 if and only if B(y)W∗
n = 0 (or, equivalently, if B(y)W∗1/2

n = 0).
4. The set of all y ∈ Rn for which �̂G Q (y) is singular (or, equivalently, for

which rank
(
B(y)W∗

n

)
< q) is either a λRn -null set or the entire sample

space Rn.

As a consequence we see that two cases can arise: In the first case �̂G Q (y)
is singular for all y ∈ Rn , in which case the test statistic T breaks down in a
trivial way. Note that this arises precisely if and only if rank

(
B(y)W∗

n

)
< q for

all y ∈ Rn , which is a condition solely on the design matrix X , the restriction
matrix R, and the weighting matrixW∗

n , and thus can be verified in any particular
application. Now suppose that the second case arises, i.e., rank

(
B(y)W∗

n

)= q for
λRn -almost all y. Then inspection of the proofs shows that Theorems 3.3 and 3.7
continue to hold for the test statistic T based on �̂G Q provided Assumption 3 is
replaced by the just mentioned condition rank

(
B(y)W∗

n

) = q for λRn -almost all
y, and the matrix B(y) in those theorems is replaced by B(y)W∗

n . Also Theorem
3.8 generalizes with the obvious changes.

B. (An estimator based on û) Because n−1
E(X ′UU′ X) = n−1 X ′

E(UU′)X ,
a natural estimator is

�̂E (y) = n−1 X ′ K̂ (y) X

for every y ∈ Rn , where K̂ (y) is the symmetric n ×n Toeplitz matrix with block
elements n−1∑n

l= j+1 ûl(y)ûl− j (y) in the j-th diagonal above the main diagonal.
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This estimator has already been discussed in Eicker (1967), but does not seem
to have been used much in the econometrics literature. It is not difficult to see
that �̂E (y) is always nonnegative definite. It is positive definite if and only if
y /∈ span(X); and it is equal to zero for y ∈ span(X). Define the statistic TE via
(7) with �̂w (y) replaced by �̂E (y) where the latter is obtained from (5) by replac-
ing �̂w (y) by �̂E (y). It is then easy to see that Theorems 3.3, 3.7, and 3.8 carry
over to the test based on TE provided Assumption 3 is deleted from the formula-
tion, the condition rank (B(e+)) = q (rank(B(e−)) = q, respectively) is replaced
by e+ /∈ span(X) (e− /∈ span(X)), and the condition B(e+) = 0 (B(e−) = 0,
respectively) is replaced by e+ ∈ span(X) (e− ∈ span(X)). [While Eicker, 1967
provided conditions on the regressors under which consistency of �̂E (y) re-
sults, it may not be consistent for some common forms of regressors (as noted in
Eicker, 1967). Therefore one may want to replace K̂ (y) by a variant where the
empirical second moments are downweighted (or more generally are obtained
from an estimate of the spectral density of the errors ut ). Similar results can then
be obtained for this variant of the test. We omit the details.]

C. (Data-driven bandwidth, prewhitening, flat-top kernels, autoregressive esti-
mates, random critical values) Tests based on weighted autocovariance estimators
�̂, but where the weights are allowed to depend on the data (e.g., lag-window es-
timators with data-driven bandwidth choice), or where prewhitening is used, are
discussed in detail in Preinerstorfer (2014). Like the results given above, they
are obtained by applying the very general results provided in Section 5.4. The
results in Section 5.4 essentially rely only on a certain equivariance property of
the estimator �̂. These results also accommodate situations where the estima-
tor �̂(y) is only well-defined for λRn -almost all y, a case that arises often when
data-driven bandwidth or prewithening are employed, or is not always nonneg-
ative definite (as is the case with so-called flat-top kernels, see Politis, 2011).
Furthermore, certain cases where the critical value is allowed to be random are
covered by these results, see Remark 5.16(ii) in Section 5.4 (and this is also true
for Sections 3.3 and 4). Finally, tests based on estimators �̂ obtained from para-
metric models like vector autoregressions (see, e.g., den Haan and Levin, 1997 or
Sun and Kaplan, 2012 and references therein) also fall into the domain of the
results in Section 5.4, but we abstain from a detailed analysis. See, however, Sec-
tion 3.3 for a related analysis.

3.2.2. Some Discussion. A. We next discuss to what extent restricting the
space C of admissible covariance structures in such a way that it has fewer singu-
lar limit points is helpful in ameliorating the properties of autocorrelation robust
tests. In the course of this we also discuss versions of the results in Theorems 3.3,
3.7, and 3.8 adapted to such restricted spaces C. In the subsequent discussion we
concentrate for definiteness on the test statistic T that is based on the estimator
�̂w. However, the discussion carries over mutatis mutandis to the case where the
alternative estimators �̂ discussed in Section 3.2.1 are used. Similar remarks also
apply to the test statistics considered in Section 3.3.
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(i) The negative results in Theorem 3.3 (i.e., size equal to 1 and/or nuisance-
infimal rejection probability equal to 0) are driven by the fact that, due to
Assumption 1, the covariance model C has e+e′+ and e−e′− as limit points;
cf. also Remark 3.5. Suppose now that one would be willing to assume that
C does not have any singular limit point (and is norm-bounded which is
not really a restriction here). Then the negative results in Theorem 3.3 do
not apply. In fact, an application of Theorem 5.21 shows that size is now
strictly less than 1 and the infimal power is larger than 0. Does such an
assumption on C now solve the problem? We do not think so for at least
two reasons: First, making the assumption that the covariance model C
does not have singular limit points (like e+e′+ and e−e′−) is highly ques-
tionable, especially in view of the fact that the main motivation for the
development of autocorrelation robust tests has been the desire to avoid
strong assumptions on C which could lead to misspecification issues. In
particular, in the not unreasonable case where C contains AR(1) corre-
lation matrices �(ρ), such an assumption would require to restrict ρ
to an interval (−1+ ε,1− ε) for some positive ε. Given the emphasis
on unit root and near unit root processes in econometrics, such an as-
sumption seems untenable. Second, even if one is willing to make such
a heroic assumption, size or power problems can be present. To see
this assume for definiteness of the discussion that C = CAR(1) (ε,ε) =
{�(ρ) : ρ ∈ (−1+ ε,1− ε)} for some small ε > 0. As mentioned above,
the size of the test based on T will be less than 1 and the infimal power will
be larger than 0. However, an upshot of Theorem 3.3 still is that the size
will be close to 1 and/or the infimal power will be close to 0 for generic
design matrices X , provided ε is small (more precisely, for given sample
size n this will happen for sufficiently small ε).15 Hence, even under such
an assumption, size/power problems will disappear (or will be moderate)
only if one is willing to assume a relatively large ε (in relation to sample
size n), making the assumption look even more heroic.

(ii) If C has e+e′+ (e−e′−, respectively) as its only singular limit point, inspec-
tion of the proof of Theorem 3.3 shows that a version of that theorem,
in which now every reference to e− (e+, respectively) is deleted, continues
to hold. For example, if C= CAR(1) (ε,0) = {�(ρ) : ρ ∈ (−1+ ε,1)} with
ε > 0, such a version of Theorem 3.3 applies. As an illustration, assume
that C = CAR(1) (ε,0), that the regression model contains an intercept,
and the hypothesis involves the intercept (in the sense that Rβ̂ (e+) �= 0).
Then we can conclude from this version of Theorem 3.3 that the size of
the test is equal to 1. Note that this result covers the case of testing in
a location model.

(iii) Suppose C has e+e′+ as its only singular limit point. Then in the important
special case where an intercept is present in the regression and the hypoth-
esis tested does not involve the intercept (in the sense that Rβ̂ (e+) = 0),
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a positive result (similar to Theorem 3.7) is immediately obtained from
Theorem 5.21, namely that the test based on T now has size < 1 and
infimal power > 0; moreover, the size can be controlled at any given
level δ by an appropriate choice of the critical value C (δ). [To be precise,
Assumptions 2 and 3 have to be satisfied, C has to be norm-bounded, and
matrices in C that approach e+e′+ have to do so in the particular manner
required in Theorem 5.21.] An important example, where C has e+e′+
as its only singular limit point (and is norm-bounded and satisfies the
just mentioned assumption required for Theorem 5.21, cf. Lemma G.1 in
Appendix G), is C = CAR(1) (ε,0) defined above. While an assumption
like C= CAR(1) (ε,0) is perhaps a bit more palatable than the assumption
C = CAR(1) (ε,ε), it still imposes an adhoc restriction on the covari-
ance model CAR(1) that is debatable, especially if ε is not small (as is,
e.g., the case when ρ is restricted to be positive). Furthermore, note
that, while the extreme size and power problems (i.e., size equal one
and infimal power equal zero) are absent in the case we discuss here,
less extreme, but nevertheless substantial, size or power problems will
generically still be present if ε is small as explained in (i) above. In case
there is no intercept in the regression, an appropriate version of Theo-
rem 3.8 can be used to generate an adjusted test by adding the intercept
as a regressor, thus bringing one back to the situation just discussed.
[With the appropriate modifications, similar remarks apply to the case
where e−e′− is the only singular limit point of C.]

(iv) Regarding the preceding discussion in (iii) one should recall that in case
C = CAR(1) Theorems 3.7 and 3.8 show how tests, which have size less
than one and infimal power larger than zero, can easily be obtained without
any need of bounding ρ away from 1 or −1, and thus without introducing
any such adhoc restrictions on C. Therefore, it would be desirable to free
Theorems 3.7 and 3.8 from the assumption C = CAR(1). To what extent
this can be achieved without introducing implausible assumptions like the
ones discussed in the preceding paragraphs will be discussed elsewhere.

B.

(i) The results concerning the extreme size distortion and biasedness of the
tests under consideration in Theorems 3.3 and 3.15 are obtained by con-
sidering “offending” sequences of the form

(
μ0,σ

2,�m
)

belonging to the
null hypothesis where μ0 ∈M0 and where �m converges to e+e′+ or e−e′−.
For example, if �m = �(ρm) with ρm → ±1, then the disturbance pro-
cesses with covariance matrix σ 2�m converge weakly to a harmonic pro-
cess as discussed subsequent to Assumption 1. However, it follows from
Remark 3.4(i) that also the sequences

(
μ0,σ

2
m,�m

)
, where μ0 and �m are

as before and σ 2
m , 0 < σ 2

m < ∞, is an arbitrary sequence, are “offending”
sequences in the same way. Note that in case �m = �(ρm) with ρm → ±1

https://doi.org/10.1017/S0266466614000899 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000899


SIZE AND POWER OF HAR-TESTS 287

the corresponding disturbance processes then need not converge weakly to
a harmonic process: As an example, consider the case where one chooses

σ 2
m = σ 2

ε

(
1−ρ2

m

)−1
with a constant innovation variance σ 2

ε > 0.

(ii) The covariance model Cmaintained in this section (i.e., Section 3) typically
(but not necessarily) supposes that the disturbances in the regression model
are weakly stationary, and that all stationary AR(1) processes are allowed
for. For definiteness of the subsequent discussion assume that C= CAR(1).
Now an alternative model assumption could be that the disturbances ut

satisfy

ut = ρut−1 +εt , 1 ≤ t ≤ n

where |ρ| < 1, where the innovations εt are i.i.d. N (0,σ 2
ε ), say, and where

u0 is a (possibly random) starting value with mean zero. If u0 is treated as
a fixed random variable (i.e., being the same for all choices of the parame-
ters in the model), then the resulting model is not covered by the results in
our paper. [Of course, this does by no means guarantee that usual autocor-
relation robust tests have good size and power properties; cf. Footnote 1.]
We note, however, that the assumption that u0 is fixed in the above sense
assigns a special meaning to the time point t = 0, and hence may be de-
batable. Therefore one may rather want to treat u0, more precisely its dis-
tribution, as a further “parameter” of the problem. For example, one could
assume that u0 is N

(
0,σ 2∗

)
-distributed independently of the innovations εt

for t ≥ 1 and with 0 < σ 2∗ < ∞, where σ 2∗ can vary independently of ρ
and σ 2

ε . But then the resulting covariance model C∗ contains C = CAR(1)

as a subset. Hence, all the results in the paper concerning size equal to 1 or
infimal power equal to 0, apply a fortiori to this larger model C∗.

C. In a recent paper Perron and Ren (2011) argue that the impossibility
results in Pötscher (2002) for estimating the value of the spectral density at
frequency zero are irrelevant in the context of autocorrelation robust testing:
In the framework of a Gaussian location model they compare the behavior
of common autocorrelation robust tests tRobust , which are standardized with
the help of a spectral density estimate f̂n(0), with a benchmark given by the
infeasible test statistic t f (0) that uses the value of the unknown spectral density
at frequency zero for standardization. They find that common autocorrelation
robust tests beat the infeasible test statistic along a sequence of DGPs similar
to the ones that have been used in Pötscher (2002) to establish ill-posedness of
the spectral density estimation problem. This is certainly true and in fact easy to
understand: Consider as another benchmark the infeasible test statistic tideal , say,
which uses the (unknown) finite-sample variance sn of the arithmetic mean for
standardization rather than the asymptotic variance 2π f (0), and observe that this
statistic is exactly N (0,1) distributed (under the null) and has well-behaved size
and power properties. Because sn does in general not converge uniformly to the
asymptotic variance 2π f (0) (for the very same reasons that underlie the impossi-
bility result in Pötscher, 2002) t f (0) is not uniformly close to the ideal test tideal .
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The fact that f̂n(0) is also not uniformly close to f (0) (due to the ill-posedness
results in Pötscher, 2002) is now “helpful” in the sense that it in principle allows
for the possibility that 2π f̂n(0) might be closer to the ideal standardization
factor sn than is 2π f (0), thus allowing for the possibility that tRobust might
be closer to the ideal test tideal than to t f (0). [Observe that 2π f̂n(0) as well
as sn each not being uniformly close to 2π f (0) does in principle not preclude
(uniform) closeness between 2π f̂n(0) and sn .] In other words, “aiming” at f (0)
in standardizing the test statistic is simply the wrong thing to do. In that sense,
the ill-posedness of estimating f (0) is then indeed irrelevant for autocorrelation
robust testing (simply because the benchmark t f (0) is irrelevant). As a matter
of fact, there is no statement to the contrary in Pötscher (2002): Note that
Pötscher (2002) only discusses ill-posedness of the problem of estimating f (0)
(considered to be the parameter of interest), and does not make any statements
regarding consequences of this ill-posedness for autocorrelation robust tests
that use 2π f̂n(0) as an estimate of the variance nuisance parameter. The claim
opening the last but one paragraph in Perron and Ren (2011, p. 1) is thus simply
false. Finally, the preceding discussion begs the question whether or not uniform
closeness of 2π f̂n(0) and sn can indeed be established under sufficiently general
assumptions on the underlying correlation structure. If possible, this would then
immediately transfer the good size and power properties of tideal to tRobust .
However, unfortunately this is not possible: Recall from Example 3.2 that in
the location model considered in Perron and Ren (2011) the size of common
autocorrelation robust tests like tRobust is always equal to 1.

3.2.3. Further Obstructions to Favorable Size and Power Properties. The
negative results given in Theorem 3.3 rest on Assumption 1, i.e., C ⊇ CAR(1),
and the fact that there exist sequences �m ∈ CAR(1) that converge to the singular
matrices e+e′+ or e′−e− leading to a concentration phenomenon as discussed
in the wake of Theorem 3.3. The commonly used nonparametric covariance
models like Cξ discussed at the beginning of Section 3 of course also satisfy
Cξ ⊇ CAR(p) for every p, where CAR(p) is the set of all n ×n correlation matrices
arising from stationary autoregressive process of order not larger than p. In this
case additional singular limit matrices arise which lead to additional conditions
under which size equals 1 or infimal power equals 0. We illustrate this shortly for
the case where C ⊇ CAR(2). To this end define for ν ∈ (0,π) the matrix E(ν)
as the n × 2 matrix with t-th row equal to (cos(tν),sin(tν)). Furthermore set
E(0) = e+ and E(π) = e−. In Lemma G.2 in Appendix G we show that the ma-
trices E(ν)E(ν)′ for ν ∈ [0,π ] arise as limits of sequences of matrices in CAR(2).
Obviously, E(ν)E(ν)′ is singular whenever n ≥ 3. Restricting ν to the set {0,π}
in the subsequent theorem reproduces the conditions appearing in Theorem 3.3
(albeit under the stronger assumptions that C⊇ CAR(2) and n ≥ 3).

THEOREM 3.12. Suppose C⊇ CAR(2), Assumptions 2 and 3 are satisfied, and
n ≥ 3 holds. Let T be the test statistic defined in (7) with �̂w as in (6). Let W (C) =
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{y ∈ Rn : T (y) ≥ C} be the rejection region where C is a real number satisfying
0 < C < ∞. Then the following holds:

1. Suppose there exists a ν ∈ [0,π ] such that rank(B(z)) = q and T (z +μ∗
0) >

C hold for some (and hence all) μ∗
0 ∈M0 and for λspan(E(ν))-almost all

z ∈ span(E(ν)). Then

sup
�∈C

Pμ0,σ 2� (W (C)) = 1

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞. In particular, the size of
the test is equal to one.

2. Suppose there exists a ν ∈ [0,π ] such that rank(B(z)) = q and T (z +μ∗
0) <

C hold for some (and hence all) μ∗
0 ∈M0 and for λspan(E(ν))-almost all

z ∈ span(E(ν)). Then

inf
�∈C Pμ0,σ 2� (W (C)) = 0

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞, and hence

inf
μ1∈M1

inf
�∈C Pμ1,σ 2� (W (C)) = 0

holds for every 0 < σ 2 < ∞. In particular, the test is biased. Furthermore,
the nuisance-infimal rejection probability at every point μ1 ∈M1 is zero,
i.e.,

inf
0<σ 2<∞

inf
�∈C Pμ1,σ 2�(W (C)) = 0.

In particular, the infimal power of the test is equal to zero.
3. Suppose there exists a ν ∈ [0,π ] such that B(z) = 0 and Rβ̂(z) �= 0 hold for

λspan(E(ν))-almost all z ∈ span(E(ν)). Then

sup
�∈C

Pμ0,σ 2� (W (C)) = 1

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞. In particular, the size of
the test is equal to one.

To illustrate the value added of the preceding theorem when compared to Theo-
rem 3.3 consider the following example: Assume that e+ and e− are both elements
of M and Rβ̂(e+) = Rβ̂(e−) = 0. Then none of the conditions in Theorem 3.3
are satisfied and thus this theorem is not applicable. Suppose now that the design
matrix X contains E(ν) for some ν ∈ (0,π) as a submatrix, i.e., seasonal regres-
sors are included. Without loss of generality assume that X = (E(ν), X (2)). If we
want to test for absence of seasonality at angular frequency ν, this corresponds to
R = (I2,0) and r = 0. In case Assumption 3 holds, the conditions in Case 3 of
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the preceding theorem are then obviously satisfied and we conclude that the size
of the test for absence of seasonality is equal to one. [In case Assumption 3 is
violated, the test breaks down in a trivial way as noted earlier.]

We finally ask what happens if we allow for covariance structures deriving from
even higher-order autoregressive models, i.e., C⊇ CAR(p) with p > 2. While ad-
ditional concentration spaces arise and theorems like the one above can be easily
obtained from Corollary 5.17, these theorems will often not generate new ob-
structions to good size and power properties. The reason for this is that any of
the newly arising concentration spaces already contains one of the concentration
spaces span(E(ν)) for ν ∈ [0,π ] as a subset.

3.3. Parametrically Based Autocorrelation Robust Tests

The results in Section 3.2 were given for autocorrelation robust tests that make use
of a nonparametric estimator �̂. In this subsection we show that the phenomena
encountered in Section 3.2 (size distortions and power deficiencies) are not a con-
sequence of the nonparametric nature of the estimator, but can equally arise if a
parametric estimator is being used (and even if the parametric model employed
correctly describes the covariance structure of the errors). We illustrate this for the
case where the test statistic is obtained from a feasible generalized least squares
(GLS) estimator predicated on an AR(1) covariance structure, as well as for the
case where the test statistic is obtained from the ordinary least squares (OLS) esti-
mator combined with an estimator for the variance covariance matrix again pred-
icated on the same covariance structure. The theoretical results derived below
are in line with Monte Carlo results provided in Park and Mitchell (1980) and
Magee (1989).

We start with the estimator ρ̂ that will be used in the feasible GLS procedure as
well as in the estimator for the variance covariance matrix of the OLS estimator.

Assumption 4. For a1 ∈ {1,2} and a2 ∈ {n −1,n} with a1 ≤ a2 the estimator ρ̂
is of the form

ρ̂(y) =
n∑

t=2

ût (y)ût−1(y)

/ a2∑
t=a1

û2
t (y)

for all y ∈ R
n\N0(a1,a2) and it is undefined for y ∈ N0(a1,a2) ={

y ∈ Rn :
a2∑

t=a1

û2
t (y) = 0

}
.

The Yule–Walker estimator, which we shall abbreviate by ρ̂Y W , corresponds
to a1 = 1, a2 = n, while the least squares estimator ρ̂L S corresponds to a1 = 1,
a2 = n−1. The estimators which use a1 = 2, a2 = n−1 or a1 = 2, a2 = n have also
been considered in the literature (see, e.g., Park and Mitchell, 1980; Magee, 1989).
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Remark 3.13. (Some properties of ρ̂)

(i) For the Yule–Walker estimator ρ̂Y W we have N0(1,n) =M, i.e., ρ̂Y W

is well-defined for every y ∈ Rn\M. Furthermore, ρ̂Y W is bounded
away from 1 in modulus uniformly over its domain of definition,
i.e., supy∈Rn\M |ρ̂Y W (y)| < 1 holds. This follows easily from the well-
known fact that |ρ̂Y W (y)| < 1, that the supremum in question does
not change its value if the range for y is replaced by the compact set{

y ∈M⊥ : ‖y‖ = 1
}
, and the fact that ρ̂Y W is continuous on this set.

[It can also be derived from the discussion in Grenander and Rosenblatt,
1957, Sect. 3.5.]

(ii) The least squares estimator ρ̂L S exhibits a somewhat different behavior:
First, ρ̂L S is well defined only onRn\N0(1,n−1), with N0(1,n−1) given
by
{

y ∈ Rn : û(y) ∈ span(en (n))
}
. Note thatRn\N0(1,n −1) is contained

inRn\M, but is strictly smaller in case en (n) is orthogonal to each column
of X . Second, ρ̂L S is not bounded away from one in modulus, in fact∣∣ρ̂L S

∣∣≥ 1 can occur.16

(iii) The behavior of the remaining two estimators ρ̂ is similar to the behavior
of ρ̂L S .

(iv) The set N0(a1,a2) is always a closed subset of Rn . It is guaranteed to be
a λRn -null set provided k ≤ a2 −a1 holds, cf. Lemma 3.14. This condition
on k is no restriction in the case of the Yule–Walker estimator (since we
have assumed k < n from the beginning), and is a very mild condition in
the other cases (requiring k ≤ n −2 or k ≤ n −3 at most).

The definition of the test statistics further below will require inversion of �(ρ̂).
While �(ρ̂) is nonsingular if

∣∣ρ̂∣∣ �= 1, �(ρ̂) is singular if
∣∣ρ̂∣∣ = 1, and hence we

need to study the set of y where
∣∣ρ̂ (y)

∣∣= 1 (or ρ̂ (y) is undefined).

LEMMA 3.14. Let ρ̂ satisfy Assumption 4. ThenM⊆ N0(a1,a2) ⊆ N1(a1,a2)
where

N1(a1,a2) =
{

y ∈ Rn :

∣∣∣∣∣
n∑

t=2

ût (y)ût−1(y)

∣∣∣∣∣=
a2∑

t=a1

û2
t (y)

}
.

The set N1(a1,a2) is a closed subset of Rn and is precisely the set where the
estimator ρ̂ is either not well-defined or is equal to 1 in modulus. The estimator
ρ̂ is continuous on Rn\N0(a1,a2) ⊇ Rn\N1(a1,a2). If k ≤ a2 −a1 holds, the set
N1(a1,a2) is a λRn -null set.

While for the Yule–Walker estimator N1(1,n) = N0(1,n) holds as a con-
sequence of Remark 3.13(i), for the other estimators ρ̂ the corresponding set
N1(a1,a2) can be a proper superset of N0(a1,a2).
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Given an estimator ρ̂ satisfying Assumption 4 we now introduce the test
statistic

TFGL S (y) =
{

(Rβ̃(y)− r)′�̃−1(y)(Rβ̃(y)− r) if y ∈ Rn\N∗
2 (a1,a2),

0 else.

where

β̃(y) = (X ′�−1(ρ̂(y))X)−1 X ′�−1(ρ̂(y))y,

σ̃ 2(y) = (n − k)−1(y − X β̃(y))′�−1(ρ̂(y))(y − X β̃(y)),

�̃(y) = σ̃ 2(y)R(X ′�−1(ρ̂(y))X)−1 R′.

Here N∗
2 (a1,a2) is defined via

R
n\N∗

2 (a1,a2) =
{

y ∈ Rn\N2(a1,a2) : σ̃ 2(y) �= 0,

det
(

R(X ′�−1(ρ̂(y))X)−1 R′) �= 0
}
,

where N2(a1,a2) is given by

R
n\N2(a1,a2) =

{
y ∈ Rn\N1(a1,a2) : det

(
X ′�−1(ρ̂(y))X

)
�= 0
}
.

Note that β̃, σ̃ 2, and �̃ are well-defined on Rn\N2(a1,a2), with �̃(y) being
nonsingular if and only if y ∈ Rn\N∗

2 (a1,a2), see Lemma B.1 in Appendix B.
Furthermore, define

TO L S (y) =
{

(Rβ̂(y)− r)′�̂−1(y)(Rβ̂(y)− r) if y ∈ Rn\N∗
0 (a1,a2),

0 else,

where β̂(y) is the OLS-estimator, σ̂ 2(y) = (n − k)−1û′(y)û(y), and

�̂(y) = σ̂ 2(y)R(X ′ X)−1 X ′�(ρ̂(y))X (X ′ X)−1 R′.

Here N∗
0 (a1,a2) is defined via

R
n\N∗

0 (a1,a2) = {
y ∈ Rn\N0(a1,a2) :

det
(

R(X ′ X)−1 X ′�(ρ̂(y))X (X ′ X)−1 R′) �= 0
}
.

Of course, β̂ and σ̂ 2 are well-defined on all of Rn , while �̂ is well-defined
on Rn\N0(a1,a2) ⊇ R

n\N∗
0 (a1,a2). Furthermore, �̂(y) is nonsingular for y ∈

R
n\N∗

0 (a1,a2), see Lemma B.1 in Appendix B. We note that the exceptional sets
N∗

0 (a1,a2) and N∗
2 (a1,a2), respectively, appearing in the definition of the test
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statistics are λRn -null sets provided k ≤ a2 − a1 holds, see Lemma B.1. [For the
case of the Yule–Walker estimator actually N∗

2 (1,n) = N2(1,n) = N1(1,n) =
N∗

0 (1,n) = N0(1,n) = M holds, because �(ρ̂Y W (y)) is positive definite for
every y /∈ N0(1,n) =M in view of

∣∣ρ̂Y W (y)
∣∣< 1, cf. Remark 3.13(i).]

As already noted in Remark 3.13, except for the Yule–Walker estimator we
can not rule out that ρ̂ (y) is larger than one in absolute value. For such val-
ues of y the matrix �(ρ̂ (y)), although being nonsingular, is indefinite. [To see
this, note that det�(ρ̂ (y)) = (1 − ρ̂2 (y))n−1, which is negative for

∣∣ρ̂ (y)
∣∣ > 1

if n is even. Hence there must exist a negative and a positive eigenvalue. For
odd n > 1 the claim then follows from Cauchy’s interlacing theorem.] In fact, if∣∣ρ̂ (y)

∣∣ > 1 occurs for some y, then it occurs on a set of positive λRn -measure in

view of continuity of ρ̂. As a consequence, �̃(y) and �̂(y) are not guaranteed
to be λRn -almost everywhere nonnegative definite (except if the Yule–Walker es-
timator is being used), although they are λRn -almost everywhere nonsingular in
case k ≤ a2 −a1. Of course, the probability of the event

∣∣ρ̂ (y)
∣∣> 1 will go to zero

as sample size goes to infinity, but this is not relevant for the present finite-sample
analysis and the complications ensuing from

∣∣ρ̂ (y)
∣∣ > 1 have to be dealt with.

Fortunately, the theory in Section 5.4 does not require the estimated variance co-
variance matrices to be nonnegative definite almost everywhere but only requires
some weaker properties to be satisfied which are formalized in Assumptions 6
and 7 in Section 5.4. Lemma B.3 in Appendix B shows that �̃ and �̂ satisfy these
assumptions.

The subsequent theorem provides a negative result that is similar in spirit to
Theorem 3.3.

THEOREM 3.15. Suppose Assumptions 1 and 4 are satisfied and k ≤
a2 − a1 holds. Let WFGL S(C) = {y ∈ Rn : TFGL S(y) ≥ C} and WO L S(C) =
{y ∈ Rn : TO L S(y) ≥ C} be the rejection regions corresponding to the test statis-
tics TFGL S and TO L S, respectively, where C is a real number satisfying 0 < C <
∞. Then the following holds:

1. Suppose e+ /∈ N∗
2 (a1,a2) and TFGL S(e+ + μ∗

0) > C hold for some (and
hence all) μ∗

0 ∈M0, or e− /∈ N∗
2 (a1,a2) and TFGL S(e− + μ∗

0) > C hold
for some (and hence all) μ∗

0 ∈M0. Then

sup
�∈C

Pμ0,σ 2� (WFGL S (C)) = 1

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞. In particular, the size of
the test is equal to one.

2. Suppose e+ /∈ N∗
2 (a1,a2) and TFGL S(e+ + μ∗

0) < C hold for some (and
hence all) μ∗

0 ∈M0, or e− /∈ N∗
2 (a1,a2) and TFGL S(e− + μ∗

0) < C hold
for some (and hence all) μ∗

0 ∈M0. Then

inf
�∈C Pμ0,σ 2� (WFGL S (C)) = 0
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holds for every μ0 ∈M0 and every 0 < σ 2 < ∞, and hence

inf
μ1∈M1

inf
�∈C Pμ1,σ 2� (WFGL S (C)) = 0

holds for every 0 < σ 2 < ∞. In particular, the test is biased. Furthermore,
the nuisance-infimal rejection probability at every point μ1 ∈M1 is zero,
i.e.,

inf
0<σ 2<∞

inf
�∈C Pμ1,σ 2�(WFGL S (C)) = 0.

In particular, the infimal power of the test is equal to zero.
3. Suppose that e+ ∈M and Rβ̂(e+) �= 0 hold. Then there exists a constant

K FGL S (e+), which depends only on e+, R, and X, such that for every
μ0 ∈M0, every σ with 0 < σ < ∞, and every M ≥ 0 we have

inf
γ∈R,|γ |≥M

inf
�∈C Pμ0+γ e+,σ 2� (WFGL S(C)) ≤ KFGL S (e+)

≤ sup
�∈C

Pμ0,σ 2� (WFGL S(C)) ;

Note that μ0 + γ e+ ∈ M1 for γ �= 0. Furthermore, if ρ̂ ≡ ρ̂Y W , then
KFGL S (e+) = 1 and hence

sup
�∈C

Pμ0,σ 2� (WFGL S (C)) = 1 (12)

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞. If e− ∈M and Rβ̂(e−) �= 0
hold then the analogous statements hold with e+ replaced by e− where the
constant K FGL S (e−) now depends only on e−, R, and X.

4. Statements analogous to 1.-3. hold true if TFGL S is replaced by TO L S,
WFGL S (C) is replaced by WO L S(C), the set N∗

2 (a1,a2) is replaced
by N∗

0 (a1,a2), and the constants K FGL S (·) are replaced by constants
KO L S (·).

The meaning of Parts 1 and 2 of the preceding theorem is similar to the mean-
ing of the corresponding parts of Theorem 3.3. We note that in the case where the
Yule–Walker estimator ρ̂Y W is used the exceptional null sets appearing in Parts 1
and 2 (and in the corresponding portion of Part 4) satisfy N∗

2 (1,n) = N∗
0 (1,n) =

M. Part 3 differs somewhat from the corresponding part of the earlier theorem,
and tells us that, given the conditions in Part 3 are met, there exist points in the
alternative, arbitrarily far away from the null hypothesis, at which power is not
larger than the size of the test. The reason for the difference between Part 3 of
Theorem 3.3 and Part 3 of the preceding theorem lies in the fact that the variance
covariance matrix estimator �̃ used in the present subsection can be indefinite
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and that the concentration direction e+ (e−, respectively) belongs to the null set
on which �̃ is not defined. This requires one in the proof of the preceding theorem
to resort to Theorem 5.19 rather than to using Part 3 of Corollary 5.17 (even when
the Yule–Walker estimator ρ̂Y W is used). A similar remark applies also to the
corresponding portion of Part 4 of the preceding theorem. In view of the general
results in Section 5.4 there is little doubt that similar negative results can also be
obtained for FGLS or OLS based tests that are constructed on the basis of higher
order autoregressive AR models or of other more profligate parametric models
(as long as C ⊇ CAR(1) is assumed). Hence it is to be expected that autocorrela-
tion robust tests based on autoregressive estimates (cf. Berk, 1974; den Haan and
Levin, 1997; Sun and Kaplan, 2012) will also suffer from severe size and power
problems.

The results given in the preceding theorem reveal serious size and power
problems of the tests based on TFGL S and TO L S . Note that these problems
arise even if C = CAR(1), i.e., even if the construction of the test statistics
makes use of the correct covariance model. If C = CAR(1) holds, it is inter-
esting to contrast the above results with the size and power properties of the
corresponding infeasible tests based on T ∗

GL S and T ∗
O L S which are defined

in a similar way as TFGL S and TO L S are, but with ρ̂ replaced by the true
value of ρ: These tests are standard F-tests (except for not being standard-
ized by q), have well-known and reasonable size and power properties, and
do not suffer from the size and power problems exhibited by their feasible
counterparts.

Similar to the situation in Section 3.2, the conditions in Parts 1–3 of the pre-
ceding theorem only depend on a1 and a2 (i.e., on the choice of estimator ρ̂), the
design matrix X , the restriction (R,r), the vector e+ (e−, respectively), and the
critical value C . Hence, in any particular application it can be decided whether
or not (and which of) these conditions are satisfied. We furthermore note that
remarks analogous to Remarks 3.4 and 3.5 also apply mutatis mutandis to the
preceding theorem. We also note that a result analogous to Theorem 3.12 could
be given here, but we do not spell out the details.

We next show that the conditions of Theorem 3.15 involving the design matrix
X are generically satisfied. The first part of the subsequent proposition shows
that these conditions are generically satisfied in the class of all possible design
matrices of rank k. Parts 2 and 3 show a corresponding result if we impose that the
regression model has to contain an intercept. In the proposition the dependence
of several quantities like TFGL S , TO L S , N∗

2 (a1,a2), etc on the design matrix X
will be important and thus we shall write TFGL S,X , TO L S,X , N∗

2,X (a1,a2), etc for
these quantities in the result to follow.

PROPOSITION 3.16. Suppose Assumption 1 holds. Fix (R,r) with
rank(R) = q, fix 0 < C < ∞, and fix a1 ∈ {1,2} and a2 ∈ {n −1,n} in Assump-
tion 4. Suppose k ≤ a2 −a1 holds. Let TFGL S,X and TO L S,X be the test statistics
defined above and let μ∗

0 ∈M0 be arbitrary.
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1. With X0 defined in Proposition 3.6 define now

X1,FGL S (e+) = {X ∈ X0 : e+ ∈ N∗
2,X (a1,a2)

}
,

X2,FGL S (e+) = {X ∈ X0\X1,FGL S (e+) : TFGL S,X (e+ +μ∗
0) = C

}
,

and similarly define X1,FGL S (e−), X2,FGL S (e−). [Note that X2,FGL S (e+)
and X2,FGL S (e−) do not depend on the choice of μ∗

0.] Then
X1,FGL S (e+) and X1,FGL S (e−) are λRn×k -null sets. The same is true for
X2,FGL S (e+) (X2,FGL S (e−), respectively) under the provision that it is a
proper subset of X0\X1,FGL S (e+) (X0\X1,FGL S (e−), respectively). The set
of all design matrices X ∈ X0 for which Theorem 3.15 does not apply is a
subset of(
X1,FGL S (e+)∪X2,FGL S (e+)

)∩ (X1,FGL S (e−)∪X2,FGL S (e−)
)
.

Hence it is a λRn×k -null set provided the preceding provision holds for at
least one of X2,FGL S (e+) or X2,FGL S (e−); it thus is a “negligible” subset
of X0 in view of the fact that X0 differs from Rn×k only by a λRn×k -null set.

2. Suppose k ≥ 2 and n ≥ 4 hold and suppose X has e+ as its first column,
i.e., X = (e+, X̃

)
. With X̃0 defined in Proposition 3.6 define

X̃1,FGL S (e−) =
{

X̃ ∈ X̃0 : e− ∈ N∗
2,
(

e+,X̃
) (a1,a2)

}
,

X̃2,FGL S (e−) =
{

X̃ ∈ X̃0\X̃1,FGL S (e−) : T
FGL S,

(
e+,X̃

)(e− +μ∗
0) = C

}
,

and note that X̃2,FGL S (e−) does not depend on the choice of μ∗
0.

Then X̃1,FGL S (e−) is a λRn×(k−1)-null set. The set X̃2,FGL S (e−) is
a λRn×(k−1) -null set under the provision that it is a proper subset
of X̃0\X̃1,FGL S (e−). [The analogously defined sets X̃1,FGL S (e+) and
X̃2,FGL S (e+) satisfy X̃1,FGL S (e+) = X̃0 and X̃2,FGL S (e+) = ∅.] The set
of all matrices X̃ ∈ X̃0 such that Theorem 3.15 does not apply to the design
matrix X = (e+, X̃

)
is a subset of X̃1,FGL S (e−)∪ X̃2,FGL S (e−) and hence

is a λRn×(k−1) -null set under the preceding provision; it thus is a “negligi-
ble” subset of X̃0 in view of the fact that X̃0 differs from Rn×(k−1) only by a
λRn×(k−1) -null set.

3. Define X1,O L S (·) and X2,O L S (·) analogously, but with N∗
0,X (a1,a2) re-

placing N∗
2,X (a1,a2) and TO L S,X replacing TFGL S,X . Similarly define

X̃1,O L S (·) and X̃2,O L S (·). Then Part 1 (Part 2, respectively) holds anal-
ogously for X1,O L S (·) and X2,O L S (·) (X̃1,O L S (·) and X̃2,O L S (·), respec-
tively) with obvious changes.

4. Suppose X = (e+, X̃
)
, and suppose the first column of R is nonzero. Then

Part 3 of Theorem 3.15 applies to the design matrix X = (e+, X̃
)

for every

X̃ ∈ X̃0 (for the FGLS- as well as for the OLS-based test).
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The preceding genericity result maintains in Part 1 the provision that
X2,FGL S (e+) is a proper subset of X0\X1,FGL S (e+) or that X2,FGL S (e−) is
a proper subset of X0\X1,FGL S (e−). Note that the provision depends on the crit-
ical value C . If the provision is satisfied for the given C , we can conclude from
Part 1 that the set of all design matrices X ∈X0 for which Theorem 3.15 is not ap-
plicable to the test statistic TFGL S is “negligible”. If the provision is not satisfied,
i.e., if X2,FGL S (e+) = X0\X1,FGL S (e+) and X2,FGL S (e−) = X0\X1,FGL S (e−)
holds, and thus we cannot draw the desired conclusion for the given value of C ,
we immediately see that the provision must then be satisfied for any other choice
C ′ of the critical value; hence, negligibility of the set of design matrices for which
Theorem 3.15 is not applicable to the test statistic TFGL S can then be concluded
for any C ′ �= C . Summarizing we see that the provision is always satisfied except
possibly for one particular choice of the critical value. A similar comment applies
to Parts 2 and 3 of the proposition.17

Similar as in Section 3.2, we next discuss an exceptional case to which Theorem
3.15 does not apply and which allows for a positive result, at least if the covariance
model C is assumed to be CAR(1) or is approximated by CAR(1) near the singular
points (in the sense of Remark 3.10(i)).

THEOREM 3.17. Suppose C = CAR(1), Assumption 4 is satisfied, and k ≤
a2 − a1 holds. Let WFGL S(C) = {y ∈ Rn : TFGL S(y) ≥ C} and WO L S(C) =
{y ∈ Rn : TO L S(y) ≥ C} be the rejection regions corresponding to the test statis-
tics TFGL S and TO L S, respectively, where C is a real number satisfying
0 < C < ∞. If e+,e− ∈M and Rβ̂(e+) = Rβ̂(e−) = 0 is satisfied, then the fol-
lowing holds for W (C) = WFGL S(C) as well as W (C) = WO L S(C):

1. The size of the rejection region W (C) is strictly less than 1, i.e.,

sup
μ0∈M0

sup
0<σ 2<∞

sup
−1<ρ<1

Pμ0,σ 2�(ρ) (W (C)) < 1.

Furthermore,

inf
μ0∈M0

inf
0<σ 2<∞

inf−1<ρ<1
Pμ0,σ 2�(ρ) (W (C)) > 0.

2. The infimal power is bounded away from zero, i.e.,

inf
μ1∈M1

inf
0<σ 2<∞

inf−1<ρ<1
Pμ1,σ 2�(ρ)(W (C)) > 0.

3. Suppose that a1 = 1 and a2 = n. Then for every 0 < c < ∞
inf

μ1∈M1,0<σ 2<∞
d(μ1,M0)/σ≥c

Pμ1,σ 2�(ρm )(W (C)) → 1

holds for m → ∞ and for any sequence ρm ∈ (−1,1) satisfying |ρm | → 1.
Furthermore, for every sequence 0 < cm < ∞ and every 0 < ε < 1

inf
μ1∈M1,

d(μ1,M0)≥cm

inf−1+ε≤ρ≤1−ε
Pμ1,σ 2

m�(ρ)(W (C)) → 1
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holds for m → ∞ whenever 0 < σ 2
m < ∞ and cm/σm → ∞. [The very

last statement holds even without the conditions e+,e− ∈M and Rβ̂(e+) =
Rβ̂(e−) = 0.]

4. For every δ, 0 < δ < 1, there exists a C(δ), 0 < C(δ) < ∞, such that

sup
μ0∈M0

sup
0<σ 2<∞

sup
−1<ρ<1

Pμ0,σ 2�(ρ)(W (C(δ))) ≤ δ.

A discussion similar to the one following Theorem 3.7 applies also here. Fur-
thermore, a result paralleling Theorem 3.8 can again be obtained by a com-
bined application of Theorem 5.21 and Proposition 5.23. The so-obtained result
shows how adjusted test statistics T̄FGL S and T̄O L S can be constructed that have
size/power properties as given in the preceding theorem also in many cases which
fall under the wrath of Theorem 3.15 (and for which the tests based on TFGL S

and TO L S suffer from extreme size or power deficiencies). The adjustment mech-
anism again amounts to using a “working model” that always adds the regressors
e+ and/or e− to the design matrix. We abstain from providing details.

3.4. Some Remarks on the F-Test without Correction for
Autocorrelation

As mentioned in the introduction, a considerable body of literature is concerned
with the properties of the standard F-test (i.e., the F-test without correction for
autocorrelation) in the presence of autocorrelation. Much of this literature con-
centrates on the case where the errors follow a stationary autoregressive process
of order 1, i.e., C = CAR(1). As the correlation in the errors is not accounted for
in the standard F-test, bad performance of the standard F-test for large values
of the correlation ρ can be expected. This has been demonstrated formally in
Krämer (1989), Krämer et al. (1990), and subsequently in Banerjee and Magnus
(2000): These papers determine the limit as ρ → 1 of the error of the first kind
of the standard F-test and show that (i) this limit is 1 if the regression contains
an intercept and the restrictions to be tested involve the intercept (i.e., the n × 1
vector e+ = (1, . . . ,1)′ belongs to the span of the design matrix and Rβ̂(e+) �= 0
holds) or if the regression does not contain an intercept (i.e., e+ does not belong
to the span of the design matrix) and a certain observable quantity, A say, is pos-
itive, (ii) it is 0 if the regression does not contain an intercept and the observable
quantity A is negative, and (iii) it is a value between 0 and 1 if the regression
contains an intercept but the restrictions to be tested do not involve the intercept
(i.e., e+ belongs to the span of the design matrix and Rβ̂(e+) = 0 holds).18 It per-
haps comes as a surprise that autocorrelation robust tests, which have built into
them a correction for autocorrelation, exhibit a similar behavior as shown in Sec-
tion 3 of the present paper. We mention that, due to the relatively simple structure
of the standard F-test statistic as a ratio of quadratic forms, the method of proof
in Krämer (1989), Krämer et al. (1990), and Banerjee and Magnus (2000) is by
direct computation of the limit (as ρ → 1) of the test statistic. In contrast, the
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results for the much more complicated test statistics considered in the present
paper rely on quite different methods which make use of invariance consider-
ations and are of a more geometric flavor. Needless to say, the just mentioned
results in Krämer (1989), Krämer et al. (1990), and Banerjee and Magnus (2000)
can be rederived through a straightforward application of the general results in
Section 5.4 to the standard F-test.

In light of the fact that the standard F-test makes no correction for autocor-
relation at all, a perhaps surprising observation is that nevertheless an analogue
to Theorems 3.7 and 3.17 can be established for the standard F-test by a simple
application of Theorem 5.21. Even more, the adjustment procedure described in
Proposition 5.23 can be applied to the standard F-test leading to a result anal-
ogous to Theorem 3.8. While these results show that the size and power of the
so-adjusted standard F-test do not “break down” completely for extreme corre-
lations, they do not tell us much about the performance of the adjusted test for
moderate correlations.

4. SIZE AND POWER OF TESTS OF LINEAR RESTRICTIONS IN
REGRESSION MODELS WITH HETEROSKEDASTIC DISTURBANCES

We next turn to size and power properties of commonly used heteroskedasticity
robust tests. To this end we allow for heteroskedasticity of unknown form as is
common in the literature and thus allow that the errors in the regression model
have a variance covariance matrix σ 2� where � is an element of the covariance
model given by

CHet =
{

diag(τ 2
1 , . . . ,τ 2

n ) : τ 2
i > 0, i = 1, . . . ,n,

n∑
i=1

τ 2
i = 1

}
.

The normalization for � chosen is of course arbitrary and could equally well
be replaced, e.g., by the normalization τ 2

1 = 1. The heteroskedasticity robust test
statistic considered is given by

THet (y) =
{

(Rβ̂ (y)− r)′�̂−1
Het (y)(Rβ̂ (y)− r) if det�̂Het (y) �= 0,

0 if det�̂Het (y) = 0,
(13)

where �̂Het = R�̂Het R′ and �̂Het is a heteroskedasticity robust estimator. Such
estimators were introduced in Eicker (1963, 1967) and have later found their way
into the econometrics literature (e.g., White, 1980). They are of the form

�̂Het (y) = (X ′ X)−1 X ′ diag
(

d1û2
1 (y) , . . . ,dnû2

n (y)
)

X (X ′ X)−1

where the constants di > 0 may depend on the design matrix. Typical choices
for di are di = 1, di = n/(n − k), di = (1−hii )

−1, or di = (1−hii )
−2 where hii
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denotes the i-th diagonal element of the projection matrix X (X ′ X)−1 X ′, see Long
and Ervin (2000) for an overview. Another suggestion is di = (1−hii )

−δi for
suitable choice of δi , see Cribari-Neto (2004). For the last three choices of di we
use the convention that we set di = 1 in case hii = 1. Note that hii = 1 implies
ûi (y) = 0 for every y, and hence it is irrelevant which real value is assigned to di

in case hii = 1.
Similar as in Section 3.2 we need to ensure that �̂Het (y) is nonsingular λRn -

almost everywhere. As shown in the subsequent lemma this is the case pro-
vided Assumption 3 introduced in Section 3.2 is satisfied. The lemma also shows
that in case this assumption is violated the matrix �̂Het (y) is singular every-
where, leading to a complete and trivial breakdown of the test. Recall the def-
inition of the matrix B (y) given in (8) and note that it is independent of the
constants di .

LEMMA 4.1.

1. �̂Het (y) is nonnegative definite for every y ∈ Rn.
2. �̂Het (y) is singular if and only if rank(B(y)) < q.
3. �̂Het (y) = 0 if and only if B(y) = 0.
4. The set of all y ∈ Rn for which �̂Het (y) is singular (or, equivalently, for

which rank(B(y)) < q) is either a λRn -null set or the entire sample space
R

n. The latter occurs if and only if Assumption 3 is violated.

The proof of the preceding lemma is completely analogous to the proof of
Lemma 3.1 and hence is omitted. We are now in the position to state the result on
size and power of tests based on the statistic THet given in (13).

THEOREM 4.2. Suppose C ⊇ CHet holds and Assumption 3 is satisfied. Let
THet be the test statistic defined in (13) and let WHet (C) = {y ∈ Rn : T (y) ≥ C}
be the rejection region where C is a real number satisfying 0 < C < ∞. Then the
following holds:

1. Suppose for some i , 1 ≤ i ≤ n, we have rank(B(ei (n))) = q and
THet (ei (n)+μ∗

0) > C for some (and hence all) μ∗
0 ∈M0. Then

sup
�∈C

Pμ0,σ 2� (WHet (C)) = 1

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞. In particular, the size of
the test is equal to one.

2. Suppose for some i , 1 ≤ i ≤ n, we have rank(B(ei (n))) = q and
THet (ei (n)+μ∗

0) < C for some (and hence all) μ∗
0 ∈M0. Then

inf
�∈C Pμ0,σ 2� (WHet (C)) = 0
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holds for every μ0 ∈M0 and every 0 < σ 2 < ∞, and hence

inf
μ1∈M1

inf
�∈C Pμ1,σ 2� (WHet (C)) = 0

holds for every 0 < σ 2 < ∞. In particular, the test is biased. Furthermore,
the nuisance-infimal rejection probability at every point μ1 ∈M1 is zero,
i.e.,

inf
0<σ 2<∞

inf
�∈C Pμ1,σ 2�(WHet (C)) = 0.

In particular, the infimal power of the test is equal to zero.
3. Suppose for some i , 1 ≤ i ≤ n, we have B(ei (n)) = 0 and Rβ̂(ei (n)) �= 0.

Then

sup
�∈C

Pμ0,σ 2� (WHet (C)) = 1

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞. In particular, the size of
the test is equal to one.

We note that Remark 3.4 as well as most of the discussion following Theo-
rem 3.3 apply mutatis mutandis also here. Similar as in Section 3.2 it is also not
difficult to show (for typical choices of di ) that the set of design matrices X for
which the conditions in Theorem 4.2 are not satisfied is a negligible set. We omit
a formal statement. In contrast to the case considered in Section 3.2, however, no
(nontrivial) analogues to the positive results given in Theorems 3.7 and 3.8 are
possible due to the fact that in the present setting there are now too many concen-
tration spaces (which together in fact span all of Rn). Furthermore, the above
theorem and its proof exploits only the one-dimensional concentration spaces
Zi = span (ei (n)). While every linear space of the form span(ei1 (n) , . . . ,eip (n))
for 0 < p < n and 1 ≤ i1 < .. . < ip ≤ n is a concentration space of the model
C, using all these concentration spaces in conjunction with Corollary 5.17 will
often not deliver additional obstructions to good size or power properties, the
reason being that each of these spaces already contains a concentration space
Zi as a subset. As a further point of interest we note that the assumptions im-
posed in Eicker (1963, 1967) require all variances σ 2τ 2

i to be bounded away from
zero in order to achieve uniformity in the convergence to the limiting distribu-
tion. Hence, Eicker’s assumptions rule out the concentration effect that drives the
above result.19 It appears that this insight in Eicker (1963, 1967) has not been fully
appreciated in the ensuing econometrics literature.

In connection with the preceding theorem, which points out size distortions
and/or power deficiencies of heteroskedasticity robust tests even under a nor-
mality assumption, a result in Dufour (2003, Sect. 4.2) needs to be mentioned
which shows that the size of heteroskedasticity robust tests is always 1 if
one allows for a sufficiently large nonparametric class of distributions for the
errors U.
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We briefly discuss the standard F-test statistic without any correction for het-
eroskedasticity. Let

Tuncorr (y)

=
{

((n − k)/q)(Rβ̂ (y)− r)′
(

R
(
X ′ X

)−1
R′
)−1

(Rβ̂ (y)− r)/
(
û′ (y) û (y)

)
if y /∈M

0 if y ∈M

and define Wuncorr (C) in the obvious way. It is then easy to see that a vari-
ant of Theorem 4.2 also holds with Tuncorr and Wuncorr (C) replacing THet

and WHet (C), respectively, if in this variant of the theorem Assumption 3 is
dropped, the condition rank(B(ei (n))) = q is replaced by the condition ei (n) /∈
M, and the condition B(ei (n)) = 0 is replaced by the condition ei (n) ∈ M.
In a recent paper Ibragimov and Müller (2010) consider the standard t-test for
testing μ = 0 versus μ �= 0 in a Gaussian location model and discuss a result
by Bakirov and Szkely (2005) to the effect that the size of this test under het-
eroskedasticity of unknown form equals the nominal significance level δ as long
as n ≥ 2 and δ ≤ 0.08326. It is not difficult to see that in this location problem
Tuncorr (ei (n)) = 1 holds for every i (note that μ∗

0 = 0) and thus the inequality
Tuncorr (ei (n)) < C always holds whenever C > 1. Hence Case 1 of the variant of
Theorem 4.2 just discussed does not arise whenever C > 1 which is in line with
the results in Bakirov and Szkely (2005). However, note that Case 2 of that theo-
rem then always applies (since obviously ei (n) /∈M = span(e+)), showing that
the standard t-test suffers from severe power deficiencies under heteroskedasticity
of unknown form in case n ≥ 2 and δ ≤ 0.08326 (noting that the squared standard
t-statistic is the standard F-statistic).

5. GENERAL PRINCIPLES UNDERLYING SIZE AND POWER
RESULTS FOR TESTS OF LINEAR RESTRICTIONS IN REGRESSION
MODELS WITH NONSPHERICAL DISTURBANCES

The results on size and power properties given in the previous sections are ob-
tained as special cases of a more general theory that applies to a large class of tests
and to general covariance models C (which thus are not restricted to covariance
structures resulting from stationary disturbances or from heteroskedasticity). This
theory is provided in the present section. We use the notation and assumptions of
Section 2. Since invariance properties of tests will play an important rôle in some
of the results to follow, the next subsection collects some relevant results related to
invariance. In Section 5.2 we provide conditions under which the tests considered
have highly unpleasant size or power properties. This result is based on a “con-
centration” effect. In contrast, Section 5.3 provides conditions under which tests
do not suffer from the size and power problems just mentioned. Section 5.4 then
specializes the results of the preceding subsections to a class of tests which can
be described as nonsphericity-corrected F-type tests. This class of tests contains
virtually all so-called heteroskedasticity and autocorrelation robust tests available
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in the literature as special cases. Furthermore, Section 5.4 also contains another
negative result, the derivation of which exploits the particular structure of these
tests.

5.1. Some Preliminaries on Groups and Invariance

Let G be a group of bijective Borel-measurable transformations of Rn into itself,
the group operation being the composition of transformations. A function S de-
fined on Rn is said to be invariant under the group G if S(g(y)) = S(y) for
all y ∈ Rn and all g ∈ G. A subset A of Rn is said to be invariant under G
if g(A) ⊆ A holds for every g ∈ G. Since with g also g−1 belongs to G, this
is equivalent to g(A) = A for every g ∈ G, and thus to invariance of the in-
dicator function of A as defined before.20 Clearly, invariance of S : Rn → R,
the extended real line, under the group G implies invariance of the super-level
sets W = {y : S(y) ≥ C}. Furthermore, a function S defined on Rn is said to
be almost invariant under the group G if S(g(y)) = S(y) holds for all g ∈ G
and all y ∈ Rn\N (g) with Borel-sets N (g) satisfying λRn (N (g)) = 0 and also
λRn

(
g′−1(N (g))

) = 0 for all g′ ∈ G.21 A subset A of Rn is said to be almost
invariant if g(A) ⊆ A ∪ N (g) holds for every g ∈ G with the Borel-sets N (g)
satisfying λRn (N (g)) = 0 and λRn

(
g′−1(N (g))

) = 0 for all g′ ∈ G. It is easy to
see that this is equivalent to g(A)� A ⊆ N∗(g) for every g ∈ G, with Borel-sets
N∗(g) satisfying λRn (N∗(g)) = 0 and λRn

(
g′−1(N∗(g))

)= 0 for all g′ ∈ G; thus
it is equivalent to almost invariance of the indicator function of A. Clearly, almost
invariance of S : Rn → R under the group G implies almost invariance of the
super-level sets W = {y : S(y) ≥ C}.

We are interested in some particular groups of affine transformations. For an
affine subspace N of Rn let

G(N) = {gα,ν,ν′ : α �= 0, ν′ ∈N}
for some fixed but arbitrary ν ∈ N, where the affine map gα,ν,ν′ is given by
gα,ν,ν′(y) = α(y − ν) + ν′ with α ∈ R. Observe that G(N) does not depend on
the choice of ν (in particular, if N is a linear subspace, one may choose ν = 0).
Hence, G(N) can also be written in a redundant way as

G(N) = {gα,ν,ν′ : α �= 0, ν ∈N, ν′ ∈N} .

It is easy to see that G(N) is a group w.r.t. composition which is non-abelian
except if N is a singleton. For later use we also note that N as well as Rn\N are
invariant under G(N), and that G(N) acts transitively on N (but not on Rn\N
in general). Furthermore, note that the elements of G(N) can also be written as
gα,ν,ν′(y) = αy + (1−α)ν + (ν′ −ν).

Remark 5.1. We make an observation on the structure of G(N). Let G1(N) de-
note the collection of transformations gα,ν,ν(y) for every α �= 0 and every ν ∈N,
and let G2(N) denote the collection of transformations g1,ν,ν′(y) for every pair
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ν,ν ′ ∈ N. Obviously, G1(N) as well as G2(N) are subsets of G(N), and every
element of G(N) is the composition of an element in G2(N) with an element of
G1(N). While G2(N) is a subgroup, G1(N) is not (as it is not closed under com-
position) except in the trivial case where N is a singleton. However, the group
generated by G1(N) is precisely G(N). As a consequence, any function S which
is invariant under the elements of G1(N) (meaning that S(g(y)) = S(y) for all
y ∈ Rn and all g ∈ G1(N)) is already invariant under the entire group G(N), and
a similar statement holds for almost invariance.

PROPOSITION 5.2. A maximal invariant for G(N) is given by

h(y) =
〈
	(N−ν∗)⊥(y −ν∗)/

∥∥∥	(N−ν∗)⊥(y −ν∗)
∥∥∥〉 ,

where ν∗ is an arbitrary element of N. The maximal invariant h in fact does not
depend on the choice of ν∗ ∈N. [Here we use the convention x/‖x‖ = 0 if x = 0.]

Remark 5.3. Specializing to the case N = M0 it is obvious that
	(M0−μ0)

⊥(y −μ0) can be computed as y − X β̂rest (y), where β̂rest denotes the
restricted ordinary least squares estimator. It follows that any test that is invariant
under G(M0) depends only on the normalized restricted least squares residuals, in

fact only on
〈
y − X β̂rest (y)/

∥∥∥y − X β̂rest (y)
∥∥∥〉. [For the tests considered in Sec-

tion 5.4 one can obtain this result also directly from the definition of the tests.]

Consider now the problem of testing H0 versus H1 as defined in (4). First ob-
serve that the setsM0 andM1 are invariant under the transformations in G(M0).
This implies that the parameter spaces Mi × (0,∞) × C corresponding to Hi

(for i = 0,1) are each invariant under the associated group G(M0), i.e., the group
consisting of all transformations ḡα,μ0,μ

′
0

defined onM× (0,∞)×C given by

ḡα,μ0,μ
′
0
(μ,σ 2,�) = (α(μ−μ0)+μ′

0,α
2σ 2,�)

where α �= 0, μ0 ∈M0, μ′
0 ∈M0. [Note that the associated group strictly speaking

also depends on C, but we suppress this in the notation.] Second, the probability
measures associated with H0 and H1 clearly satisfy

Pμ,σ 2� (A) = Pα(μ−μ0)+μ′
0,α

2σ 2�

(
α(A −μ0)+μ′

0

)
(14)

for every (μ,σ 2,�) ∈M× (0,∞)×C and every Borel set A ⊆ Rn . This shows
that the testing problem considered in (4) is invariant under the group G(M0) in
the sense of Lehmann and Romano (2005), Chapters 6 and 8. While trivial, it will
be useful to note that (14) continues to hold if � ∈ C is replaced by an arbitrary
nonnegative definite symmetric n × n matrix �. The next proposition discusses
invariance properties of the rejection probabilities of an almost invariant test ϕ
that will be needed in subsequent subsections. As will be seen later, it is useful
to consider in that proposition the rejection probabilities Eμ,σ 2�(ϕ) also for �
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a positive (or sometimes only nonnegative) definite symmetric n × n matrix not
necessarily belonging to the assumed covariance model C.

PROPOSITION 5.4. Let ϕ :Rn → [0,1] be a Borel-measurable function that
is almost invariant under G(M0).

1. For every (μ,σ 2) ∈M× (0,∞) and for every positive definite symmetric
n ×n matrix � the rejection probabilities satisfy

Eμ,σ 2�(ϕ) = Eα(μ−μ0)+μ′
0,α

2σ 2�(ϕ) (15)

for all α �= 0, μ0 ∈M0, μ′
0 ∈M0.

2. For every (μ,σ 2) ∈M× (0,∞) and every positive definite symmetric n ×n
matrix � we have the representation

Eμ,σ 2�(ϕ) = E	
(M0−μ0)

⊥ (μ−μ0)/σ+μ0,�(ϕ)

= E〈
	

(M0−μ0)
⊥ (μ−μ0)/σ

〉
+μ0,�

(ϕ) (16)

where μ0 is an arbitrary element ofM0. [Note that 	(M0−μ0)
⊥(μ−μ0)/σ

actually does not depend on the choice of μ0, and 	(M0−μ0)
⊥(μ−μ0) can

be computed as μ− X β̂rest (μ).]
3. The rejection probability Eμ,σ 2�(ϕ) depends on

(
μ,σ 2

) ∈ M ×
(0,∞) and � (� symmetric and positive definite) only through(〈

	(M0−μ0)
⊥(μ−μ0)/σ

〉
,�
)

. Furthermore, 	(M0−μ0)
⊥(μ−μ0)/σ is in

a bijective correspondence with (Rβ − r)/σ where β denotes the coordi-
nates of μ in the basis given by the columns of X. Thus the rejection prob-
ability Eμ,σ 2�(ϕ) depends on

(
μ,σ 2

) ∈M× (0,∞) and � only through
(〈(Rβ − r)/σ 〉 ,�).

4. If ϕ is invariant under G(M0), then (15) and (16) hold even if � is only
nonnegative definite and symmetric (and consequently in this case also the
claim in Part 3 continues to hold for such �).

Remark 5.5.

(i) For � = � ∈ C relation (15) expresses the fact that the rejection proba-
bility of the almost invariant test ϕ is invariant under the associated group
G(M0).

(ii) Setting α = 1 in (15) and holding σ 2 and � fixed, we see that the rejection
probability is, in particular, constant along that translation of M0 which
passes through μ.

(iii) If μ ∈M0, choosing μ0 = μ, α = σ−1 in (15), and fixing μ′
0 ∈M0, shows

that Eμ,σ 2�(ϕ) = Eμ′
0,�

(ϕ). Hence, for μ ∈M0, the rejection probability

is constant in
(
μ,σ 2

)
and only depends on �.

(iv) Occasionally we consider tests ϕ that are only required to be almost in-
variant under the subgroup of transformations y �→ αy + (1−α)μ0 for
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a fixed μ0 ∈M0, i.e., under the group G ({μ0}). The results in the above
propositions can be easily adapted to this case and we refrain from spelling
out the details. We only note that the analogue to (15) in this case is given
by

Eμ,σ 2�(ϕ) = Eα(μ−μ0)+μ0,α2σ 2�(ϕ) (17)

for all α �= 0.

Part 2 of the above proposition has shown that the rejection probability depends

on the parameters only through
(〈

	(M0−μ0)
⊥(μ−μ0)/σ

〉
,�
)

. This quantity is

recognized as a maximal invariant in the next result.

PROPOSITION 5.6. Let μ0 ∈ M0 be arbitrary. Then
(〈
	(M0−μ0)⊥(μ −

μ0)/σ
〉
,�
)

is a maximal invariant for the associated group G(M0).

5.2. Negative Results

We next establish a negative result providing conditions under which (i) the size
of a test is 1, and/or (ii) the power function of a test gets arbitrarily close to zero.
The theorem is based on a “concentration effect” that we explain now: Suppose
one can find a sequence �m ∈ C converging to a singular matrix �̄ and let Z
denote the span of the columns of �̄. Let μ0 ∈M0. Since the probability mea-
sures Pμ0,σ 2�m

converge weakly to Pμ0,σ 2�̄ , which has support μ0 +Z , they
concentrate their mass more and more around μ0 +Z . Suppose first that one can
show that μ0 +Z is essentially contained in the interior of the rejection region
W in the sense that the set of points in μ0 +Z which are not interior points
of W has λμ0+Z -measure zero. It then follows that Pμ0,σ 2�m

(W ) converges to
Pμ0,σ 2�̄ (W ) ≥ Pμ0,σ 2�̄ (μ0 +Z) = 1, establishing that the size of the test is 1.
Now, in some cases of interest it turns out that μ0 +Z fails to satisfy the just men-
tioned “interiority” condition with respect to the rejection region W , but it also
turns out that it does satisfy the “interiority” condition with respect to an “equiva-
lent” rejection region W ′, which is obtained by adjoining a λRn -null set to W (for
example, for W ′ = W ∪(μ0 +Z)). Since the rejection probabilities corresponding
to W and W ′ are identical (as any � ∈ C is positive definite) and thus the two tests
have the same size, the above reasoning can then be applied to W ′, again showing
that the size of the test based on W is 1 for these cases. Part 1 of Theorem 5.7 be-
low formalizes this reasoning. The same “concentration effect” reasoning applied
to Rn\W instead of W then gives (20). [The remaining claims in Part 2 as well
as Part 3 are then consequences of (20) combined with continuity or invariance
properties of the power function.] It should, however, be stressed that weak con-
vergence of Pμ0,σ 2�m

to Pμ0,σ 2�̄ together with the inclusion μ0 +Z ⊆ W (except
possibly for a λμ0+Z -null set) alone is not sufficient to allow one to draw the
conclusion – as tempting as it may be – that Pμ0,σ 2�m

(W ) → 1 although “in
the limit” Pμ0,σ 2�̄ (W ) = 1 holds. Counterexamples where Pμ0,σ 2�m

converges
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weakly to Pμ0,σ 2�̄ and μ0 +Z ⊆ W (and thus Pμ0,σ 2�̄ (W ) = 1) holds, but where
Pμ0,σ 2�m

(W ) converges to a positive number less than 1 are easily found with
the help of Theorem 5.10. We furthermore note that in a different testing context
Martellosio (2010) provides a result which also makes use of a “concentration
effect”, but his result is not correct as given. For a discussion of these issues and
corrected results see Preinerstorfer and Pötscher (2014).

The “concentration effect” reasoning underlying Theorem 5.7 of course hinges
crucially on the “interiority” condition (either w.r.t. W or w.r.t. Rn\W ), raising
the question why we should expect this to be satisfied in the applications we have
in mind, rather than expect that μ0 +Z intersects with both W and Rn\W in such
a way that the “interiority” condition is neither satisfied w.r.t. W nor w.r.t. Rn\W .
Consider the case where Z is one-dimensional, a case of paramount importance
in the applications, and suppose also that W is invariant under the group G (M0).
Then we have the dichotomy that (μ0 +Z)\{μ0} either lies entirely in W or in
R

n\W , showing that – except possibly for the point μ0 – the set μ0 +Z never
intersects both W and Rn\W . Moreover, if an element of (μ0 +Z)\{μ0} belongs
to the interior of W (ofRn\W , respectively), then (μ0 +Z)\{μ0} in its entirety is
a subset of the interior of W (ofRn\W , respectively). Hence, under the mentioned
invariance and for one-dimensional Z , one can expect the “interiority” conditions
in the subsequent theorem to be satisfied not infrequently.

THEOREM 5.7. Let W be a Borel set in Rn, the rejection region of a test.
Furthermore, assume that Z is a concentration space of the covariance model C.
Then the following holds:

1. If μ0 ∈M0 satisfies

λμ0+Z (bd(W ∪ (μ0 +Z))) = 0, (18)

then for every 0 < σ 2 < ∞
sup
�∈C

Pμ0,σ 2�(W ) = 1

holds; in particular, the size of the test equals 1. [In case W is of the form
{y ∈ Rn : T (y) ≥ C} for some Borel-measurable function T : Rn �→ R and
0 < C < ∞, a sufficient condition for (18) is that for λZ -almost every z ∈Z
the test statistic T satisfies T (μ0 + z) > C and is lower semicontinuous at
μ0 + z.]

2. If μ0 ∈M0 satisfies

λμ0+Z
(
bd
((
R

n\W
)∪ (μ0 +Z)

))= 0, (19)

then for every 0 < σ 2 < ∞
inf

�∈C Pμ0,σ 2�(W ) = 0, (20)
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and hence

inf
μ1∈M1

inf
�∈C Pμ1,σ 2�(W ) = 0,

holds for every 0 < σ 2 < ∞. In particular, the test is biased (except
in the trivial case where its size is zero). [In case W is of the form
{y ∈ Rn : T (y) ≥ C} for some Borel-measurable function T : Rn �→ R and
0 < C < ∞, a sufficient condition for (19) is that for λZ -almost every z ∈Z
the test statistic T satisfies T (μ0 + z) < C and is upper semicontinuous at
μ0 + z.]

3. Suppose that condition (20) is satisfied for some μ0 ∈M0 and some 0 <
σ 2 < ∞. Furthermore, assume that W is almost invariant under the group
G ({μ0}). Then for every μ1 ∈M1 we have

inf
0<σ 2<∞

inf
�∈C Pμ1,σ 2�(W ) = 0.

[In case W is of the form {y ∈ Rn : T (y) ≥ C} for some Borel-measurable
function T : Rn �→ R and 0 < C < ∞, almost invariance of W under the
group G ({μ0}) follows from almost invariance of T under G ({μ0}).]

Remark 5.8.

(i) The conclusions of the above theorem immediately also apply to every
test statistic T ′ that is λRn -almost everywhere equal to a test statistic T
satisfying the assumptions of the theorem.

(ii) Let ϕ :Rn �→ [0,1] be Borel-measurable, i.e., a test. If the set {y : ϕ(y) = 1}
satisfies the assumptions on W in Part 1 of the above theorem, then for
every 0 < σ 2 < ∞
sup
�∈C

Eμ0,σ 2� (ϕ) = 1

holds. If the set {y : ϕ(y) = 0} satisfies the assumptions on Rn\W in Part
2 of the above theorem then for every 0 < σ 2 < ∞
inf

�∈CEμ0,σ 2� (ϕ) = 0

holds. A similar remark applies to Part 3 of the theorem, provided ϕ is
almost invariant under G ({μ0}).

Remark 5.9. If the covariance model C contains AR(1) correlation matri-
ces �(ρm) for some sequence ρm ∈ (−1,1) with ρm → 1 (ρm → −1, respec-
tively), then span(e+) (span(e−), respectively) is a concentration space of C (cf.
Lemma G.1 in Appendix G). Hence Theorem 5.7 applies with Z = span(e+)
(Z = span(e−), respectively). In particular, if C contains CAR(1), then Theo-
rem 5.7 applies with Z = span(e+) as well as with Z = span(e−).
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5.3. Positive Results

The next theorem isolates conditions under which a test does not suffer from the
extreme size and power problems encountered in the preceding subsection. In par-
ticular, we provide conditions which guarantee that the size is bounded away from
one and that the power function is bounded away from zero. The theorem assumes
that the test ϕ – apart from being (almost) invariant under the group G(M0) – is
also invariant under addition of elements of J (C) defined below. This additional
invariance assumption will be automatically satisfied in the important special case
where ϕ is invariant under the group G(M0) and where J (C) ⊆M0 −μ0 for some
μ0 ∈M0 (and hence for all μ0 ∈M0) as then the maps x �→ x + z for z ∈ J (C)
are elements of G(M0); see also Proposition 5.23 and the attending discussion in
Section 5.4. A second assumption of the subsequent theorem is that the covariance
model C is bounded which is typically a harmless assumption in applications as it
is, e.g., always satisfied if the elements of C are normalized such that the largest
diagonal element is 1, or such that the trace is 1. The theorem also maintains
a further assumption on the covariance model C related to the way sequences of
elements in C approach singular matrices. This condition has to be verified for
the covariance model C in any particular application. A verification for CAR(1) is
given in Appendix G, cf. also Remarks 5.14 and 5.20.

For a covariance model C define now

J (C) =
⋃{

span(�̄) : det�̄ = 0, �̄ = lim
m→∞�m for a sequence �m ∈ C

}
,

i.e., J (C) is the union of all concentration spaces of the covariance model C.
[Note that the subsequent results remain valid in the case where J (C) is empty.]

THEOREM 5.10. Let ϕ : Rn → [0,1] be a Borel-measurable function that is
almost invariant under G(M0). Suppose that ϕ is neither λRn -almost everywhere
equal to 1 nor λRn -almost everywhere equal to 0. Suppose further that

ϕ(x + z) = ϕ(x) for every x ∈ Rn and every z ∈ J (C). (21)

Assume that C is bounded (as a subset of Rn×n). Assume also that for every
sequence �m ∈ C converging to a singular �̄ there exists a subsequence (mi )i∈N
and a sequence of positive real numbers smi such that the sequence of matrices
Dmi = 	span(�̄)⊥�mi 	span(�̄)⊥/smi converges to a matrix D which is regular on

the orthogonal complement of span(�̄) (meaning that the linear map correspond-
ing to D is injective when restricted to the orthogonal complement of span(�̄))22.
Then the following holds:

1. The size of the test ϕ is strictly less than 1, i.e.,

sup
μ0∈M0

sup
0<σ 2<∞

sup
�∈C

Eμ0,σ 2�(ϕ) < 1.
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Furthermore,

inf
μ0∈M0

inf
0<σ 2<∞

inf
�∈CEμ0,σ 2�(ϕ) > 0.

2. Suppose additionally that for every sequence νm ∈ 	(M0−μ0)
⊥(M1 − μ0)

with ‖νm‖ → ∞ and for every sequence �m of positive definite symmetric
n ×n matrices with �m → �, � positive definite, we have

liminf
m→∞ Eνm+μ0,�m (ϕ) > 0, (22)

where μ0 is an element ofM0. [This condition clearly does not depend on
the particular choice of μ0 ∈M0.]. Then the infimal power is bounded away
from zero, i.e.,

inf
μ1∈M1

inf
0<σ 2<∞

inf
�∈CEμ1,σ 2�(ϕ) > 0.

3. Suppose that the limit inferior in (22) is 1 for every sequence νm and �m as
specified above. Then for every 0 < c < ∞

inf
μ1∈M1,0<σ 2<∞

d(μ1,M0)/σ≥c

Eμ1,σ 2�m
(ϕ) → 1 (23)

holds for m → ∞ and for any sequence �m ∈ C satisfying �m → �̄ with �̄
a singular matrix. Furthermore, for every sequence 0 < cm < ∞

inf
μ1∈M1,

d(μ1,M0)≥cm

Eμ1,σ 2
m�m

(ϕ) → 1 (24)

holds for m → ∞ whenever 0 < σ 2
m < ∞, cm/σm → ∞, and the sequence

�m ∈ C satisfies �m → �̄ with �̄ a positive definite matrix. [The very last
statement even holds without recourse to condition (21) and the condition
on C following (21).]

The first two parts of the preceding theorem provide conditions under which
the size is strictly less than 1 and the infimal power is strictly positive, while the
third part provides conditions under which the power approaches 1 in certain parts
of the parameter space, the parts being characterized by the property that either∥∥(Rβ(1) − r

)
/σ
∥∥ is bounded away from zero and �m approaches a singular ma-

trix, or that
∥∥(Rβ(1) − r

)
/σ
∥∥→ ∞ and �m approaches a positive definite matrix.

Here β(1) is the parameter vector corresponding to μ1. Note that d (μ1,M0) is
bounded from above as well as from below by multiples of

∥∥Rβ(1) − r
∥∥, where

the constants involved are positive and depend only on X , R, and r .
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Remark 5.11.

(i) Because J (C) as a union of linear spaces is homogenous, condition (21)
is equivalent to the condition that ϕ(x + z) = ϕ(x) holds for every x ∈ Rn

and every z ∈ span(J (C)).

(ii) If condition (22) in Theorem 5.10 is replaced by the weaker condition

liminf
m→∞ Edm (μ1−μ0)+μ0,�m (ϕ) > 0, (25)

for every μ1 ∈M1, for every dm → ∞ and every sequence �m of positive
definite symmetric n × n matrices with �m → �, � a positive definite
matrix, then we can only establish for every μ1 ∈M1 that

inf
0<σ 2<∞

inf
�∈CEμ1,σ 2�(ϕ) > 0.

If the limes inferior in (25) is 1 for every μ1, dm , and �m as specified
above, then for every μ1 ∈M1 and every 0 < σ 2∗ < ∞ we have

inf
0<σ 2≤σ 2∗

Eμ1,σ 2�m
(ϕ) → 1

for any sequence �m ∈C satisfying �m → �̄ with �̄ a singular matrix; and
also Eμ1,σ 2

m�m
(ϕ) → 1 holds whenever σ 2

m → 0 and the sequence �m ∈ C
satisfies �m → �̄ with �̄ a positive definite matrix. [The very last state-
ment even holds without recourse to condition (21) and the condition on C
following (21).]

The subsequent theorem elaborates on Part 1 of Theorem 5.10 and shows that
under the additional assumptions one can not only guarantee that the size of
the test is smaller than 1, but one can, for any prescribed significance level δ
(0 < δ < 1), construct the test in such a way that it has size not exceeding δ.
The result applies in particular to the important case where the tests are of the
form ϕC = 1(T ≥ C) for some test statistic T . Note that for any Ck ↑ ∞ the
sequence of tests ϕCk clearly satisfies condition (26) in the subsequent theorem
provided {y : T (y) = ∞} is a λRn -null set. Thus in this case the theorem shows
that for any given significance level δ, 0 < δ < 1, we can find a critical value C(δ)
such that the test ϕC(δ) has a size not exceeding δ.

THEOREM 5.12. Let ϕk : Rn → [0,1] for k ≥ 1 be a sequence of Borel-
measurable functions each of which satisfies the assumptions for Part 1 of The-
orem 5.10, and let C also satisfy the assumptions of that theorem. Furthermore
assume that the sequence ϕk satisfies

Eμ∗
0,�(ϕk) ↓ 0 (26)

as k ↑ ∞ for some μ∗
0 ∈M0 and all positive definite symmetric n ×n matrices �.

Then for every δ, 0 < δ < 1, there exists a k0 = k0(δ) such that

sup
μ0∈M0

sup
0<σ 2<∞

sup
�∈C

Eμ0,σ 2�(ϕk0) ≤ δ.
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Remark 5.13.

(i) The assumption in Theorem 5.10 that ϕk is not λRn -almost everywhere
equal to 0 is of course irrelevant for the result in Theorem 5.12.

(ii) Of course, the second part of Part 1 of Theorem 5.10 immediately applies
to ϕk0 ; and Parts 2 and 3 of that theorem also apply to ϕk0 provided ϕk0

satisfies the respective additional conditions.

Remark 5.14.

(i) In case the covariance model C equals CAR(1), the boundedness condi-
tion in Theorems 5.10 and 5.12 is clearly satisfied and J (C) reduces to
span(e+)∪ span(e−). Furthermore, the condition on the covariance model
C in those theorems expressed in terms of the matrices Dm is then also
satisfied as shown in Lemma G.1 in Appendix G. Also note that in this
case the sequences �m in Part 3 of Theorem 5.10 converging to a singular
matrix are of the form �(ρm) with ρm → 1 or ρm → −1.

(ii) More generally suppose that C is norm-bounded, has e+e′+ and e−e′− as
the only singular accumulation points, and has the property that for every
sequence �m ∈ C converging to one of these limit points there exists a
sequence (ρm)m∈N in (−1,1) such that �−1/2(ρm)�m�−1/2(ρm) → In

for m → ∞ (that is, near the “singular boundary” the covariance model
C behaves similar to CAR(1)). Then J (C) is as in (i) and again the
conditions on the covariance model C in Theorems 5.10 and 5.12 are
satisfied.

5.4. Size and Power Properties of a Common Class of Tests:
Nonsphericity-Corrected F-Type Tests

In this subsection we specialize the preceding results to a broad class of tests of
linear restrictions in linear regression models with nonspherical errors and derive
a further result specific to this class. The class considered in this subsection con-
tains the vast majority of tests proposed in the literature for this testing problem.
We start with a pair of estimators β̌ and �̌, where �̌ typically has the interpreta-
tion of an estimator of the variance covariance matrix of Rβ̌ − r under the null
hypothesis. Similar as in previous sections, the estimators are viewed as functions
of y ∈ Rn , but it proves useful to allow for cases where the estimators are not
defined for some exceptional values of y. We impose the following assumption
on the estimators.

Assumption 5.

(i) The estimators β̌ : Rn\N → R
k and �̌ : Rn\N → R

q×q are well-defined
and continuous on the complement of a closed λRn -null set N in the
sample space Rn , with �̌ also being symmetric on Rn\N .
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(ii) The set Rn\N is invariant under the group G(M), i.e., y ∈ Rn\N implies
αy + Xγ ∈ Rn\N for every α �= 0 and every γ ∈ Rk .

(iii) The estimators satisfy the equivariance properties β̌(αy + Xγ ) = αβ̌(y)+
γ and �̌(αy + Xγ ) = α2�̌(y) for every y ∈ Rn\N , for every α �= 0, and
for every γ ∈ Rk .

(iv) �̌ is λRn -almost everywhere nonsingular on Rn\N .

We make a few obvious observations: First, the invariance of Rn\N under
the group G(M) expressed in Assumption 5 is equivalent to the same invari-
ance property of N itself. Second, since N is closed by Assumption 5, it fol-
lows that either N is empty or otherwise must at least contain M (to see this
note that y ∈ N implies αy ∈ N for α arbitrarily close to zero which in turn
implies 0 ∈ N by closedness of N ). Third, given Assumption 5 holds, the sets{

y ∈ Rn\N : det�̌(y) = 0
}

and
{

y ∈ Rn\N : det�̌(y) �= 0
}

are invariant under

the transformations in G(M), and the set

N∗ = N ∪
{

y ∈ Rn\N : det�̌(y) = 0
}

(27)

is a closed λRn -null set that is also invariant under the transformations in G(M);

cf. Lemma F.1 in Appendix F. Hence, the set
{

y ∈ Rn\N : det�̌(y) = 0
}

could

in principle have been absorbed into N in the above assumption; however, we
shall not do so since keeping the exceptional set N as small as possible will lead
to stronger results. Furthermore, M ⊆ N∗ always holds. To see this note that
M ⊆ N ⊆ N∗ holds if N is not empty as noted above; in case N is empty, �̌(y)
is well-defined for every y and �̌(0) = �̌(α0) = α2�̌(0) must hold, implying
�̌(0) = 0 and thus also �̌(Xγ ) = �̌(α0 + Xγ ) = α2�̌(0) = 0. In particular, this
shows that either �̌ is not defined onM or is zero onM.

Given estimators β̌ and �̌ satisfying Assumption 5 we define the test statistic

T (y) =
{

(Rβ̌(y)− r)′�̌−1(y)(Rβ̌(y)− r), y ∈ Rn\N∗,
0, y ∈ N∗.

(28)

We note that assigning the test statistic the value zero at points y ∈Rn for which
either y ∈ N or det(�̌)(y) = 0 holds is arbitrary, but has no effect on the rejection
probabilities of the test, since N∗ is a λRn -null set as noted above and since all
relevant probability measures Pμ,σ 2� are absolutely continuous w.r.t. Lebesgue
measure on Rn .

In line with the interpretation of �̌ as an estimator for a variance covariance
matrix, the leading case is when �̌ is positive definite almost everywhere
(which under Assumption 5 is equivalent to nonnegative definiteness almost
everywhere). However, sometimes we encounter situations where this is not
guaranteed for a given fixed sample size (cf. Section 3.3), although typically
the probability of being positive definite will go to one for each fixed value of
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the parameters as sample size increases. In order to be able to accommodate
also such cases, Assumption 5 does not contain a requirement that �̌ is positive
definite almost everywhere. Nevertheless, in light of what has just been said, we
shall consider the rejection region to be of the form {y ∈ Rn : T (y) ≥ C} for C
a real number satisfying 0 < C < ∞.

For some of the results that follow we shall need further conditions on �̌ which,
however, are much weaker than the almost everywhere positive definiteness re-
quirement just mentioned.

Assumption 6. There exists v ∈ Rq , v �= 0, and a y ∈ Rn\N∗ such that
v ′�̌−1(y)v > 0 holds.

Since under Assumption 5 the matrix �̌−1(y) is continuous on Rn\N∗, it fol-
lows that Assumption 6 in fact implies that v ′�̌−1(y)v > 0 holds on an open set
of y’s. The condition expressed in the next assumption is also certainly satisfied
if �̌ is positive definite almost everywhere. At first glance it may seem that this
condition rules out the case where �̌(y) is allowed to be indefinite on a set of
positive Lebesgue measure, but this is not so as v is not allowed to depend on y
in this condition.

Assumption 7. For every v ∈ Rq with v �= 0 we have λRn
({

y ∈ Rn\N∗ :

v ′�̌−1(y)v = 0
})= 0.

The following lemma collects some properties of the test statistic that will be
useful in the sequel.

LEMMA 5.15. Suppose Assumption 5 is satisfied and let T be the test statistic
defined in (28). Then the following holds:

1. The set Rn\N∗ is invariant under the elements of G(M).
2. The test statistic T is continuous on Rn\N∗; in particular, T is λRn -almost

everywhere continuous on Rn.
3. The test statistic T is invariant under the group G(M0). Consequently, the

rejection region W (C) = {y ∈ Rn : T (y) ≥ C} and its complement are in-
variant under G(M0).

4. The set {y ∈ Rn : T (y) = C} is a λRn -null set for every 0 < C < ∞.
5. Suppose 0 < C < ∞ holds. Then

{
y ∈ R

n\N∗ : T (y) > C
}

(= {y ∈ Rn : T (y) > C}) is an open set in Rn, which is guaranteed to
be nonempty under Assumption 6. Consequently, under Assumption 6 the
rejection region W (C) contains a nonempty open set and thus satisfies
λRn (W (C)) > 0.

6. Suppose 0 < C < ∞ holds. Then {y ∈ Rn\N∗ : T (y) < C} is a nonempty
open set in Rn. Consequently, the complement of the rejection region W (C)
contains a nonempty open set and thus satisfies λRn (Rn\W (C)) > 0.

7. Suppose Assumption 7 and 0 < C < ∞ hold. Then, for every μ0 ∈M0,
every sequence νm ∈ 	(M0−μ0)

⊥(M1 −μ0) with ‖νm‖ → ∞, and for every
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sequence �m of positive definite symmetric n × n matrices with �m → �,
� a positive definite matrix, we have that

liminf
m→∞ Pνm+μ0,�m (W (C)) = inf

v∈A((νm )m≥1)
Pr
(
v ′�̌−1(�1/2G)v ≥ 0

)
= inf

v∈A((νm )m≥1)
Pr
(
v ′�̌−1(�1/2G)v > 0

)
(29)

where A((νm)m≥1) is the set of all accumulation points of the sequence

R
(
X ′ X

)−1
X ′νm/

∥∥∥R
(
X ′ X

)−1
X ′νm

∥∥∥ ,

and where G is a standard normal n-vector. A lower bound that does not
depend on the sequence νm is as follows:

liminf
m→∞ Pνm+μ0,�m (W (C)) ≥ inf

v∈Rq ,‖v‖=1
Pr
(
v ′�̌−1(�1/2G)v ≥ 0

)
= inf

v∈Rq ,‖v‖=1
Pr
(
v ′�̌−1(�1/2G)v > 0

)
≥ Pr

(
�̌(�1/2G) is nonnegative definite

)
. (30)

In particular, if �̌ is nonnegative definite λRn -almost everywhere (implying
that Assumption 7 is satisfied), this lower bound is 1.

Remark 5.16.

(i) Because A((νm)m≥1) is a closed subset of the unit ball in Rq and because
the map v �→ Pr

(
v ′�̌−1(�1/2G)v ≥ 0

)
is continuous on the unit ball under

Assumption 7, we see that the expressions in (29) are positive if and only
if

λRn

({
y ∈ Rn\N∗ : v ′�̌−1(y)v ≥ 0

})
> 0 (31)

holds for every v ∈ A((νm)m≥1). Under Assumption 7 we have
λRn
({

y ∈Rn\N∗ :v ′�̌−1(y)v ≥ 0
})= λRn

({
y ∈Rn\N∗ :v ′�̌−1(y)v > 0

})
for every v �= 0 and hence, by continuity of �̌−1(y) on Rn\N∗, condi-
tion (31) for some v �= 0 is in turn equivalent to v ′�̌−1(y)v > 0 for some
y = y(v) ∈ Rn\N∗.

(ii) Let β̌ and �̌ satisfy Assumption 5, let T be the test statistic defined in
(28), and suppose that we now use a “random” critical value Č = Č(y) >
0 for y ∈ Rn . Suppose that Č is continuous on Rn\N and satisfies the
invariance condition Č(αy+ Xγ ) = Č(y) for every y ∈Rn\N , every α �= 0,
and for every γ ∈ Rk . Rewriting the rejection region

{
y ∈ Rn : T (y) ≥ Č

}
as
{

y ∈ Rn : T (y)/Č ≥ 1
}

and observing that �̄(y) = Č(y)�̌(y) satisfies
Assumption 5 shows that the results of this subsection also apply to the test
with rejection region

{
y ∈ Rn : T (y) ≥ Č

}
.
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As a corollary to Theorem 5.7, we now obtain negative size and power results
for tests of the form (28). The semicontinuity conditions in Theorem 5.7 are im-
plied by continuity properties of the estimators �̌ and β̌ used in the construction
of the test. The sufficient conditions so obtained are easy to verify in practice and
become particularly simple in the practically relevant case where dim (Z) = 1,
cf. the remark following the corollary.

COROLLARY 5.17. Let β̌ and �̌ satisfy Assumption 5 and let T be the
test statistic defined in (28). Furthermore, let W (C) = {y ∈ Rn : T (y) ≥ C} with
0 < C < ∞ be the rejection region. Suppose that Z is a concentration space of
the covariance model C. Recall that N is the exceptional set in Assumption 5 and
that N∗ is given by (27). Then the following holds:

1. Suppose we have for some μ∗
0 ∈M0 that z ∈ Rn\N∗ and T (μ∗

0 + z) > C
hold simultaneously λZ -almost everywhere. Then

sup
�∈C

Pμ0,σ 2�(W (C)) = 1

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞. In particular, the size of
the test is equal to one.

2. Suppose we have for some μ∗
0 ∈M0 that z ∈ Rn\N∗ and T (μ∗

0 + z) < C
hold simultaneously λZ -almost everywhere. Then

inf
�∈C Pμ0,σ 2�(W (C)) = 0

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞, and hence

inf
μ1∈M1

inf
�∈C Pμ1,σ 2�(W (C)) = 0,

holds for every 0 < σ 2 < ∞. In particular, the test is biased (except in the
trivial case where its size is zero). Furthermore, the nuisance-infimal rejec-
tion probability at every point μ1 ∈M1 is zero, i.e.,

inf
0<σ 2<∞

inf
�∈C Pμ1,σ 2�(W (C)) = 0.

In particular, the infimal power of the test is equal to zero.
3. Suppose �̌ is nonnegative definite on Rn\N. If z ∈ Rn\N, �̌(z) = 0, and

Rβ̌(z) �= 0 hold simultaneously λZ -almost everywhere, then

sup
�∈C

Pμ0,σ 2�(W (C)) = 1

holds for every μ0 ∈M0 and every 0 < σ 2 < ∞. In particular, the size of
the test is equal to one.
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Remark 5.18.

(i) Since T in the above corollary is invariant under G(M0), the condition
in the corollary does not depend on the particular choice of μ∗

0 ∈M0.
Furthermore, if Z is one-dimensional, the invariance of T shows that
T (μ∗

0 + z) > C already holds for all z ∈Z with z �= 0 provided it holds for
one z ∈ Z with z �= 0. In a similar vein, Part 1 of Lemma 5.15 implies for
one-dimensional Z that z ∈ Rn\N∗ holds for all z ∈ Z with z �= 0 if and
only if z ∈ Rn\N∗ holds for at least one z ∈ Z with z �= 0. In view of
Assumption 5 a similar statement also applies to the relations z ∈ Rn\N ,
�̌(z) = 0, and Rβ̌(z) �= 0.

(ii) We note that the rejection probabilities under the null hypothesis,
i.e., Pμ0,σ 2�(W (C)), do not depend on

(
μ0,σ

2
) ∈M0 × (0,∞). Hence

Remark 3.4(ii) applies here.

(iii) In case the covariance model C contains AR(1) correlation matrices, a re-
mark analogous to Remark 5.9 also applies here. Furthermore, note that
the concentration spaces derived from the AR(1) correlation matrices are
one-dimensional, and hence the discussion in (i) above applies.

The negative result in the preceding corollary does not apply if substantial por-
tions of Z belong to the exceptional set N (which in particular occurs if Z ⊆M
holds and N is not empty as then Z ⊆M⊆ N ). For this case we provide a further
negative result which is applicable provided (32) given below holds. For exam-
ple, if Z = span(e+) and the design matrix contains an intercept, we immediately
obtain Z ⊆M, and (32) holds if and only if the column in R corresponding to
the intercept is nonzero. The significance of the subsequent theorem is that it pro-
vides an upper bound K1 for the power in certain directions which is less than or
equal to a lower bound for the size. This will typically imply biasedness of the
test (except if equality holds in (33)). Furthermore, note that the result implies that
the test has size 1 in case �̌ is positive definite λRn -almost everywhere since then
K1 = K2 = 1 follows. The condition on the covariance model C is often satisfied,
see Remark 5.20 following the theorem.

THEOREM 5.19. Let β̌ and �̌ satisfy Assumptions 5 and 7, let T be
the test statistic defined in (28), and let W (C) = {y ∈ Rn : T (y) ≥ C} with
0 < C < ∞ be the rejection region. Assume that there is a sequence �m ∈ C
such that �m → �̄ for m → ∞ where �̄ is singular with l := dimspan(�̄) > 0.
Suppose that for some sequence of positive real numbers sm the matrix
Dm = 	span(�̄)⊥�m	span(�̄)⊥/sm converges to a matrix D, which is regular

on span(�̄)⊥, and that 	span(�̄)⊥�m	span(�̄)/s1/2
m → 0. Suppose further that

span(�̄) ⊆M, and let Z be a matrix, the columns of which form a basis for
span(�̄). Assume also that

Rβ̂(z) �= 0 λspan(�̄)-a.e. (32)
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is satisfied. Then for every μ0 ∈M0, every σ with 0 < σ < ∞, and every M ≥ 0
we have

inf
γ∈Rl ,‖γ ‖≥M

inf
�∈C Pμ0+Zγ,σ 2� (W (C)) ≤ K1 ≤ K2 ≤ sup

�∈C
Pμ0,σ 2� (W (C)) . (33)

The constants K1 and K2 are given by

K1 = inf
γ∈Rl

Pr
(
ξ̄ (γ ) ≥ 0

)= inf‖γ ‖=1
Pr
(
ξ̄ (γ ) ≥ 0

)
and

K2 =
∫

Pr
(
ξ̄ (γ ) ≥ 0

)
d P0,A(γ )

with the random variable ξ̄ (γ ) given by

ξ̄ (γ ) =
(

Rβ̂ (Zγ )
)′

�̌−1
((

�̄1/2 + D1/2
)
G
)

Rβ̂ (Zγ )

on the event
{(

�̄1/2 + D1/2
)
G ∈ Rn\N∗} and by ξ̄ (γ ) = 0 otherwise, where G

is a standard normal n-vector. The matrix A denotes
(
Z ′Z

)−1
Z ′�̄Z

(
Z ′Z

)−1
,

which is nonsingular, and P0,A denotes the Gaussian distribution onRl with mean
zero and variance covariance matrix A.

Remark 5.20. Suppose the covariance model C contains CAR(1), or, more
generally, C contains AR(1) correlation matrices �(ρm) for some sequence
ρm ∈ (−1,1) with ρm → 1 (ρm → −1, respectively). Then all the conditions
on the covariance model in the preceding theorem are satisfied with �̄ = e+e′+,
span(�̄) = span(e+), and Z = e+ (�̄ = e−e′−, span(�̄) = span(e−), and Z = e−,
respectively); cf. Lemma G.1 in Appendix G. Furthermore, condition (32) simpli-
fies to Rβ̂(e+) �= 0 (Rβ̂(e−) �= 0, respectively).

The subsequent theorem specializes the positive result given in Theorems 5.10
and 5.12 to the class of tests considered in the present subsection.

THEOREM 5.21. Let β̌ and �̌ satisfy Assumptions 5, 6, and 7. Let T be the
test statistic defined in (28). Furthermore, let W (C) = {y ∈ Rn : T (y) ≥ C} with
0 < C < ∞ be the rejection region. Suppose further that

T (y + z) = T (y) for every y ∈ Rn and every z ∈ J (C). (34)

Assume that C is bounded (as a subset of Rn×n). Assume also that for every
sequence �m ∈ C converging to a singular �̄ there exists a subsequence (mi )i∈N
and a sequence of positive real numbers smi such that the sequence of matrices
Dmi = 	span(�̄)⊥�mi 	span(�̄)⊥/smi converges to a matrix D which is regular on

the orthogonal complement of span(�̄). Then the following holds:
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1. The size of the rejection region W (C) is strictly less than 1, i.e.,

sup
μ0∈M0

sup
0<σ 2<∞

sup
�∈C

Pμ0,σ 2� (W (C)) < 1.

Furthermore,

inf
μ0∈M0

inf
0<σ 2<∞

inf
�∈C Pμ0,σ 2� (W (C)) > 0.

2. Suppose that λRn

({
y ∈ Rn\N∗ : v ′�̌−1(y)v ≥ 0

})
> 0 for every v ∈ Rq

with ‖v‖ = 1. Then the infimal power is bounded away from zero, i.e.,

inf
μ1∈M1

inf
0<σ 2<∞

inf
�∈C Pμ1,σ 2�(W (C)) > 0.

3. Suppose that �̌ is nonnegative definite λRn -almost everywhere. Then for
every 0 < c < ∞

inf
μ1∈M1,0<σ 2<∞

d(μ1,M0)/σ≥c

Pμ1,σ 2�m
(W (C)) → 1

holds for m → ∞ and for any sequence �m ∈ C satisfying �m → �̄ with �̄
a singular matrix. Furthermore, for every sequence 0 < cm < ∞

inf
μ1∈M1,

d(μ1,M0)≥cm

Pμ1,σ 2
m�m

(W (C)) → 1

holds for m → ∞ whenever 0 < σ 2
m < ∞, cm/σm → ∞, and the sequence

�m ∈ C satisfies �m → �̄ with �̄ a positive definite matrix. [The very last
statement even holds without recourse to condition (34) and the condition
on C following (34).]

4. For every δ, 0 < δ < 1, there exists a C(δ), 0 < C(δ) < ∞, such that

sup
μ0∈M0

sup
0<σ 2<∞

sup
�∈C

Pμ0,σ 2�(W (C(δ))) ≤ δ.

Remark 5.22.

(i) In case the covariance model C equals CAR(1), a remark analogous to
Remark 5.14 also applies here.

(ii) Under the assumptions of the preceding theorem, the additional condition
in Part 2 of the theorem is equivalent to v ′�̌−1(y)v > 0 for every v ∈ Rq

with ‖v‖ = 1 and a suitable y = y(v) ∈ Rn\N∗. Cf. Remark 5.16(i).

We now discuss when the preceding theorem can be expected to apply and how
the crucial condition (34) can be enforced. As already noted prior to Theo-
rem 5.10, a sufficient condition for (34) to be satisfied for any test statistic T
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of the form (28), based on estimators β̌ and �̌ satisfying Assumption 5, is that
J (C) ⊆M0 −μ0 for some (and hence all) μ0 ∈M0 holds. This sufficient con-
dition is equivalent to J (C) ⊆M and Rβ̂(z) = 0 for every z ∈ J (C), because

M0 −μ0 coincides with the set
{
μ ∈M : Rβ̂(μ) = 0

}
. [Note that replacing J (C)

by span (J (C)) in the preceding two sentences leads to equivalent statements be-
cause M0 −μ0 as well as M are linear spaces.] Now consider the general case
where J (C), or equivalently span(J (C)), may not be a subset ofM0 −μ0: If there
exists a z ∈ span(J (C))∩M with z /∈M0 −μ0 (i.e., with Rβ̂(z) �= 0), then any
test statistic T of the form (28), based on estimators β̌ and �̌ satisfying Assump-
tions 5 and 7, does not satisfy the invariance condition (34), see Lemma F.3 in
Appendix F. Hence, span(J (C))∩M ⊆M0 −μ0, or in other words Rβ̂(z) = 0
for every z ∈ span(J (C))∩M, is a necessary condition for (34) to be satisfied for
some T as above. We next show how a test statistic of the form (28) satisfying
the crucial invariance condition (34) can in fact be constructed if we impose this
necessary condition.

PROPOSITION 5.23. Let C be a covariance model and suppose that
span(J (C))∩M⊆M0 −μ0 holds.

1. Let M̄ be the linear space spanned by J (C)∪M. Define X̄ = (X, x̄1, . . . , x̄p
)

where x̄i ∈ span(J (C)∪ (M0 −μ0)) are chosen in such a way that the
columns of X̄ form a basis of M̄. Assume that k < k + p < n holds. Sup-
pose θ̄ and �̄ are estimators satisfying the analogue of Assumption 5 ob-
tained by replacing k by k + p, X by X̄ , and M by M̄. Let N̄ denote
the null set appearing in that analogue of Assumption 5 and N̄∗ = N̄ ∪{

y ∈ Rn\N̄ : det�̄(y) = 0
}
. Define β̄ = (Ik,0) θ̄ . Then β̄ and �̄ satisfy the

original Assumption 5 (with N given by N̄ ), and the test statistic T̄ given by

T̄ (y) =
{

(Rβ̄(y)− r)′�̄−1(y)(Rβ̄(y)− r), y ∈ Rn\N̄∗,
0, y ∈ N̄∗.

satisfies the invariance condition (34).

2. Let M̄ and X̄ be as above and k < k + p < n. Suppose θ̄ (y) = (X̄ ′ X̄
)−1

X̄ ′y
is the least squares estimator based on X̄ . Then the requirements on θ̄
postulated in the above mentioned analogue of Assumption 5 are sat-
isfied, and Rβ̄ (z) = 0 holds for every z ∈ span(J (C)). Furthermore, if

X∗ =
(

X, x∗
1 , . . . , x∗

p

)
is obtained in the same way as is X̄ but for another

choice of elements x∗
i ∈ span(J (C)∪ (M0 −μ0)) and if θ∗ denotes the least

squares estimator w.r.t. the design matrix X∗, then Rβ̄(y) = Rβ∗(y) holds
for every y ∈ Rn with β∗ denoting (Ik,0)θ∗.

We next discuss ways of choosing x̄1, . . . , x̄p such that they satisfy the
requirements in the preceding proposition: One natural way is to first find
z1 . . . , zr in J (C) that form a basis of span J (C). From these vectors then select
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x̄1 = zi1 . . . , x̄p = zip to complement the columns of X to a basis of M̄.
An alternative way is based on the observation that adding elements ofM0 −μ0
to each of the previously found zij obviously gives rise to another feasible choice
of x̄i . It hence follows that an alternative feasible choice for the x̄i is to use the
projections of the zij onto the orthogonal complement of M0 − μ0. Of course,
if the estimator θ̄ is chosen to be the least squares estimator, then Part 2 of the
preceding proposition informs us that the particular choice of the x̄i has no effect
on Rβ̄(y) since it is invariant under the choice of the x̄i .

Part 2 of Proposition 5.23 provides a particular estimator θ̄ that satisfies the
assumptions on θ̄ maintained in Part 1 of this proposition. Because no particular
covariance model C has been specified in Proposition 5.23, we can not provide
a similar concrete construction of �̄ in that proposition. The construction of an
appropriate �̄ has to be done on a case by case basis, depending on the covariance
model employed in the particular application. For an example of such a construc-
tion in the context of autocorrelation robust testing see Theorem 3.8. We further-
more note that similar to the results in Part 2 of Proposition 5.23 such estimators
�̄ will typically be unchanged whether they are constructed on the basis of the de-
sign matrices X̄ or X∗. In particular, this is the case for the estimator constructed
in Theorem 3.8.

To summarize, the significance of Proposition 5.23 is that it tells us (in conjunc-
tion with Theorem 5.21) when and how we can construct an adjusted test based
on an auxiliary model that does not suffer from the severe size and power dis-
tortions (i.e., size 1 and/or infimal power 0), the adjustment consisting of adding
appropriate auxiliary regressors to the model. For a concrete implementation see
Theorem 3.8.

Remark 5.24.
(i) Suppose that the assumptions of Proposition 5.23 hold, except that now

p = 0 holds. Then J (C) ⊆M and hence Rβ̂(z) = 0 holds for every z ∈
J (C), implying that actually the sufficient condition mentioned prior to the
proposition is satisfied. Consequently, as discussed above, the invariance
condition (34) is already satisfied for every T of the form (28) based on
estimators β̌ and �̌ satisfying Assumption 5.

(ii) Suppose that the assumptions of Proposition 5.23 hold, except that now
k + p = n holds (note that k + p ≤ n always holds). Suppose further
that T is a test statistic of the form (28) based on estimators β̌ and �̌
satisfying Assumptions 5 and 6. Then T can never satisfy (34) and hence
Theorem 5.21 does not apply in this situation. This can be seen as follows:
Because of k + p = n it follows that every y ∈ Rn can be written as a
linear combination of finitely many zi ∈ J (C) plus an element μ in M.
Because invariance w.r.t. addition of elements z ∈ J (C) is equivalent to
invariance w.r.t. addition of elements z ∈ span(J (C)) (cf. Remark 5.11(i))
we see that T (y) = T (μ) would have to hold under (34). As noted after
the introduction of Assumption 5, either M ⊆ N ⊆ N∗ holds or N is
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empty. In the second case we have that �̌(μ) = 0 as a consequence
of equivariance. Hence in both cases we arrive at μ ∈ N∗ and thus at
T (μ) = 0. But this shows that T is constant equal to zero, contradicting
Part 5 of Lemma 5.15.

(iii) Proposition 5.23 uses the auxiliary matrix X̄ and the associated estimators
θ̄ to construct an estimator β̄ for the parameter β in the originally given
regression model (1) and this estimator β̄ is then used to construct
a test statistic T̄ for the testing problem (4) to which Theorem 5.21
can be applied. In an alternative view we can consider the auxiliary
model Y = X̄θ + U with θ = (

β ′,ζ ′)′ as a model in its own right.
[Of course, if we maintain model (1) then ζ = 0 must hold in the
auxiliary model.] Define the q × (k + p) matrix R̄ = R (Ik,0), define
M̄0 = {

μ ∈ M̄ : μ = X̄θ, R̄θ = r
}

and set M̄1 = M̄\M̄0, and define a
null hypothesis H̄0 and an alternative hypothesis H̄1 analogously as in
(4). Proposition 5.23 can now be viewed as stating that condition (34)
is satisfied for the test statistic which is obtained by using (28) based
on the restriction matrix R̄ and on the estimators θ̄ and �̄ figuring in
Proposition 5.23. Consequently, Theorem 5.21 can be directly applied to
this test statistic (provided �̄ satisfies Assumptions 6 and 7). It should be
noted that the so-obtained result now applies to the problem of testing H̄0
versus H̄1. However, since M0 ⊆ M̄0 and M1 ⊆ M̄1 hold and since T
is invariant under translation by elements in span(J (C)), we essentially
recover the same result as before.

5.5. Non-Gaussian Distributions

As already noted in Section 2, the negative results given in this paper immedi-
ately extend in a trivial way without imposing the Gaussianity assumption on the
error vector U in (1) as long as the assumptions on the feasible error distribu-
tions is weak enough to ensure that the implied set of distributions for Y contains
the set

{
Pμ,σ 2� : μ ∈M,0 < σ 2 < ∞,� ∈ C}, but possibly contains also other

distributions.
Another, less trivial, extension is as follows: Suppose that U is elliptically

distributed in the sense that it has the same distribution as �σ�1/2E where
0 < σ < ∞, � ∈ C, E is a random vector uniformly distributed on the unit
sphere Sn−1, and � is a random variable distributed independently of E satisfying
Pr(� > 0) = 1. [If � is distributed as the square root of a chi-square with n degrees
of freedom we recover the Gaussian situation described in Section 2.] If ϕ is a test
that is invariant under the group G(M0) then it is easy to see that for μ0 ∈M0

E(ϕ(μ0 +�σ�1/2E)) = E(ϕ(μ0 +�1/2E))

holds.23 Since this does not depend on the distribution of � at all, we learn
that the rejection probability under the null hypothesis is therefore the same
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as in the Gaussian case. As a consequence, all results concerning only the null
behavior of ϕ obtained under Gaussianity in the paper extend immediately to
regression models in which the disturbance vector U is elliptically distributed
in the above sense. Furthermore, all results concerning rejection probabilities
under the alternative which are obtained from the behavior of the null rejection
probabilities by an approximation argument (e.g., Parts 2 and 3 of Theorem 5.7
as well as of Corollary 5.17, and the corresponding applications of these results
in Sections 3 and 4) also go through in view of Scheffé’s lemma provided the
density of �E exists and is continuous almost everywhere.

NOTES

1. Some of the Monte Carlo studies in the literature initialize the disturbance process with its
stationary distribution, while others use a fixed starting value for initialization. In both cases size
distortions are found for both classes of tests referred to in the text.

2. Although not expressed in the notation, the elements of Y, X , and U (and even the probability
space supporting Y and U) may depend on sample size n. Furthermore, the obvious dependence of C
on n will also not be shown in the notation. [Note that C depends on n even if it is induced by a
covariance model for the entire process (ut )t∈N that does not depend on n.]

3. In applying the general results in Section 5.2 or Corollary 5.17 to a particular problem some
skill in choosing between equivalent C and C∗ may thus be required as one choice for C may lead to
more interesting results than does another choice.

4. If we parameterized in terms of ρ and the innovation variance σ 2
ε = σ 2

(
1−ρ2

)
, this would

correspond to σ 2
ε → 0 at the appropriate rate.

5. To see this note that the covariance function of the disturbances converges to that of a (very
simple) harmonic process as ρ → ±1. In view of Gaussianity, this implies convergence of finite-
dimensional distributions and hence weak convergence of the entire process, cf. Billingsley (1968),
p.19.

6. We stress that the parameters β and σ 2 are identifiable in the model P1.
7. Note that the arbitrariness in the definition of the test statistic τloc(y) on span (e+) has no ef-

fect on the rejection probabilities under the experiment P−1. Hence, one could hope to derive the
behavior of Pρ (τloc(y) > C) for ρ → −1 by first computing the rejection probability in the limiting
experiment P−1 and then by arguing that the map ρ �→ Pρ (τloc(y) > C) is continuous at ρ = −1.
However, this would just amount to reproducing our direct argument given earlier.

8. For the case whereWn is only nonnegative definite see Section 3.2.1.

9. Note that the quadratic form α′Wnα can be represented as
∫ π
−π

∣∣∣∑n
j=1 αj exp(ιjω)

∣∣∣2
w†(ω)dω. If w†(ω) ≥ 0 for all ω ∈ [−π,π ] is assumed, the integrand is nonnegative; and if α �= 0 it
is positive almost everywhere (since it is then a product of two nontrivial trigonometric polynomials).

10. The estimator in Keener, Kmenta, and Weber (1991) coincides with (n times) the estimator given
by (5) if the rectangular lag-window is used and R = Ik .

11. Some authors (e.g., Kiefer and Vogelsang, 2002b, 2005) choose to normalize also by q , the
number of restrictions to be tested. This is of course immaterial as long as one accordingly adjusts the
critical value.

12. Because the theorem is a finite-sample result, we are free to imagine that C depends on sample
size n. In fact, there is nothing in the theory that prohibits us from imagining that C depends even on
the design matrix X , on the restriction given by (R,r), or on the weights w( j,n).

13. The discussion in this example so far just reproduces results obtained in Section 3.1.
14. If X does not satisfy Assumption 3, then the test breaks down in a trivial way as already dis-

cussed.
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15. Of course, size could be reduced to any prescribed value in this situation by increasing the
critical value, but this would then come at the price of even further reduced power.

16. There are even cases where ρ̂L S is unbounded.
17. For example, if TO L S is used, a1 = 1, a2 = n (Yule–Waker estimator), and X is not restricted to

be of the form
(

e+, X̃
)

, it is not difficult to show that the provision is in fact satisfied for every choice

of C . This can also be shown for other choices of a1 and a2 and/or for the case where X =
(

e+, X̃
)

under additional assumptions on R. It may actually be true in general, but we do not want to pursue
this.

18. Banerjee and Magnus (2000) claim in their Theorem 5 that the expression Pr (F(0) > δ) con-
verges to zero if Mi �= 0 and F̄(0) ≤ δ. In case F̄(0) = δ the argument given there is, however,
incorrect, because F(0) → F̄(0) = δ in probability does not imply Pr (F(0) > δ) → 0 in general.

19. Imposing the assumption that all elements � of C ⊆ CHet have all their diagonal elements
bounded from below by a given positive constant ε is only a partial cure. While it saves the het-
eroskedasticity robust test from the extreme size and power distortions as described in Theorem 4.2,
substantial size/power distortions will nevertheless be present if ε is small (relative to sample size).
Cf. the discussion in Section 3.2.2.

20. If G is only a collection of bijective transformations on Rn but is not a group, then invariance of
A does not imply g(A) = A in general, and in particular does not coincide with the notion of invariance
of the indicator function of A.

21. The additional requirement λRn

(
g′−1(N (g))

)
= 0 for all g′ ∈ G of course implies

λRn (N (g)) = 0 and may appear artificial at first sight. However, it arises naturally in the context
of testing problems that are invariant under the group G and for which the relevant family of prob-
ability measures is equivalent to λRn , cf. Lehmann and Romano (2005), Section 6.5. Regardless of
this, the additional requirement already follows from λRn (N (g)) = 0 in case the group G is a group
of affine transformations on Rn , which will be the groups we are interested in.

22. Of course, D maps every element of span(�̄) into zero by construction.
23. Under an additional absolute continuity assumption this is also true for almost invariant tests ϕ.
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A. APPENDIX: Proofs for Section 3.1

Proof of Lemma 3.1. Observe that �̂w (y) = B (y)Wn B′ (y). Given that Wn is pos-
itive definite due to Assumption 2, this immediately establishes Parts 1–3 of the lemma.
It remains to prove Part 4. Let s be as in Assumption 3 and consider first the case where

this assumption is satisfied, i.e., where rank
(

R(X ′ X)−1 X ′ (¬(i1, . . . is))
)

= q holds.

If now y is such that �̂w (y) is singular it follows, in view of the equivalent condi-
tion rank(B(y)) < q, that ûl (y) = 0 must hold at least for some l /∈ {i1, . . . is} where l

may depend on y. But this means that y satisfies e′
l (n)

(
In − X

(
X ′X

)−1 X ′) y = 0. Since

e′
l (n)

(
In − X

(
X ′X

)−1 X ′) �= 0 by construction of l, it follows that the set of y for which

�̂w (y) is singular is contained in a finite union of proper linear subspaces, and hence is
a λRn -null set. Next consider the case where Assumption 3 is not satisfied. Observe that
then s > 0 must hold. Note that ûi (y) = 0 holds for all y ∈ Rn and all i ∈ {i1, . . . is} by
construction of {i1, . . . is}. But then for every y ∈ Rn

rank(B (y)) = rank
(

R(X ′X)−1 X ′ (¬(i1, . . . is)) A(y)
)

≤ rank
(

R(X ′X)−1 X ′ (¬(i1, . . . is))
)

< q

is satisfied where A(y) is obtained from diag
(
û1(y), . . . , ûn(y)

)
by deleting rows and

columns i with i ∈ {i1, . . . is}. This completes the proof. n

LEMMA A.1. Suppose Assumptions 2 and 3 are satisfied. Then β̂ and �̂w satisfy
Assumption 5, 6, and 7 with N = ∅. In fact, �̂w (y) is nonnegative definite for every
y ∈ Rn, and is positive definite λRn -almost everywhere. The test statistic T defined in
(7), with �̂w as in (6), is invariant under the group G (M0) and the rejection probabilities

Pμ,σ 2�(T ≥ C) depend on
(
μ,σ 2,�

)
∈M× (0,∞)×C only through ((Rβ − r)/σ,�)

(in fact, only through (〈(Rβ − r)/σ 〉 ,�)), where β corresponds to μ via μ = Xβ.

Proof. Clearly, β̂ and �̂w are well-defined and continuous onRn , hence we may set N =
∅ in Assumption 5. Symmetry of �̂w as well as the required equivariance properties of β̂
and �̂w are obviously satisfied. By Assumption 2 �̂w (y) is nonnegative definite for every
y ∈Rn . By Assumptions 2 and 3 and Lemma 3.1 the matrix �̂w is nonsingular (and hence
positive definite) λRn -almost everywhere. Hence Assumptions 5, 6, and 7 are satisfied
which proves the first claim. The remaining claims follow immediately from Lemma 5.15
and Proposition 5.4. n

Proof of Theorem 3.3. By Lemma A.1 we know that β̂ and �̂w satisfy Assumption 5
and that �̂w (y) is nonnegative definite for every y ∈ Rn . Furthermore, in view of this
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lemma and because N = ∅, the set N∗ in Corollary 5.17 is precisely the set of y for
which rank(B(y)) < q, cf. Lemma 3.1. By Assumption 1 the spaces Z+ = span(e+) and
Z− = span(e−) are concentration spaces of C. The theorem now follows by applying
Corollary 5.17 and Remark 5.18(i) toZ+ as well as toZ− and by noting that e+ ∈Rn\N∗
translates into rank(B(e+)) = q with a similar translation if e+ is replaced by e−. Also
note that the size of the test can not be zero in view of Part 5 of Lemma 5.15 and
Lemma A.1. n

Proof of Proposition 3.6. (1) Define the matrix B∗
X (y) = (det(X ′X)

)2 BX (y) and ob-
serve that (for given y) every element of this matrix is a multivariate polynomial in the el-

ements xti of X because (X ′X)−1 can be written as
(
det(X ′X)

)−1 adj(X ′X) (with the
convention that adj(X ′X) = 1 if k = 1). Because det(X ′X) �= 0 for X ∈X0 holds, we have

X1 (e+) = X0 ∩
{

X ∈ Rn×k : det
(
B∗

X (e+)B∗′
X (e+)

)= 0
}
.

The set to the right of the intersection operation in the above display is obviously the
zero-set of a multivariate polynomial in the variables xti . Thus it is an algebraic set,
and hence is either a λ

Rn×k -null set or is all of Rn×k . However, the latter case can not
arise because we can choose an n × k matrix X# ∈ X0, say, such that all its columns are
orthogonal to e+ (this being possible since k < n by assumption) and this matrix then
satisfies rank

(
B∗

X#(e+)
)= q. This shows that X1 (e+) is a λ

Rn×k -null set. Next consider

X2 (e+): Observe that for X ∈ X0\X1 (e+) we have det(�̂w,X (e+)) �= 0 and hence for
X ∈ X0\X1 (e+) the relation TX (e+ +μ∗

0) = C can equivalently be written as

(R adj(X ′ X)X ′e+)′ adj�̂w,X (e+)(R adj(X ′X)X ′e+)

− (det(X ′X)
)2 det(�̂w,X (e+))C = 0.

Furthermore, for X ∈ X0 we can write �̂w,X (e+) as
(
det(X ′X)

)−4 B∗
X (e+)Wn B∗′

X (e+).
Note that B∗

X (e+)Wn B∗′
X (e+) is a multivariate polynomial in the variables xti . Conse-

quently, for X ∈ X0\X1 (e+) the relation TX (e+ + μ∗
0) = C can, after multiplication by(

det(X ′ X)
)4q−2, which is nonzero for X ∈ X0, equivalently be written as

(
det(X ′X)

)2
(R adj(X ′X)X ′e+)′ adj

(
B∗

X (e+)Wn B∗′
X (e+)

)
(R adj(X ′X)X ′e+)

−det(B∗
X (e+)Wn B∗′

X (e+))C = 0.

The left-hand side of the above display is now a multivariate polynomial in the elements
xti . The polynomial does not vanish on all of Rn×k since the matrix X# constructed before
provides an element inX0\X1 (e+) for which TX#(e++μ∗

0) = 0 < C holds. The proofs for

X1 (e−) andX2 (e−) are completely analogous, as is the proof for the fact that Rn×k\X0 is
a λ
Rn×k -null set. Finally, that the set of all design matrices X ∈X0 for which Theorem 3.3

does not apply is a subset of (X1 (e+)∪X2 (e+))∩ (X1 (e−)∪X2 (e−)) is obvious upon
observing that the set of all X ∈ X0 which do not satisfy Assumption 3 is contained in
X1 (e+) as well as in X1 (e−).

(2) Similar arguments as in the proof of Part 1 show that X̃1 (e−) and X̃2 (e−) are each
contained in an algebraic set. Define the matrix X � = (

e+, X̃ �
)

where the columns of
X̃ � are k − 1 linearly independent unit vectors that are orthogonal to e+ as well as e−.
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It is then easy to see that X̃ � ∈ X̃0\X̃1 (e−), implying that X̃1 (e−) does not coincide with
all of X̃0. Furthermore, simple computation shows that TX � (e− + μ∗

0) = 0 < C by the

assumption on R, which implies that X̃2 (e−) is a proper subset of X̃0\X̃1 (e−). It follows
now as above that X̃1 (e−) and X̃2 (e−) are λ

Rn×(k−1) -null sets. The rest of the proof now
proceeds as before.

(3) See Example 3.1. n

Proof of Theorem 3.7. We verify the assumptions of Theorem 5.21. By Lemma A.1
Assumptions 5, 6, and 7 are satisfied. Because of C = CAR(1) we have that J (C) =
span(e+) ∪ span(e−), see Lemma G.1, and because e+,e− ∈ M is assumed we con-
clude that J (C) ⊆M. The assumption Rβ̂(e+) = Rβ̂(e−) = 0 then implies that even
J (C) ⊆M0 −μ0 holds. The invariance condition (34) in Theorem 5.21 is thus satisfied,
because T is G (M0)-invariant by Lemma 5.15. The assumptions on C in Theorem 5.21 are
satisfied in view of Lemma G.1. Finally the assumptions on �̂w in Parts 2 and 3 of Theo-
rem 5.21 are satisfied because �̂w is positive definite λRn -almost everywhere as shown in
Lemma A.1. The theorem now follows from Theorem 5.21 using a standard subsequence
argument for Part 3. The claim in parenthesis in Part 3 follows from the corresponding
claim in parenthesis in Theorem 5.21 and the observation that the conditions on e+ and e−
in the theorem were only used to verify condition (34). n

Proof of Theorem 3.8. Similar as in the preceding proof verify the assumptions of
Theorem 5.21 but now for β̄ and �̄w by additionally making use of Proposition 5.23. Note
that the condition span (J (C)) ∩M ⊆M0 − μ0 is satisfied in all five parts of the theo-
rem. This is obvious for Parts 1–3. For Part 4 this follows from the following argument:
Observe that e− = δe+ + Xγ must hold by the assumptions of Part 4. Now suppose m ∈
span(J (C))∩M. Then α+e+ +α−e− = m = Xγ ∗ must hold. These relations together im-
ply (α+ +α−δ)e+ = X (γ ∗ −α−γ ). Because e+ /∈M, it follows that γ ∗ −α−γ = 0. Thus

R
(
X ′X

)−1 X ′m = Rγ ∗ = α− Rγ = α− R̄(γ ′ : δ)′ = α− R̄
(
X̄ ′ X̄

)−1
X̄ ′e− = 0,

which establishes that m ∈ M0 − μ0. The verification for Part 5 is completely
analogous. n

Proof of Lemma 3.11. Since �̂w (y) = nB (y)W∗
n B′ (y), Parts 1–3 of the lemma follow

immediately from nonnegative definiteness ofW∗
n . To prove Part 4 observe that �̂w (y) is

singular if and only if det
(
B (y)W∗

n B′ (y)
)= 0. Now observe that the l.h.s. of this equation

is a multivariate polynomial in y, hence the solution set is an algebraic set and thus is either
a λRn -null set or all of Rn . n

Proof of Theorem 3.12. The proof is completely analogous to the proof of Theorem 3.3
using Lemma G.2 in case ν ∈ (0,π). n

B. APPENDIX: Proofs for Section 3.3

Proof of Lemma 3.14. The inclusion M ⊆ N0(a1,a2) is trivial since û (y) = 0 for
y ∈ M. Because a1 ∈ {1,2}, a2 ∈ {n −1,n} with a1 ≤ a2 holds, N0(a1,a2) is con-
tained in N1(a1,a2), establishing the first claim. Closedness of N1(a1,a2) is obvious.
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Given the just established inclusion N0(a1,a2) ⊆ N1(a1,a2) the alternative description
of N1(a1,a2) given in the second claim is also immediately seen to be true. Continu-
ity of ρ̂ on Rn\N0(a1,a2) is obvious. Assume now that k ≤ a2 − a1 holds. If a1 = 1,
a2 = n, i.e., ρ̂ = ρ̂Y W , we have N1(a1,a2) = N0(a1,a2) =M because ρ̂Y W is well-
defined and bounded away from one in modulus on Rn\M as shown in Remark 3.13(i).
Hence, N1(a1,a2) is a λRn - null set in this case as k < n holds by assumption. To establish
this result also for the other choices of a1 and a2 note that N1(a1,a2) is the zero set of
a multivariate polynomial in y. It hence is a λRn - null set, provided we can show that the
polynomial is not identically zero. Observe that we now have n−k ≥ n−a2 +a1 ≥ 2 (as we
have already disposed off the case a1 = 1, a2 = n). Let y(1), . . . , y(n−k) be a basis forM⊥.

The submatrix obtained from
(

y(1), . . . , y(n−k)
)

by selecting the rows with index j sat-

isfying j < a1 as well as the rows with j > a2 has dimension (n −a2 +a1 −1)× (n − k)
and thus has rank at most n − a2 + a1 − 1 < n − k. Consequently, we can find constants
c1, . . . ,cn−k , not all equal to zero, such that the j-th component of y0 = ∑n−k

i=1 ci y(i)

is zero whenever j < a1 or j > a2. Because y0 ∈M⊥ and y0 �= 0 by construction, we
have y0 ∈ Rn\M = R

n\N0(1,n). Because y0 �= 0 and because the j-th component of
y0 = û(y0) is zero whenever j < a1 or j > a2, we also have y0 ∈ Rn\N0(a1,a2). Hence,
ρ̂ (y0) as well as ρ̂Y W (y0) are well-defined. Furthermore, they coincide in view of the
construction of y0 = û(y0). By what was said above for the Yule–Walker estimator it fol-
lows that

∣∣ρ̂ (y0)
∣∣ = ∣∣ρ̂Y W (y0)

∣∣ < 1. Hence y0 ∈ Rn\N1(a1,a2), and the polynomial is
not identically equal to zero. n

LEMMA B.1. Suppose ρ̂ satisfies Assumption 4.

1. The setsRn\N0(a1,a2),Rn\N1(a1,a2), andRn\N2(a1,a2) are invariant under the
group of transformations y �→ αy + Xγ where α �= 0, γ ∈ Rk .

2. The estimators β̃, σ̃ 2, and �̃ are well-defined and continuous on Rn\N2(a1,a2).
They satisfy the equivariance conditions β̃(αy + Xγ ) = αβ̃(y) + γ , σ̃ 2(αy +
Xγ ) = α2σ̃ 2(y), and �̃(αy + Xγ ) = α2�̃(y) for α �= 0, γ ∈ R

k , and y ∈
R

n\N2(a1,a2). The estimator �̃(y) is (well-defined and) nonsingular if and only
if y ∈Rn\N∗

2 (a1,a2). The sets N2(a1,a2) and N∗
2 (a1,a2) are closed. If k ≤ a2 −a1

holds, N2(a1,a2) and N∗
2 (a1,a2) are λRn -null sets.

3. The estimator �̂ is well-defined and continuous on Rn\N0(a1,a2), whereas β̂ and
σ̂ 2 are well-defined and continuous on all of Rn. They satisfy the equivariance con-
ditions β̂(αy + Xγ ) = αβ̂(y)+γ , σ̂ 2(αy + Xγ ) = α2σ̂ 2(y) for α �= 0, γ ∈ Rk , and
y ∈Rn, as well as �̂(αy+ Xγ ) = α2�̂(y) for α �= 0, γ ∈Rk , and y ∈Rn\N0(a1,a2).
Furthermore, σ̂ 2(y) > 0 holds for y ∈ Rn\M⊇ Rn\N∗

0 (a1,a2), and hence �̂(y) is
(well-defined and) nonsingular if and only if y ∈Rn\N∗

0 (a1,a2). The set N∗
0 (a1,a2)

is closed. If k ≤ a2 − a1 holds, N∗
0 (a1,a2) is a λRn -null set. [Recall from Re-

mark 3.13(iv) that N0(a1,a2) is always a closed set, and is a λRn -null set in case
k ≤ a2 −a1.]

Proof. (1) The invariance of the first two sets follows since û(αy + Xγ ) = αû(y)
holds for every y ∈ Rn , α �= 0, and γ ∈ Rk . This property of the residual vector implies
ρ̂ (αy + Xγ ) = ρ̂ (y) for every α �= 0, γ ∈ Rk and y ∈ Rn\N0(a1,a2) ⊇ R

n\N1(a1,a2).
Together with the already established invariance of Rn\N1(a1,a2) this implies invariance
of Rn\N2(a1,a2) upon observing that �−1(ρ̂ (y)) is well-defined for y ∈Rn\N1(a1,a2).

https://doi.org/10.1017/S0266466614000899 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000899


SIZE AND POWER OF HAR-TESTS 331

The latter holds because for b ∈ R, |b| �= 1 the matrix �(b) is nonsingular. [This can,
e.g., be seen from the fact that its inverse is given by the symmetric tridiagonal matrix with

diagonal equal to
(

1,1+b2, . . . ,1+b2,1
)
/
(

1−b2
)

and with the elements next to the

diagonal given by −b/
(

1−b2
)

.]

(2) Using Lemma 3.14 and the just established fact that �−1(ρ̂ (y)) is well-defined
for y ∈ Rn\N1(a1,a2), we see that β̃, σ̃ 2, and �̃ are well-defined and continuous on
R

n\N2(a1,a2) ⊆ R
n\N1(a1,a2). Observing that ρ̂(αy + Xγ ) = ρ̂(y) holds for α �= 0,

γ ∈ Rk , and y ∈ Rn\N0(a1,a2) ⊇ R
n\N1(a1,a2), the claimed equivariance of β̃, σ̃ 2,

and �̃ follows. The third claim is obvious, and the fourth claim follows easily from
Lemma 3.14. We next prove the last claim for the Yule–Walker estimator, i.e., for a1 = 1
and a2 = n: For this it suffices to show that N∗

2 (1,n) ⊆M sinceM is a proper subspace
of Rn in view of the assumption k < n. Now for arbitrary y /∈M = N0(1,n) we have
that ρ̂Y W (y) is well-defined and satisfies

∣∣ρ̂Y W (y)
∣∣ < 1 (cf. Remark 3.13(i)) implying

y ∈Rn\N1(1,n) as well as positive definiteness of �(ρ̂Y W (y)). But this gives positive def-
initeness, and hence nonsingularity, of X ′�−1(ρ̂Y W (y))X , implying that y ∈Rn\N2(1,2).
It also delivers positive definiteness of R(X ′�−1(ρ̂(y))X)−1 R′. Furthermore, y /∈M im-
plies y − X β̃(y) �= 0 and thus σ̃ 2(y) > 0 in view of the just established positive definite-
ness of �(ρ̂Y W (y)). But this gives y ∈ Rn\N∗

2 (1,2), completing the proof for the case
a1 = 1 and a2 = n. To prove the claim for the remaining values of a1 and a2 we first show
that N2(a1,a2) is a λRn -null set: observe that N2(a1,a2) is the union of N1(a1,a2) and{

y ∈ Rn\N1(a1,a2) : det
(

X ′�−1(ρ̂(y))X
)

= 0
}

. In view of Lemma 3.14 it hence suf-

fices to show that the latter set is a λRn -null set. Using the relation D−1 = adj(D)/det(D)
(with the convention that adj(D) = 1 if D is 1 × 1) and noting that det

(
�(ρ̂(y))

) �= 0 for
y ∈ Rn\N1(a1,a2) the set in question can be rewritten as

A = {y ∈ Rn\N1(a1,a2) : det
(
X ′ adj

(
�(ρ̂(y))

)
X
)= 0

}
.

Note that the equation in the set in the above display is polynomial in ρ̂(y). Upon multi-

plying the equation defining A by
(∑a2

t=a1
û2

t (y)
)d

, which is nonzero on Rn\N1(a1,a2),

where d = (n − 1)2k, the set A is seen to be the intersection of Rn\N1(a1,a2) with
the zero-set of a multivariate polynomial in y. Hence, A is a λRn -null set provided we
can establish that the polynomial is not identically zero. For this it suffices to find an

y ∈ Rn\N1(a1,a2) such that det
(

X ′�−1(ρ̂(y))X
)

�= 0: Set y = y0 where y0 has been

constructed in the proof of Lemma 3.14. Observe that ρ̂(y0) = ρ̂Y W (y0) for the estimator
ρ̂ specified by a1 and a2 and hence y0 ∈ Rn\N1(a1,a2) ⊆ R

n\M since
∣∣ρ̂Y W (y0)

∣∣ < 1

holds. But then det
(

X ′�−1(ρ̂(y0))X
)

�= 0 holds because �(ρ̂Y W (y)) is always positive

definite (whenever it is defined) as has been established before. This shows that N2(a1,a2)
is a λRn -null set. It remains to show that N∗

2 (a1,a2) is a λRn -null set. For this it suffices to
show that

B =
{

y ∈ Rn\N2(a1,a2) : σ̃ 2(y) = 0
}

as well as

C =
{

y ∈ Rn\N2(a1,a2) : det
(

R(X ′�−1(ρ̂(y))X)−1 R′)= 0
}
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are λRn -null sets. Noting that det
(
�(ρ̂(y))

) �= 0 as well as det
(
X ′ adj

(
�(ρ̂(y))

)
X
) �= 0

hold for y ∈ Rn\N2(a1,a2), the set B can be rewritten as

B =
{

y ∈ Rn\N2(a1,a2) : det
(
�(ρ̂(y))

)[
det
(
X ′ adj

(
�(ρ̂(y))

)
X
)]2

σ̃ 2(y) = 0
}
.

Again the equation in the set in the above display is polynomial in y and ρ̂(y). Upon

multiplying this by
(∑a2

t=a1
û2

t (y)
)d

, which is nonzero on Rn\N2(a1,a2), where d =
(n − 1)2(2k + 1), one sees that B is the intersection of Rn\N2(a1,a2) with the zero-set
of a multivariate polynomial in y. To establish that B is a λRn -null set it thus suffices
to find an y ∈ Rn\N2(a1,a2) with σ̃ 2(y) > 0. Choose y0 as above. Then we know that

y0 ∈ Rn\N1(a1,a2) and det
(

X ′�−1(ρ̂(y0))X
)

�= 0 hold, i.e., y0 ∈ Rn\N2(a1,a2). Fur-

thermore, as shown before �(ρ̂(y0)) is positive definite (since �(ρ̂(y0)) = �(ρ̂Y W (y0)))
and y0 − X β̃(y0) �= 0 holds (since y0 /∈M). Consequently, σ̃ 2(y0) > 0 holds. The proof
for C is very similar.

(3) Well-definedness is trivial and continuity follows from continuity of ρ̂ on the open set
R

n\N0(a1,a2) (cf. Lemma 3.14). Equivariance of β̂ and σ̂ 2 is obvious, while the equiv-
ariance property of �̂ follows from invariance of Rn\N0(a1,a2) and the equivariance of ρ̂
established in (1). The third claim is obvious. Closedness of N∗

0 (a1,a2) follows from the
continuity property of ρ̂ established in Lemma 3.14. To prove the final claim observe that
N∗

0 (a1,a2) is the union of the λRn -null set N0(a1,a2) with{
y ∈ Rn\N0(a1,a2) : det

(
R(X ′ X)−1 X ′�(ρ̂(y))X (X ′X)−1 R′)= 0

}
.

Multiplying the equation defining this set by
(∑a2

t=a1
û2

t (y)
)q(n−1)

, which is nonzero on

R
n\N0(a1,a2), one sees that the above set is the intersection of Rn\N0(a1,a2) with the

zero-set of a multivariate polynomial in y. Again perusing y0 constructed before shows
that the polynomial is not identically zero, which then delivers the desired result. n

The following lemma is an immediate consequence of Lemma B.1.

LEMMA B.2. Suppose ρ̂ satisfies Assumption 4 and k ≤ a2 −a1 holds. Then β̃ and �̃
satisfy Assumption 5 with N = N2(a1,a2), and the set N∗ (cf. equation (27)) is given by
N∗

2 (a1,a2). Similarly, β̂ and �̂ satisfy Assumption 5 with N = N0(a1,a2), and the set N∗
is given by N∗

0 (a1,a2). The sets N∗
0 (a1,a2) and N∗

2 (a1,a2) are invariant under the group

of transformations y �→ αy + Xγ where α �= 0, γ ∈ Rk .

Proof. The lemma except for the last claim follows from Lemma B.1. The last
claim then follows from Lemma F.1 in Appendix F, cf. also the discussion following
Assumption 5. n

LEMMA B.3. Suppose ρ̂ satisfies Assumption 4 and k ≤ a2 −a1 holds. Then �̃ and �̂
satisfy Assumptions 6 and 7 with N∗ = N∗

2 (a1,a2) in case of �̃ and with N∗ = N∗
0 (a1,a2)

in case of �̂.

Proof. Consider first the case of the Yule–Walker estimator, i.e., a1 = 1 and a2 = n.
Then �(ρ̂Y W (y)) is positive definite for every y /∈ N0(a1,a2). Hence �̃(y) is pos-
itive definite for y /∈ N∗

2 (a1,a2) and �̂(y) is positive definite for y /∈ N∗
0 (a1,a2).
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Consequently, Assumptions 6 and 7 are clearly satisfied. Next consider the case where
a1 �= 1 or a2 �= n. Then y0 constructed in the proof of Lemma 3.14 satisfies y0 ∈
R

n\N∗
0 (a1,a2) as well as y0 ∈ Rn\N∗

2 (a1,a2) as shown in the proof of Lemma B.1.

Because of ρ̂(y0) = ρ̂Y W (y0), we also see that �̃(y0) as well as �̂(y0) are positive defi-
nite (as the variance covariance estimators based on ρ̂ coincide with the ones based on the
Yule–Walker estimator). This shows that Assumption 6 is satisfied for �̃ and �̂. It remains
to establish Assumption 7: Let v �= 0, v ∈ Rq be arbitrary. The preceding argument has
shown y0 ∈Rn\N∗

2 (a1,a2) and y0 ∈Rn\N∗
0 (a1,a2) and also shows that v ′�̃−1 (y0)v > 0

and v ′�̂−1 (y0)v > 0 hold. To complete the proof it suffices to show that the set
{

y ∈
R

n\N∗
2 (a1,a2) : v ′�̃−1 (y)v = 0

}
is the intersection of y ∈Rn\N∗

2 (a1,a2) with the zero-

set of a multivariate polynomial, and similarly for
{

y ∈Rn\N∗
0 (a1,a2) : v ′�̂−1 (y)v = 0

}
.

This is proved in a similar manner as in the proof of Lemma B.1 by rewriting all inverse
matrices appearing in v ′�̃−1 (y)v (v ′�̂−1 (y)v , respectively) in terms of the adjoints and
determinants and observing that the determinants are all nonzero for y ∈ Rn\N∗

2 (a1,a2)

(y ∈ Rn\N∗
0 (a1,a2), respectively). This shows that v ′�̃−1 (y)v = 0 (v ′�̂−1 (y)v = 0,

respectively) can be rewritten as a polynomial equation in ρ̂(y). Multiplying this polyno-
mial equation by a suitable power of

∑a2
t=a1

û2
t (y), which is nonzero on Rn\N∗

2 (a1,a2)
(Rn\N∗

0 (a1,a2), respectively) shows that these equations can be rewritten as polynomial
equations in y. n

Proof of Theorem 3.15. We first verify the assumptions of Corollary 5.17. Assump-
tion 5 is satisfied for β̃ and �̃ (with N = N2(a1,a2) and N∗ = N∗

2 (a1,a2)) as well

as for β̂ and �̂ (with N = N0(a1,a2) and N∗ = N∗
0 (a1,a2)) in view of Lemma B.2.

In view of Assumption 1 we conclude from Lemma G.1 that Z+ = span(e+) as well as
Z− = span(e−) are concentration spaces of C. Applying Parts 1 and 2 of Corollary 5.17
and Remark 5.18(i) to Z+ as well as to Z− establishes (1) and (2) of the theorem as well
as the corresponding parts of (4), if we also note that the size of the test can not be zero
in view of Part 5 of Lemma 5.15 and Lemma B.3. In order to prove (3) of the theorem,
we apply Theorem 5.19. First note that �̃ satisfies Assumption 7 because of Lemma B.3.
Furthermore, choose as the sequence �m in that theorem �m = �(ρm) for some sequence
ρm → 1, ρm ∈ (−1,1). Then �̄ = e+e+ by Lemma G.1, which also provides the matrix D
and its required properties. Hence l = 1 and span

(
�̄
)= span(e+) which is contained inM

since e+ ∈M has been assumed andM is a linear space. Condition (32) in Theorem 5.19
is satisfied in view of the assumption Rβ̂(e+) �= 0 since span

(
�̄
) = span(e+). Inspec-

tion of the constants K1 and K2 in Theorem 5.19 reveal that K1 = K2 =: K FGL S (e+)
since in the present case γ is one-dimensional. That K FGL S (e+) depends only on the
quantities given in the theorem is obvious from the formulas for K1 and K2. Further-
more, if ρ̂ ≡ ρ̂Y W , then �̃ is always positive definite on Rn\N2(1,n) = R

n\M, be-
cause

∣∣ρ̂Y W
∣∣ < 1 holds implying that �

(
ρ̂Y W

)
is positive definite on Rn\N2(1,n).

Inspection of the constants K1 and K2 then reveals K1 = K2 = 1 in that case. The
claims in (3) with e+ replaced by e− are proved analogously, and so are the remaining
claims in (4). n

Proof of Proposition 3.16. (1) First consider X1,FGL S (e+). The condition e+ ∈
N∗

2,X (a1,a2) is equivalent to e+ ∈ N1,X (a1,a2), or e+ ∈ R
n\N1,X (a1,a2) but

det
(
X ′�−1(ρ̂X (e+))X

)= 0, or to e+ ∈ Rn\N1,X (a1,a2) and det
(
X ′�−1(ρ̂X (e+))X

) �=
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0 but σ̃ 2
X (e+)det

(
R(X ′�−1(ρ̂X (e+))X)−1 R′)= 0. The first one of these three conditions

can be written as⎛
⎝ n∑

t=2

ût (e+)ût−1(e+)

⎞
⎠

2

=
⎛
⎝ a2∑

t=a1

û2
t (e+)

⎞
⎠

2

. (B.1)

Since det(X ′ X) �= 0 holds for X ∈ X0, the set of X ∈ X0 satisfying (B.1) is – after
multiplication of both sides of (B.1) by the fourth power of det(X ′X) – seen to be in-
cluded in the zero-set of a multivariate polynomial in the variables xti . Observing that
det
(
�(ρ̂X (e+))

) �= 0 and
∑a2

t=a1
û2

t,X (e+) �= 0 for e+ ∈ Rn\N1,X (a1,a2), the second
one of the above conditions takes the equivalent form

⎛
⎝ a2∑

t=a1

û2
t (e+)

⎞
⎠

k(n−1)2

det
(
X ′ adj

(
�(ρ̂X (e+))

)
X
)= 0,

⎛
⎝ n∑

t=2

ût (e+)ût−1(e+)

⎞
⎠

2

�=
⎛
⎝ a2∑

t=a1

û2
t (e+)

⎞
⎠

2

.

(B.2)

For X ∈ X0 satisfying the inequality in (B.2), the left-hand side of the equation in the pre-
ceding display is easily seen to be a polynomial in the variables xti and ût (e+). Since
det(X ′X)ût (e+) is polynomial in the variables xti and det(X ′X) �= 0 for X ∈ X0, we
may rewrite the equation in the preceding display by multiplying it by the 4k(n −1)2-th
power of det(X ′X). The resulting equivalent equation is obviously a polynomial in
the variables xti . This shows that the set of X ∈ X0 satisfying (B.2) is (a subset
of) the zero-set of a multivariate polynomial. Recalling that det

(
�(ρ̂X (e+))

) �= 0 and∑a2
t=a1

û2
t (e+) �= 0 for e+ ∈ Rn\N1,X (a1,a2), and that det

(
X ′�−1(ρ̂X (e+))X

)
�= 0 im-

plies det
(
X ′ adj

(
�(ρ̂X (e+))

)
X
) �= 0, the third one of the above conditions takes the equiv-

alent form⎛
⎝ a2∑

t=a1

û2
t (e+)

⎞
⎠

(n−1)2(2k+1+q(k−1))

f (X)′ adj
(
�(ρ̂X (e+))

)
f (X)g(X) = 0 (B.3)

subject to⎛
⎝ n∑

t=2

ût (e+)ût−1(e+)

⎞
⎠

2

�=
⎛
⎝ a2∑

t=a1

û2
t (e+)

⎞
⎠

2

,det
(

X ′�−1(ρ̂X (e+))X
)

�= 0, (B.4)

where

f (X) = [det
(
X ′ adj

(
�(ρ̂X (e+))

)
X)
)

In

− X adj
(
X ′ adj

(
�(ρ̂X (e+))

)
X
)

X ′ adj
(
�(ρ̂X (e+))

)]
e+

g(X) = det
(
R adj(X ′ adj

(
�(ρ̂X (e+))

)
X)R′) .

The left-hand side of the equation in (B.3) is a polynomial in the variables xti as well
as ût,X (e+) for all X ∈ X0 satisfying the inequality in (B.4). After multiplying the left-
hand side of the equation in (B.3) by a suitable power of det(X ′X), which is nonzero
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for X ∈ X0, (B.3) can be equivalently recast as an equation that is polynomial in xti ,
showing that the set of X ∈ X0 satisfying (B.3) and (B.4) is a subset of the zero-set
of a multivariate polynomial. It follows that X1,FGL S (e+) is a λ

Rn×k -null set provided
we can show that each of the three polynomials in the variables xti mentioned before
is not trivial. For this it certainly suffices to construct a matrix X ∈ X0 such that e+ /∈
N∗

2,X (a1,a2) holds: Consider first the case n ≥ 3. Let the first column x∗·1 of X∗ be equal

to (1,0, . . . ,0,1)′, and choose the remaining columns linearly independent in the orthogo-
nal complement of the space spanned by x∗·1 and e+. Then X∗ ∈ X0 holds and û X∗(e+) =
(0,1,1, . . . ,1,1,0)′ and hence ρ̂X∗ (e+) is well-defined and equals ρ̂Y W,X∗ (e+), which
is always less than 1 in absolute value. Consequently, e+ ∈ Rn\N1,X∗(a1,a2) holds. Fur-

thermore, �(ρ̂X∗(e+)) is then positive definite and hence det
(

X∗′�−1(ρ̂X∗(e+))X∗) �= 0

and det
(

R(X∗′�−1(ρ̂X∗(e+))X∗)−1 R′) �= 0 hold; also σ̃ 2
X∗(e+) > 0 follows from pos-

itive definiteness of �(ρ̂X∗(e+)) and the fact that e+ /∈ span
(
X∗). But this establishes

e+ ∈ Rn\N∗
2,X∗(a1,a2) in case n ≥ 3. Next consider the case n = 2. Then k = 1 must

hold. The assumption k ≤ a2 −a1 entails a2 = n = 2 and a1 = 1, i.e., ρ̂ must be the Yule–
Walker estimator implying that N∗

2,X∗(a1,a2) = span
(
X∗). Choose X∗ as an arbitrary

vector linearly independent of e+ (which is possible since n = 2 > 1 = k). Then X∗ ∈ X0
and e+ ∈Rn\N∗

2,X∗(a1,a2) are satisfied. The proof for X1,FGL S (e−) is completely anal-
ogous where in case n ≥ 3 the matrix X∗ is now chosen in such a way that x∗·1 is equal
to (−1,0, . . . ,0, (−1)n)′ and e− takes the rôle of e+ in the construction of the remaining
columns. Next consider the set X2,FGL S (e+). Observe that for X ∈ X0\X1,FGL S (e+)
the relation TFGL S,X (e+ +μ∗

0) = C can equivalently be written as

(Rβ̃X (e+))′�̃−1
X (e+)(Rβ̃X (e+))−C = 0. (B.5)

Similar arguments as above show that for X ∈ X0\X1,FGL S (e+) this equation can equiv-
alently be stated as p(X) = 0 where p(X) is a polynomial in the variables xti . But this
shows that the set of X ∈ X0\X1,FGL S (e+) satisfying (B.5) is (a subset of) an algebraic
set. It follows that X2,FGL S (e+) is a λ

Rn×k -null set provided the polynomial p is not triv-
ial, or in other words that there exists a matrix X ∈ X0\X1,FGL S (e+) that violates (B.5).
But this is guaranteed by the provision in the theorem. The result for X2,FGL S (e−) is
proved in exactly the same manner. The remaining claims of Part 1 are now obvious.

(2) Similar arguments as in the proof of Part 1 show that X̃1,FGL S (e−) and
X̃2,FGL S (e−) are each contained in an algebraic set. By the assumed provision it fol-
lows immediately that X̃2,FGL S (e−) is a λ

Rn×(k−1) -null set. The same conclusion holds

for X̃1,FGL S (e−) if we can find a matrix X∗ = (e+, X̃∗) such that e− /∈ N∗
2,X∗ (a1,a2).

To this end let the n × 1 vector a = (−1,0, . . . ,0, (−1)n)′ be the first column of X̃∗ and
choose the remaining k −2 columns linearly independent in the orthogonal complement of
the space spanned by e+, e−, and a (which is possible since k < n). Simple computation
now shows that û X∗(e−) �= 0 (note that n ≥ 4 has been assumed) and that the first and last
entry of û X∗(e−) is zero. Consequently, ρ̂X∗ (e−) is well-defined and equals ρ̂Y W,X∗ (e−),
which is always less than 1 in absolute value, and the same argument as in the proof of
Part 1 shows that e− /∈ N∗

2,X∗ (a1,a2) is indeed satisfied. The remaining claims of Part 2
are now obvious.
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(3) First consider X1,O L S (e+). The condition e+ ∈ N∗
0,X (a1,a2) is equivalent to∑a2

t=a1
û2

t (e+)=0, or
∑a2

t=a1
û2

t (e+) �=0 but det
(
R(X ′X)−1X ′�(ρ̂(y))X (X ′X)−1R′)=0.

Similar arguments as in (1) then show that X1,O L S (e+) is a subset of an algebraic set.
The matrix X∗ constructed in (1) is easily seen to satisfy e+ ∈ Rn\N∗

0,X∗ (a1,a2). Thus
X1,O L S (e+) is a λ

Rn×k -null set. The proof for X1,O L S (e−) is exactly the same. Next
consider X2,O L S (e+). Observe that for X ∈ X0\X1,O L S (e+) the relation TO L S,X (e+ +
μ∗

0) = C can equivalently be written as

(Rβ̂X (e+))′�̂−1
X (e+)(Rβ̂X (e+))−C = 0. (B.6)

The same argument as in the proof of Part (1) shows that the set of X ∈ X0\X1,O L S (e+)
satisfying (B.6) is (a subset of) the zero-set of a multivariate polynomial in the variables
xti . It follows that X2,O L S (e+) is a λ

Rn×k -null set under the maintained provision that
it is a proper subset of X0\X1,O L S (e+). The proof for X2,O L S (e−) is the same. The
proof for X̃1,O L S (e−) and X̃2,O L S (e−) is similar to the proof for X̃1,FGL S (e−) and
X̃2,FGL S (e−).

(4) Note that the assumptions obviously imply e+ ∈M and Rβ̂(e+) �= 0. n

Remark B.4. In case a1 = 1 and a2 = n the argument in the above proof simplifies due
to the fact that N∗

2,X (1,n) = N∗
0,X (1,n) = span(X).

Proof of Theorem 3.17. We apply Theorem 5.21. That (β̃, �̃) as well as (β̂, �̂)
satisfy Assumptions 5, 6, and 7 has been shown in Lemmata B.2 and B.3. The co-
variance model CAR(1) satisfies the properties required in Theorem 5.21 as shown in
Lemma G.1. Furthermore, we have J

(
CAR(1)

) = span(e+)∪ span(e−), see Lemma G.1,
and because e+,e− ∈M is assumed we conclude that J

(
CAR(1)

) ⊆M. The assumption

Rβ̂(e+) = Rβ̂(e−) = 0 then implies that even J
(
CAR(1)

) ⊆M0 −μ0 holds. The invari-
ance condition (34) in Theorem 5.21 is thus satisfied, because T is G (M0)-invariant by
Lemma 5.15. We next show that the additional condition in Part 2 of Theorem 5.21 is sat-
isfied. This is trivial in case the Yule–Walker estimator is used (i.e., if a1 = 1 and an = n)
since then �̃(y) is positive definite for y /∈ N∗

2 (a1,a2) and �̂(y) is positive definite for
y /∈ N∗

0 (a1,a2) (see the proof of Lemma B.1) and since N∗
2 (a1,a2) and N∗

0 (a1,a2) are
λRn -null sets by Lemma B.1. If a1 �= 1 or an �= n, then y0 constructed in the proof of
Lemma 3.14 satisfies y0 ∈ Rn\N∗

2 (a1,a2) and y0 ∈ Rn\N∗
0 (a1,a2) (cf. proof of Lemma

B.1) as well as ρ̂(y0) = ρ̂Y W (y0), implying that �̃(y0) as well as �̂(y0) are positive def-
inite. As shown in Lemma B.1, the matrix �̃ is, in particular, continuous on the open set
R

n\N∗
2 (a1,a2) and the matrix �̂ is continuous on the open set Rn\N∗

0 (a1,a2). Conse-

quently, �̃ and �̂ are positive definite in a neighborhood of y0 and thus the additional
condition in Part 2 of Theorem 5.21 is satisfied. Finally, the condition a1 = 1 and a2 = n
implies that �̃ and �̂ are λRn -almost everywhere positive definite (since then ρ̂ = ρ̂Y W ),
verifying the extra condition in Part 3 of Theorem 5.21. n

C. APPENDIX: Proofs for Section 4

Proof of Theorem 4.2. First observe that β̂ and �̂Het satisfy Assumptions 5 and 6 with
N = ∅. In fact, �̂Het (y) is nonnegative definite for every y ∈ Rn , and is positive definite

https://doi.org/10.1017/S0266466614000899 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000899


SIZE AND POWER OF HAR-TESTS 337

λRn -almost everywhere under Assumption 3 by Lemma 4.1. Furthermore, in view of this
lemma and because N = ∅, the set N∗ in Corollary 5.17 is precisely the set of y for which
rank(B(y)) < q. It is trivial that Zi =span(ei (n)) is a concentration space of C for every
i = 1, . . . ,n. The theorem now follows by applying Corollary 5.17 and Remark 5.18(i) to
Zi and by noting that ei (n) ∈ Rn\N∗ translates into rank (B(ei (n))) = q. Also note that
the size of the test can not be zero in view of Part 5 of Lemma 5.15. n

D. APPENDIX: Proofs for Section 5.1

Proof of Proposition 5.2. Since

	(N−ν∗)⊥
(
gα,ν,ν′(y)−ν∗

)= α	(N−ν∗)⊥ (y −ν)+	(N−ν∗)⊥
(
ν′ −ν∗

)
= α	(N−ν∗)⊥ (y −ν) = α	(N−ν∗)⊥ (y −ν∗) ,

invariance of h follows, and hence h is constant on the orbits of G(N). Now suppose that
h(y) = h(y′). If h(y) = h(y′) = 0 holds, it follows that

	(N−ν∗)⊥(y −ν∗) = 	(N−ν∗)⊥(y′ −ν∗) = 0.

Consequently, y′ − y is of the form ν∗ −ν∗ for some ν∗ ∈N. But this gives y′ = (y −ν∗)+
ν∗ = g1,ν∗,ν∗(y), showing that y′ is in the same orbit as y. Next consider the case where
h(y) = h(y′) �= 0. Then

	(N−ν∗)⊥
(∥∥∥	(N−ν∗)⊥(y′ −ν∗)

∥∥∥(y −ν∗)− c
∥∥∥	(N−ν∗)⊥(y −ν∗)

∥∥∥(y′ −ν∗)
)

= 0

where c = ±1. It follows that the argument inside the projection operator is of the form
ν∗ −ν∗ for some ν∗ ∈N. Elementary calculations give

y′ =
∥∥∥	(N−ν∗)⊥(y′ −ν∗)

∥∥∥
c
∥∥∥	(N−ν∗)⊥(y −ν∗)

∥∥∥ (y −ν∗)+
⎛
⎝ν∗ + 1

c
∥∥∥	(N−ν∗)⊥(y −ν∗)

∥∥∥
(
ν∗ −ν∗)

⎞
⎠ .

Since the last term in parenthesis on the right-hand side above is obviously an element of
N, we have obtained y′ = g(y) for some g ∈ G(N), i.e., y′ is in the same orbit as y. This
shows that h is a maximal invariant. n

Proof of Proposition 5.4. (1) From (14) and its extension discussed subsequently to
(14), as well as from the transformation theorem for integrals we obtain

Eμ,σ 2� (ϕ (y)) = Eα(μ−μ0)+μ′
0,α

2σ 2�

(
ϕ

(
g−1
α,μ0,μ

′
0
(y)

))
.

By almost invariance of ϕ we have that ϕ (y) = ϕ

(
g−1
α,μ0,μ

′
0
(y)

)
for all y ∈ Rn\N

with λRn (N ) = 0 (where N may depend on g−1
α,μ0,μ

′
0
). Since � is positive definite, also

Pα(μ−μ0)+μ′
0,α

2σ 2�(N ) = 0 holds, and thus the right-hand side of the above display

equals Eα(μ−μ0)+μ′
0,α

2σ 2� (ϕ (y)) which proves the first claim.
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(2) Setting α = 1 in (15) shows that the rejection probability is invariant un-
der addition of elements that belong to M0 − μ0. Since μ = 	(M0−μ0) (μ−μ0) +
	(M0−μ0)

⊥ (μ−μ0) + μ0 we thus conclude that Eμ,σ 2�(ϕ) = Eν+μ0,σ 2�(ϕ) where

ν = 	(M0−μ0)
⊥(μ − μ0) ∈ M. Now applying (15) with α = σ−1 and μ′

0 = μ0 to
Eν+μ0,σ 2�(ϕ) establishes the first equality in (16). The second equality follows by the

same argument by setting α = ±σ−1, the sign equaling the sign of the first nonzero com-
ponent of ν if ν �= 0, and the choice of sign being irrelevant if ν = 0.

(3) The first claim is an immediate consequence of (16). For the second claim it suffices
to show that μ− X β̂rest (μ) (for μ ∈M) is an injective linear function of Rβ−r , bijectivity
of this mapping following from dimension considerations. To this end note that

μ− X β̂rest (μ) = Xβ − X

[
β̂(μ)− (X ′ X

)−1 R′ (R
(
X ′ X

)−1 R′)−1 (
Rβ̂(μ)− r

)]

= Xβ − X

[
β − (X ′X

)−1 R′ (R
(
X ′X

)−1 R′)−1
(Rβ − r)

]

= (X ′X
)−1 R′ (R

(
X ′X

)−1 R′)−1
(Rβ − r)

and that the matrix premultiplying Rβ − r is of full column rank q.
(4) This follows similarly as in (1) observing that for invariant ϕ the exceptional set N

is empty. n

Proof of Proposition 5.6. Set h̄(μ,σ 2) =
〈
	(M0−μ0)

⊥(μ−μ0)/σ
〉
. The invariance

of
(

h̄(μ,σ 2),�
)

follows from a simple computation similar to the one in the proof of

Proposition 5.2. Now assume that
(

h̄(μ,σ 2),�
)

=
(

h̄(μ′,σ ′2),�′). We immediately get

h̄(μ,σ 2) = h̄(μ′,σ ′2) and � = �′. The former implies

	(M0−μ0)
⊥
(
(μ−μ0)− c

(
σ/σ ′)(μ′ −μ0

))= 0,

where c = ±1. Similar calculations as in the proof of Proposition 5.2 give

μ′ = c
(
σ ′/σ

)(
μ−μ∗)+μ0

for some μ∗ ∈M0. Together with � = �′ this shows that (μ′,σ ′2,�′) is in the same orbit
under the associated group as is (μ,σ 2,�). n

E. APPENDIX: Proofs and Auxiliary Results for
Sections 5.2 and 5.3

The next lemma is a simple consequence of a continuity property of the characteristic
function of a multivariate Gaussian probability measure and of the Portmanteau theorem.

LEMMA E.1. Let �m be a sequence of nonnegative definite symmetric n × n matrices
converging to an n ×n matrix � as m → ∞, where � may be singular, and let μm ∈Rn be
a sequence converging to μ ∈Rn as m → ∞. Then Pμm ,�m converges weakly to Pμ,�. If,
in addition, A ∈ B(Rn) satisfies λμ+span(�)(bd(A)) = 0, then Pμm ,�m (A) → Pμ,�(A).
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Proof of Theorem 5.7. (1) SinceZ is a concentration space of C, there exists a sequence
(�m)m∈N in C converging to �̄ such that span(�̄) =Z . Note that μ0 +Z is a λRn -null set
because dim(Z) < n in view of Definition 2.1. Because �m is positive definite, we thus
have

Pμ0,σ 2�m
(W ) = Pμ0,σ 2�m

(W ∪ (μ0 +Z)).

By Lemma E.1 we then have that Pμ0,σ 2�m
(W ∪ (μ0 +Z)) converges to Pμ0,σ 2�̄(W ∪

(μ0 +Z)). But the later probability is not less than Pμ0,σ 2�̄(μ0 +Z) which equals 1
since Pμ0,σ 2�̄ is supported by μ0 +Z . To prove the claim in parentheses observe that
T (μ0 + z) > C and lower semicontinuity of T at μ0 + z implies that T (w) > C holds
for all w in a neighborhood of μ0 + z; hence such points μ0 + z belong to int(W ) ⊆
int(W ∪ (μ0 +Z)), and consequently do not belong to bd (W ∪ (μ0 +Z)). But this
establishes (18).

(2) Apply the same argument as above to R
n\W . Also note that Pμ0,σ 2�(W )

can be approximated arbitrarily closely by Pμ1,σ 2�(W ) for suitable μ1 ∈ M1, since

‖Pμ0,σ 2� − Pμ1,σ 2�‖T V → 0 for μ1 → μ0 holds by Scheffé’s Lemma as σ 2� is positive
definite.

(3) Choose an arbitrary μ1 ∈M1. By assumption we have inf
�∈C Pμ0,σ 2�(W ) = 0 for a

suitable σ 2 > 0. It hence suffices to show that for every � ∈ C
Pμ0,σ 2�(W )− Pμ1,σ 2τ 2�(W ) → 0

holds for τ → ∞. By almost invariance of W under G ({μ0}) we have that W �
(τW + (1− τ)μ0) is a λRn -null set. Hence, by the reproductive property of the normal
distribution

Pμ1,σ 2τ 2�(W ) = Pμ1,σ 2τ 2�(τ W + (1− τ)μ0) = Pμ0+τ−1(μ1−μ0),σ 2�(W ).

But, since σ 2� is positive definite, we have by an application of Scheffé’s Lemma

‖Pμ0,σ 2� − Pμ0+τ−1(μ1−μ0),σ 2�‖T V → 0

as τ → ∞, and hence Pμ0,σ 2�(W )− Pμ0+τ−1(μ1−μ0),σ 2�(W ) → 0. The claim in paren-
thesis is obvious. n

LEMMA E.2. Let ϕ :Rn → [0,1] be a Borel-measurable function that is almost invari-
ant under G(M0). Suppose �m is a sequence of positive definite symmetric n ×n matrices
converging to a positive definite matrix �, suppose μm ∈M, and suppose the sequence
σ 2

m satisfies 0 < σ 2
m < ∞. Then

lim
m→∞ Eμm ,σ 2

m�m
(ϕ) = Eν+μ0,�(ϕ)

provided ν∗
m = 	(M0−μ0)

⊥(μm − μ0)/σm for some μ0 ∈M0 converges to an element

ν ∈Rn (which then necessarily belongs toM). [Note that ν∗
m, and thus the result, does not

depend on the choice of μ0 ∈M0.]

Proof. By Proposition 5.4 we have that Eμm ,σ 2
m�m

(ϕ) = Eν∗
m+μ0,�m (ϕ). Since ν∗

m → ν

and since �m → �, with � positive definite, the result follows from total variation distance
convergence of Pν∗

m+μ0,�m to Pν+μ0,�. n
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Remark E.3. (i) Consider the case where ν∗
m = 	(M0−μ0)

⊥(μm −μ0)/σm does not

converge. Then, as long as the sequence ν∗
m is bounded, the above lemma can be applied by

passing to subsequences along which ν∗
m converges. In the case where the sequence ν∗

m is
unbounded, then, along subsequences such that the norm of ν∗

m diverges, one would expect
Eμm ,σ 2

m�m
(ϕ) = Eν∗

m+μ0,�m (ϕ) to converge to 1 for any reasonable test since ν∗
m +μ0

moves farther and farther away fromM0 (and �m stabilizes at a positive definite matrix).
Indeed, such a result can be shown for a large class of tests, see Lemma 5.15.

(ii) In the special case where μm ≡ μ it is easy to see, using Proposition 5.4, that the
limit in the above lemma is Eμ,σ 2�(ϕ) if σ 2

m → σ 2 ∈ (0,∞) and μ ∈M1, is Eμ0,�(ϕ) if

σ 2
m → ∞ and μ ∈M1, and is Eμ,�(ϕ) if μ ∈M0.

LEMMA E.4. Let ϕ : Rn → [0,1] be a Borel-measurable function that is almost in-
variant under G(M0). Suppose �m is a sequence of positive definite symmetric n × n
matrices converging to a singular matrix �, suppose μm ∈M, and σ 2

m is a sequence sat-
isfying 0 < σ 2

m < ∞. Assume further that ϕ(x + z) = ϕ(x) holds for every x ∈ Rn and
every z ∈ span(�). Suppose that for some sequence of positive real numbers sm the ma-
trix Dm = 	span(�)⊥�m	span(�)⊥/sm converges to a matrix D, which is regular on the
orthogonal complement of span(�). Then

lim
m→∞ Eμm ,σ 2

m�m
(ϕ) = Eν+μ0,D+�(ϕ) = Eν+μ0,D(ϕ)

provided ν∗∗
m = 	(M0−μ0)

⊥(μm − μ0)/
(
σms1/2

m

)
for some μ0 ∈M0 converges to an

element ν ∈Rn (which then necessarily belongs toM). [Note that ν∗∗
m , and thus the result,

does not depend on the choice of μ0 ∈M0.] Furthermore, the matrix D +� is positive
definite.

Proof. Because 	span(�) (x −μm) ∈ span(�), we obtain by the assumed invariance
w.r.t. addition of z ∈ span(�)

ϕ(x) = ϕ(μm +	span(�)⊥ (x −μm)+	span(�) (x −μm))

= ϕ(μm +	span(�)⊥ (x −μm))

for every x . By the transformation theorem we then have on the one hand

Eμm ,σ 2
m�m

(ϕ(·)) = Eμm ,σ 2
m�m

(ϕ(μm +	span(�)⊥ (·−μm)))

= Eμm ,σ 2
m	span(�)⊥�m	span(�)⊥

(ϕ(·))
= Eμm ,σ 2

m sm Dm
(ϕ(·)). (E.1)

On the other hand, by the same invariance property of ϕ

Eμm ,σ 2
m sm Dm

(ϕ(·)) = Eμm ,σ 2
m sm Dm

(ϕ(·+ z))

holds for every z ∈ span(�). Integrating this w.r.t. a normal distribution P0,σ 2
m sm� (in the

variable z) and using the reproductive property of the normal distribution gives

Eμm ,σ 2
m sm Dm

(ϕ(x)) = EQm (ϕ(x + z)) = Eμm ,σ 2
m sm (Dm+�)(ϕ(x)) (E.2)
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where Qm denotes the product of the Gaussian measures Pμm ,σ 2
m sm Dm

and P0,σ 2
m sm�.

Observe that D +� as well as Dm +� are positive definite. An application of Lemma E.2
now gives

lim
m→∞ Eμm ,σ 2

m sm (Dm+�)(ϕ) = Eν+μ0,D+�(ϕ).

The same argument that has led to (E.2) now shows that Eν+μ0,D+�(ϕ) = Eν+μ0,D(ϕ).
Combining this with (E.1) completes the proof of the display in the theorem. The positive
definiteness of D +� is obvious as noted earlier in the proof. n

Remark E.5. (i) A remark similar to Remark E.3(i) also applies here. In particular, we
typically can expect Eμm ,σ 2

m�m
(ϕ) to converge to 1 in case the norm of ν∗∗

m diverges.
(ii) In the special case where μm ≡ μ it is easy to see, using Proposition 5.4, that the limit

in the above lemma is Eμ,κ(D+�)(ϕ) = Eμ,κ D(ϕ) if σ 2
msm → κ ∈ (0,∞) and μ ∈M1,

is Eμ0,D+�(ϕ) = Eμ0,D(ϕ) if σ 2
msm → ∞ and μ ∈M1, and is Eμ,D+�(ϕ) = Eμ,D(ϕ)

if μ ∈M0.

Remark E.6. (i) If sm and s∗
m are two positive scaling factors such that

	span(�)⊥�m	span(�)⊥/sm → D and 	span(�)⊥�m	span(�)⊥/s∗
m → D∗ with both D

and D∗ being regular on the orthogonal complement of span(�), then sm/s∗
m must con-

verge to a positive finite number, i.e., the scaling sequence is essentially uniquely deter-
mined.

(ii) Typical choices for sm are s(1)
m =

∥∥∥	span(�)⊥�m	span(�)⊥
∥∥∥ (for some choice

of norm) or s(2)
m = tr(	span(�)⊥�m	span(�)⊥); note that s(1)

m as well as s(2)
m are

positive, since �m is positive definite and � is singular. With both choices conver-
gence of 	span(�)⊥�m	span(�)⊥/sm (at least along suitable subsequences) is automatic.

Furthermore, since for any choice of norm we have c1

∥∥∥	span(�)⊥�m	span(�)⊥
∥∥∥ ≤

tr(	span(�)⊥�m	span(�)⊥)≤c2

∥∥∥	span(�)⊥�m	span(�)⊥
∥∥∥ for suitable 0<c1 ≤c2 <∞,

we have convergence of s(1)
m /s(2)

m to a positive finite number (at least along suitable sub-

sequences). Hence, which of the normalization factors s(i)
m is used in an application of the

above lemma, typically does not make a difference.

Proof of Theorem 5.10. (1) By the invariance properties of the rejection probability
expressed in Proposition 5.4 it suffices to show for an arbitrary fixed μ0 ∈M0 that

sup
�∈C

Eμ0,�(ϕ) < 1

in order to establish the first claim in Part 1. To this end let �m ∈ C be a sequence such
that Eμ0,�m (ϕ) converges to sup�∈C Eμ0,�(ϕ). Since C is assumed to be bounded, we
may assume without loss of generality that �m converges to a matrix �̄ (not necessarily
in C). If �̄ is positive definite, it follows from Lemma E.2 applied to Eμ0,�m (ϕ) that
sup�∈C Eμ0,�(ϕ) = Eμ0,�̄

(ϕ) (since ν = 0). But Eμ0,�̄
(ϕ) is less than 1 since ϕ ≤ 1 is

not λRn -almost everywhere equal to 1. If �̄ is singular, then in view of the assumptions of
the theorem we can pass to the subsequence �mi and then apply Lemma E.4 to Eμ0,�mi

(ϕ)
to obtain that sup�∈C Eμ0,�(ϕ) = Eμ0,D+�̄(ϕ) (since again ν = 0) for a matrix D with

https://doi.org/10.1017/S0266466614000899 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000899


342 DAVID PREINERSTORFER AND BENEDIKT M. PÖTSCHER

the properties as given in the theorem. But Eμ0,D+�̄(ϕ) is less than 1, since D + �̄ is
positive definite (as noted in Lemma E.4) and since ϕ ≤ 1 is not λRn -almost everywhere
equal to 1. This proves the first claim of Part 1 of the theorem. To prove the second claim in
Part 1, observe that for the same invariance reasons it suffices to show that for an arbitrary
fixed μ0 ∈M0

inf
�∈CEμ0,�(ϕ) > 0

holds. Now the same argument as before shows that this infimum either equals Eμ0,�̄
(ϕ)

for some positive definite �̄, or equals Eμ0,D+�̄(ϕ) for some positive definite D + �̄.
Since ϕ ≥ 0, but ϕ is not λRn -almost everywhere equal to 0 by assumption, the result
follows.

(2) Let μm ∈M1, 0 < σ 2
m < ∞, and �m ∈ C be sequences such that Eμm ,σ 2

m�m
(ϕ)

converges to infμ1∈M1 infσ 2>0 inf�∈C Eμ1,σ 2�(ϕ). Since C is assumed to be bounded,

we may assume without loss of generality that �m converges to a matrix �̄.
Consider first the case where �̄ is positive definite: Set ν∗

m = 	(M0−μ0)
⊥(μm −

μ0)/σm . If this sequence is bounded, we may pass to a subsequence m′ such that ν∗
m′

converges to some ν. Applying Lemma E.2 then shows that Eμm′ ,σ 2
m′�m′ (ϕ) converges to

Eν+μ0,�̄
(ϕ), which is positive since ϕ ≥ 0 is not λRn -almost everywhere equal to 0 and

since �̄ is positive definite. If the sequence ν∗
m is unbounded, we may pass to a subsequence

m′ such that
∥∥∥ν∗

m′
∥∥∥→ ∞. Since Eμm′ ,σ 2

m′�m′ (ϕ) = Eν∗
m′+μ0,�m′ (ϕ) by Proposition 5.4,

it follows from assumption (22) that limm′ Eμm′ ,σ 2
m′�m′ (ϕ) is positive.

Next consider the case where �̄ is singular: Pass to the subsequence mi mentioned

in the theorem and set now ν∗∗
mi

= 	(M0−μ0)
⊥(μmi −μ0)/

(
σmi s1/2

mi

)
. If this sequence

is bounded, we may pass to a subsequence m′
i of mi such that ν∗∗

m′
i

converges to some

ν. Applying Lemma E.4 then shows that Eμm′
i
,σ 2

m′
i
�m′

i

(ϕ) converges to Eν+μ0,D+�̄(ϕ),

which is positive since ϕ ≥ 0 is not λRn -almost everywhere equal to 0 and since D + �̄ is
positive definite. If the sequence ν∗∗

mi
is unbounded, we may pass to a subsequence m′

i of

mi such that

∥∥∥∥ν∗∗
m′

i

∥∥∥∥→ ∞. Since

Eμm′
i
,σ 2

m′
i
�m′

i

(ϕ) = E
μm′

i
,σ 2

m′
i
sm′

i

(
Dm′

i
+�̄
)(ϕ) = Eν∗∗

m′
i
+μ0,Dm′

i
+�̄(ϕ)

by (E.1), (E.2), and Proposition 5.4, it follows from assumption (22) and positive defi-
niteness of D + �̄ that limi→∞ Eμm′

i
,σ 2

m′
i
�m′

i

(ϕ) is positive. Taken together the preceding

arguments establish Part 2 of the theorem.
(3) To prove the first claim of Part 3 of the theorem observe that we can find μm ∈M1

and σ 2
m with 0 < σ 2

m < ∞ with d (μm ,M0)/σm ≥ c such that the expression left of the
arrow in (23) differs from Eμm ,σ 2

m�m
(ϕ) only by a sequence converging to zero. Let m′

denote an arbitrary subsequence. We can then find a further subsequence m′
i such that the

corresponding matrix Dm′
i

satisfies the assumptions of the theorem. Note that the sequence

sm′
i

corresponding to Dm′
i

necessarily converges to zero. But then the norm of ν∗∗
m′

i
defined
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above must diverge since d
(
μm′

i
,M0

)
/σm ≥ c and since 	(M0−μ0)

⊥ is the projection

onto the orthogonal complement ofM0 −μ0. Because

Eμm′
i
,σ 2

m′
i
�m′

i

(ϕ) = Eν∗∗
m′

i
+μ0,Dm′

i
+�̄(ϕ)

in view of (E.1), (E.2), and Proposition 5.4, the result then follows from the assumption
that the limit inferior in (22) is equal to 1, noting that Dm′

i
+ �̄ is positive definite and

converges to the positive definite matrix D + �̄.
We next prove the second claim in Part 3. Choose μm ∈M1 with d (μm ,M0) ≥ cm

such that the expression to the left of the arrow in (24) differs from Eμm ,σ 2
m�m

(ϕ) only by
a sequence converging to zero. Since

Eμm ,σ 2
m�m

(ϕ) = Eν∗
m+μ0,�m (ϕ)

by Proposition 5.4 where ν∗
m was defined above and since

∥∥ν∗
m
∥∥ ≥ cm/σm → ∞ clearly

holds, the result follows from the assumption that the limit inferior in (22) is equal
to 1. [Note that we have not made use of condition (21) and the condition on C
following (21).] n

Proof of Theorem 5.12. By invariance properties of the rejection probability (cf. Propo-
sition 5.4) it suffices to show for the particular μ∗

0 ∈M0 appearing in (26) that for every δ,
0 < δ < 1, there exists k0 = k0(δ) such that

sup
�∈C

Eμ∗
0,�(ϕk0) ≤ δ. (E.3)

For this it suffices to show that sup
�∈C

Eμ∗
0,�(ϕk) converges to zero for k → ∞. Let �k ∈ C

be a sequence such that for all k ≥ 1

sup
�∈C

Eμ∗
0,�(ϕk) ≤ Eμ∗

0,�k
(ϕk)+ k−1. (E.4)

Since C is assumed to be bounded, we can find for every subsequence k∗ a further sub-
subsequence k′ such that �k′ converges to a matrix �̄ (not necessarily in C). Let ε > 0 be
given. We then distinguish two cases:

Case 1: �̄ is positive definite. By (26) we can then find a k′
0 in the subsequence such that

Eμ∗
0,�̄(ϕk′

0
) < ε/2

holds. But then by (E.4) and by the monotonicity expressed in (26)

sup
�∈C

Eμ∗
0,�(ϕk′) ≤ Eμ∗

0,�k′ (ϕk′)+ k′−1 ≤ Eμ∗
0,�k′ (ϕk′

0
)+ k′−1 (E.5)

holds for all k′ ≥ k′
0. Now Lemma E.2 together with Remark E.3(ii) may clearly be applied

to the subsequence k′, showing that Eμ∗
0,�k′ (ϕk′

0
) converges to Eμ∗

0,�̄(ϕk′
0
) < ε/2. But this

shows that

limsup
k′→∞

sup
�∈C

Eμ∗
0,�(ϕk′) < ε. (E.6)
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Case 2: �̄ is singular. Then we can find a subsequence k′
i of k′ and normalization

constants sk′
i

such that the resulting matrices Dk′
i

converge to a matrix D with the proper-

ties specified in Theorem 5.10. Because D + �̄ is positive definite, we can in view of (26)
find a k′

i(0) in the subsequence k′
i such that

Eμ∗
0,D+�̄(ϕk′

i(0)
) < ε/2.

Now applying Lemma E.4 together with Remark E.5(ii) to the subsequence k′
i shows that

Eμ∗
0,�k′

i
(ϕk′

i(0)
) converges to Eμ∗

0,D+�̄(ϕk′
i(0)

) < ε/2. But by (E.4) and (26)

sup
�∈C

Eμ∗
0,�(ϕk′

i
) ≤ Eμ∗

0,�k′
i
(ϕk′

i
)+ k′−1

i ≤ Eμ∗
0,�k′

i
(ϕk′

i(0)
)+ k′−1

i

holds for all i ≥ i(0). This shows that

limsup
i→∞

sup
�∈C

Eμ∗
0,�(ϕk′

i
) < ε.

Taken together we have shown that sup
�∈C

Eμ∗
0,�(ϕk) must converge to zero along the orig-

inal sequence k which proves (E.3). n

F. APPENDIX: Proofs and Auxiliary Results for
Section 5.4

LEMMA F.1. Suppose Assumption 5 holds. Then the sets

A1 =
{

y ∈ Rn\N : det�̌(y) = 0
}

and A2 =
{

y ∈ Rn\N : det�̌(y) �= 0
}

are invariant under G(M), the former set being closed in the relative topology on Rn\N.
The set

N∗ = N ∪
{

y ∈ Rn\N : det�̌(y) = 0
}

is a closed λRn -null set in Rn that is invariant under G(M).

Proof. The invariance of A1 and A2 follows immediately from the invariance of Rn\N
and the equivariance of �̌(y). The relative closedness of A1 is an immediate consequence
of the continuity of �̌(y) on Rn\N . The invariance of N∗ follows from invariance of N
discussed after Assumption 5 and the just established invariance of A1. Because N is a
λRn -null set and because �̌(y) is λRn -almost everywhere nonsingular on Rn\N , it follows
that N∗ is a λRn -null set. Finally, we establish closedness of N∗: let yi ∈ N∗ be a sequence
with limit y0. If y0 ∈ N , we are done. If y0 ∈Rn\N , by openness of this set also yi ∈Rn\N
for all but finitely many i must hold and thus det�̌(yi ) = 0. But then continuity of �̌ on
R

n\N implies det�̌(y0) = 0, and hence y0 ∈ N∗. n
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Proof of Lemma 5.15. (1) Follows from the discussion preceding the lemma and
Lemma F.1.

(2) Follows immediately from the observation that T coincides on the open set Rn\N∗
with (Rβ̌(y)− r)′�̌−1(y)(Rβ̌(y)− r) which is continuous on this set by Assumption 5.

(3) Since N∗ is invariant under the elements of G(M), it is in particular invariant under
G(M0). The result T (g (y)) = T (y) = 0 for g ∈ G(M0) then follows trivially for y ∈
N∗. Now suppose y ∈ Rn\N∗. Then also g

α,μ
(1)
0 ,μ

(2)
0

(y) ∈ Rn\N∗ for α �= 0, μ
(i)
0 ∈M0

(i = 1,2) by invariance of Rn\N∗. The invariance of T then follows immediately from

the equivariance properties of β̌ and �̌ expressed in Assumption 5, using that μ
(i)
0 ∈M0

implies Rγ (i) = r for uniquely defined vectors γ (i) satisfying μ
(i)
0 = Xγ (i).

(4) Set O = {y ∈ Rn : T (y) = C
}

and note that O ⊆Rn\N∗ since C > 0 by assumption.
We can then write

O =
⋃

y2∈M⊥

({
y1 ∈M : y1 + y2 ∈ Rn\N∗,T (y1 + y2) = C

}+ y2
)= ⋃

y2∈M⊥
(O(y2)+ y2) .

Note that O as well as O(y2) are clearly measurable sets. By the already established in-
variance of Rn\N∗, the fact that Rn\N∗ ⊆Rn\N , and by the equivariance properties of β̌
and �̌ maintained in Assumption 5, the set O(y2) equals

{
y1 ∈M :

(
R
(
β̌(y2)+ (X ′X

)−1 X ′y1

)
− r
)′

�̌−1(y2)

×
(

R
(
β̌(y2)+ (X ′X

)−1 X ′y1

)
− r
)

= C
}

if y2 ∈ (Rn\N∗)∩M⊥, and it is empty if y2 ∈ N∗ ∩M⊥ (since C > 0). If y2 ∈ (Rn\N∗)∩
M⊥, the set O(y2) ⊆M is the image of

Ō(y2) =
{
γ ∈ Rk :

(
R
(
β̌(y2)+γ

)
− r
)′

�̌−1(y2)
(

R
(
β̌(y2)+γ

)
− r
)

= C

}

under the invertible linear map γ �→ Xγ from R
k ontoM. Now Ō(y2) is the zero-set of

a multivariate real polynomial (in the components of γ ). The polynomial does not vanish
everywhere on Rk because the quadratic form making up the polynomial is unbounded
on Rk (because �̌−1(y2) is symmetric and well-defined if y2 ∈ Rn\N∗ and because
rank(R) = q holds). Consequently, Ō(y2) has k-dimensional Lebesgue measure zero and
hence λM(O(y2)) = 0 for every y2 ∈ (Rn\N∗)∩M⊥. We conclude that λM(O(y2)) = 0
for every y2 ∈M⊥.

We now identify Rn withM×M⊥ and view Lebesgue measure λRn on Rn as λM⊗
λM⊥ . Hence, y is identified with (y1, y2) ∈M×M⊥ satisfying y = y1 + y2. Fubini’s
Theorem then shows

λRn (O) = λM×M⊥(O) =
∫

M×M⊥
1O ((y1, y2))dλM×M⊥(y1, y2)

=
∫
M⊥

∫
M

1O(y2)(y1)dλM(y1)dλM⊥(y2) =
∫
M⊥

λM(O(y2))dλM⊥(y2) = 0.
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(5&6) First observe that
{

y ∈ Rn\N∗ : T (y) > C
} = {

y ∈ Rn : T (y) > C
}

holds in
view of C > 0 and the definition of T . By continuity of T on Rn\N∗ established
in Part 2 and by openness of Rn\N∗, the openness of

{
y ∈ Rn\N∗ : T (y) > C

}
and{

y ∈ Rn\N∗ : T (y) < C
}

follows. It hence suffices to show that these two sets are
nonempty: Choose an arbitrary y ∈ Rn\N∗ and set y(γ ) = y + Xγ for γ ∈ Rk . Then
y(γ ) ∈Rn\N∗ by invariance of Rn\N∗ under G(M). Now by the equivariance properties
of β̌ and �̌ expressed in Assumption 5

T (y(γ )) =
(

Rγ + Rβ̌(y)− r
)′

�̌−1(y)
(

Rγ + Rβ̌(y)− r
)
.

Define γ̄ = β̄ − β̌(y) for some β̄ satisfying Rβ̄ = r . Then T (y(γ̄ )) = 0 < C holds showing
that

{
y ∈ Rn\N∗ : T (y) < C

}
is nonempty. Finally choose y ∈ Rn\N∗ and v as in As-

sumption 6. Choose δ such that v = Rδ. Then set γ = cδ + β̄ − β̌(y) where β̄ is as before
and c is a real number. Observe that then T (y(γ )) = c2v ′�̌−1(y)v . Choosing c sufficiently
large shows that T (y(γ )) > C can be achieved, establishing that

{
y ∈ Rn\N∗ : T (y) > C

}
is nonempty.

(7) Let G be a standard normal n ×1 random vector. Then

Pνm+μ0,�m (W (C)) = Pr
(

T (νm +μ0 +�
1/2
m G)−C ≥ 0

)
. (F.1)

Set γm = (X ′X
)−1 X ′νm and γ0 = (X ′ X

)−1 X ′μ0. Observe that Rγ0 = r while ‖Rγm‖ →
∞ as m → ∞ in view of νm ∈ 	(M0−μ0)

⊥(M1 − μ0) and ‖νm‖ → ∞. For �
1/2
m G ∈

R
n\N∗ (an event which has probability 1 because N∗ is a λRn -null set and �m is positive-

definite) we may use equivariance of β̌ and �̌ and obtain that T (νm +μ0 +�
1/2
m G)− C

coincides on this event with

(Rγ m+Rβ̌(�
1/2
m G))′�̌−1(�

1/2
m G)(Rγ m + Rβ̌(�

1/2
m G))−C. (F.2)

Observe that �
1/2
m G →�1/2G as m → ∞ with probability 1. Furthermore, β̌ and �̌−1

are continuous on Rn\N∗, a set which has probability 1 under the law of �1/2G (since
N∗ is a λRn -null set and � is positive-definite). From the continuous mapping theorem we

conclude that Rβ̌(�
1/2
m G) and �̌−1(�

1/2
m G) converge almost surely to Rβ̌(�1/2G) and

�̌−1(�1/2G), respectively. Now let v ∈ A((νm)m≥1) and let mi be a subsequence such

that
∥∥Rγ mi

∥∥−1 Rγ mi
→ v . It follows that

[
(Rγ mi

+Rβ̌(�
1/2
mi G))′�̌−1(�

1/2
mi G)(Rγ mi

+ Rβ̌(�
1/2
mi G))−C

]
/
∥∥Rγ mi

∥∥2

converges to

v ′�̌−1(�1/2G)v

with probability 1. Since Pr
(
v ′�̌−1(�1/2G)v = 0

)
by Assumption 7, it follows that

Pr
(

T (νmi +μ0 +�
1/2
mi G)−C ≥ 0

)
→ Pr

(
v ′�̌−1(�1/2G)v ≥ 0

)
.
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This shows that

liminf
m→∞ Pνm+μ0,�m (W (C)) ≤ liminf

i→∞ Pνmi +μ0,�mi
(W (C))

= Pr
(
v ′�̌−1(�1/2G)v ≥ 0

)
,

implying that

liminf
m→∞ Pνm+μ0,�m (W (C)) ≤ inf

v∈A((νm )m≥1)
Pr
(
v ′�̌−1(�1/2G)v ≥ 0

)
.

Conversely, let mi be a subsequence such that

Pνmi +μ0,�mi
(W (C)) → liminf

m→∞ Pνm+μ0,�m (W (C)).

Since the unit ball inRq is compact, we may assume that
∥∥∥Rγ mi ( j)

∥∥∥−1
Rγ mi( j)

converges

to some v ∈ A((νm)m≥1) along a suitable subsequence mi( j) . The same arguments as
above then show that

liminf
m→∞ Pνm+μ0,�m (W (C)) = liminf

j→∞ Pνmi( j)+μ0,�mi( j)
(W (C))

= Pr
(
v ′�̌−1(�1/2G)v ≥ 0

)
≥ inf

v∈A((νm )m≥1)
Pr
(
v ′�̌−1(�1/2G)v ≥ 0

)
.

Given Assumption 7, the remaining equalities and inequalities in (29) and (30) are now
obvious. n

Proof of Corollary 5.17. (1) If z ∈Rn\N∗ then μ0 + z ∈Rn\N∗ and T is continuous at
μ0 +z for every μ0 ∈M0 by Parts 1 and 2 of Lemma 5.15. If T (μ∗

0 +z) > C holds, then by
the invariance of T established in Part 3 of Lemma 5.15, we have T (μ0 +z) = T (μ∗

0 +z) >
C for every μ0 ∈M0. Hence the sufficient conditions in Part 1 of Theorem 5.7 are satisfied
and an application of this theorem delivers the result.

(2) Completely analogous to the proof of (1) noting that the invariance of T required in
Part 3 of Theorem 5.7 is clearly satisfied.

(3) Since N∗ is a λRn -null set the test statistic T is λRn -almost everywhere equal to the
test statistic

T ∗(y) =
{

T (y) y ∈ Rn\N∗,

∞, y ∈ N∗.

We verify that the sufficient conditions in Part 1 of Theorem 5.7 are satisfied for T ∗. To
that end fix μ0 ∈M0 and let Z ′ ⊆Z denote the set of all z such that z ∈Rn\N , �̌(z) = 0,
and Rβ̌(z) �= 0 hold. By invariance of N (cf. discussion after Assumption 5) and equiv-
ariance of �̌ we see that z ∈ Z ′ implies μ0 + z ∈ Rn\N and �̌(μ0 + z) = 0, and thus
T ∗(μ0 + z) = ∞ > C holds for every z ∈ Z ′ by definition of T ∗. We next show that T ∗
is lower semicontinuous at μ0 + z for every z ∈ Z ′. Let ym be a sequence converging to
μ0 + z. Since Rn\N is open, we may assume that this sequence entirely belongs to Rn\N .
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If det�̌(ym) = 0 eventually holds, we are done since then T ∗(ym) = ∞ eventually by
construction. By a standard subsequence argument we may thus assume that det�̌(ym) > 0
eventually holds since �̌ is nonnegative definite on Rn\N by assumption. Now note that
then

T ∗(ym) = T (ym) = (Rβ̌(ym)− r)′�̌−1(ym)(Rβ̌(ym)− r)

≥ λ−1
max (�̌(ym))‖Rβ̌(ym)− r‖2.

Since β̌ is continuous on Rn\N by assumption, we have Rβ̌(ym) → Rβ̌(μ0 + z) =
Rβ̌(z)+ r �= r where we have made use of equivariance of β̌(z) and of μ0 ∈M0. Hence
‖Rβ̌(ym)− r‖ → ‖Rβ̌(z)‖ > 0. Furthermore, �̌ is continuous on Rn\N by assumption,
hence �̌(ym) → �̌(μ0 + z) = 0. Consequently, T ∗(ym) → ∞, establishing lower semi-
continuity of T ∗. We may now apply Part 1 of Theorem 5.7 together with Remark 5.8(i) to
conclude the proof. n

LEMMA F.2. Let β̌ and �̌ satisfy Assumption 5, let T be the test statistic defined in (28),
and let W (C) = {y ∈ Rn : T (y) ≥ C

}
with 0 < C < ∞ be the rejection region. Let �m

be symmetric positive definite n × n matrices such that �m → � for m → ∞ where �
is singular with l := dimspan(�) > 0. Suppose that for some sequence of positive real
numbers sm the matrix Dm = 	span(�)⊥�m	span(�)⊥/sm converges to a matrix D, which

is regular on span(�)⊥, and that 	span(�)⊥�m	span(�)/s1/2
m → 0. Suppose further that

span(�) ⊆M. Let Z be a matrix, the columns of which form a basis for span(�) and let
G be a standard normal n-vector. Then:

1. For every μ0 ∈M0, γ ∈ Rl , 0 < σ < ∞ we have

sm

[
T
(
μ0 + Zγ +σ�

1/2
m G

)
−C

]
d→ ξ (γ,σ )

for m → ∞ where the random variable ξ (γ,σ ) is given by

(
Rβ̂
(
σ−1 Zγ +�1/2G

))′
�̌−1

((
�1/2 + D1/2

)
G
)(

Rβ̂
(
σ−1 Zγ +�1/2G

))

for
(
�1/2 + D1/2

)
G /∈ N∗, which is an event that has probability 1 under the law

ofG, and where ξ (γ,σ ) = 0 else.
2. If additionally Assumption 7 holds and

Rβ̂(z) �= 0 λspan(�)-a.e.

is satisfied, then

Pμ0+Zγ,σ 2�m
(W (C)) = Pr

(
T
(
μ0 + Zγ +σ�

1/2
m G

)
≥ C

)
→ Pr(ξ (γ,σ ) ≥ 0)

as m → ∞.

Proof. (1) Observe that μ0 + Zγ ∈M, that the columns of �1/2 as well of 	span(�)

�
1/2
m belong toM, and that Rn\N∗ is invariant under the group G(M). Hence, using the
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equivariance properties of β̌ and �̌ expressed in Assumption 5 repeatedly, we obtain that

on the event
{
�

1/2
m G ∈ Rn\N∗}

Rβ̌
(
μ0 + Zγ +σ�

1/2
m G

)
− r = Rβ̌

(
μ0 + Zγ +σ	span(�)�

1/2
m G

+σ	span(�)⊥�
1/2
m G

)
− r

= R
(

B Zγ +σ B	span(�)�
1/2
m G

+σ s1/2
m β̌

(
s−1/2
m 	span(�)⊥�

1/2
m G

))
= σ R

(
σ−1 B Zγ +Km + s1/2

m β̌ (Lm)
)

holds, where B is shorthand for
(
X ′X

)−1 X ′, Km = B
(
	span(�)�

1/2
m − s1/2

m �1/2
)
G,

and Lm = �1/2G+ s−1/2
m 	span(�)⊥�

1/2
m G). Similarly, we obtain

�̌
(
μ0 + Zγ +σ�

1/2
m G

)
= σ 2�̌

(
�

1/2
m G

)
= σ 2�̌

(
	span(�)�

1/2
m G+	span(�)⊥�

1/2
m G

)
= σ 2�̌

(
	span(�)⊥�

1/2
m G

)
= σ 2sm�̌(Lm)

on the event
{
�

1/2
m G ∈ Rn\N∗}. Hence, on this event we have

sm

[
T
(
μ0 + Zγ +σ�

1/2
m G

)
−C

]
=
(

R
(
σ−1 B Zγ +Km + s1/2

m β̌ (Lm)
))′

�̌−1 (Lm)

×R
(
σ−1 B Zγ +Km + s1/2

m β̌ (Lm)
)

− smC.

Clearly,Km and Lm are jointly normal with mean zero and second moments given by

E
(
KmK

′
m
)= B

(
	span(�)�

1/2
m − s1/2

m �1/2
)(

	span(�)�
1/2
m − s1/2

m �1/2
)′

B′,

E
(
LmL

′
m
)= �+ Dm + s−1/2

m 	span(�)⊥�
1/2
m �1/2 + s−1/2

m

(
	span(�)⊥�

1/2
m �1/2

)′
,

and

E
(
KmL

′
m
)= B

(
	span(�)�

1/2
m − s1/2

m �1/2
)(

�1/2 + s−1/2
m 	span(�)⊥�

1/2
m

)′
.

It is easy to see that E
(
KmK

′
m
)

converges to B�B′ because sm → 0, while E
(
LmL

′
m
)

converges to � + D because of the following: Observe that s−1/2
m 	span(�)⊥�

1/2
m is

a (not necessarily symmetric) square root of Dm , and hence there exists an orthog-

onal n × n matrix Um such that s−1/2
m 	span(�)⊥�

1/2
m = D1/2

m Um . Let m′ be an ar-

bitrary subsequence of m. Then we can find a subsequence m∗ of m′ along which
Um converges to U , say. Using Dm → D, we see that along m∗ the sequence

s−1/2
m 	span(�)⊥�

1/2
m �1/2 converges to D1/2U�1/2. It remains to show that this limit

is zero. By assumption s−1/2
m 	span(�)⊥�m	span(�) converges to 0. By rewriting this
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sequence as D1/2
m Um�

1/2
m 	span(�) we see, using �m → �, that it converges to

D1/2U�1/2 along m∗, showing that D1/2U�1/2 = 0.
Furthermore, E

(
KmL

′
m
)

converges to B� because

B
(
	span(�)�

1/2
m − s1/2

m �1/2
)(

s−1/2
m 	span(�)⊥�

1/2
m

)′
= B

(
	span(�)⊥�m	span(�)/s1/2

m

)′ − B�1/2�
1/2
m 	span(�)⊥

→ −B�	span(�)⊥ = −B
(
	span(�)⊥�

)′ = 0

where we have made use of the assumption 	span(�)⊥�m	span(�)/s1/2
m → 0 and of sym-

metry of �. Hence we have (cf. Lemma E.1) that

(
Km
Lm

)
d→ N

(
0,

[
B�B′ B�
�B′ �+ D

])
.

Note that this limiting normal distribution is also the joint distribution of K =
B�1/2G and L =

(
�1/2 + D1/2

)
G. [Observe that �1/2 + D1/2 = (�+ D)1/2 since

�D = D� = 0 as D vanishes on span(�) by construction.] Now consider the map f on
R

n+k given by f (x, y) = ( f1(x), f2(y), f3(y)) where f1(x) = x for x ∈ Rk , and where
f2(y) = β̌(y), f3(y) = �̌−1 (y) for y ∈ Rn\N∗ and are zero else. Observe that the set of
discontinuity points, F say, of f is contained in Rk × N∗. But

Pr((K,L) ∈ F) ≤ Pr
(
(K,L) ∈ Rk × N∗)= Pr

(
L ∈ N∗)= 0 (F.3)

because N∗ is a λRn -null set and the distribution of L is equivalent to Lebesgue measure
on Rn as �+ D is positive definite. This shows that f (Km ,Lm) converges in distribution
to f (K,L) as m → ∞. Now

sm

[
T
(
μ0 + Zγ +σ�

1/2
m G

)
−C

]
=
(

R
(
σ−1 B Zγ + f1 (Km)+ s1/2

m f2(Lm)
))′

f3 (Lm)

×R
(
σ−1 B Zγ + f1 (Km)+ s1/2

m f2(Lm)
)

− smC

holds everywhere (note that Lm ∈ Rn\N∗ if and only if �
1/2
m G ∈ Rn\N∗ by G(M)-

invariance ofRn\N∗). Because s1/2
m f2(Lm) converges to zero in probability and smC → 0

we immediately see that the random variable in the preceding display converges in distri-
bution to

(
R
(
σ−1 B Zγ + f1

(
B�1/2G

)))′
f3

((
�1/2 + D1/2

)
G
)

R
(
σ−1 B Zγ + f1

(
B�1/2G

))

which coincides with ξ (γ,σ ). Finally, the claim that
{(

�1/2 + D1/2
)
G ∈ Rn\N∗} is a

probability 1 event has already been established in (F.3).
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(2) This follows from Part 1 if we can establish that Pr (ξ (γ,σ ) = 0) = 0.

Now observe that �̌−1(
(
�1/2 + D1/2

)
G) = �̌−1(D1/2G) by equivariance and that(

�1/2 + D1/2
)
G ∈ Rn\N∗ if and only if D1/2G ∈ Rn\N∗. Hence

Pr(ξ (γ,σ ) = 0) = Pr
(
ξ (γ,σ ) = 0,

(
�1/2 + D1/2

)
G ∈ Rn\N∗)

= Pr

((
β̂
(
σ−1 Zγ +�1/2G

))′
R′�̌−1(D1/2G)

× R
(
β̂
(
σ−1 Zγ +�1/2G

))
= 0, D1/2G ∈ Rn\N∗)

=
∫

Pr

((
β̂
(
σ−1 Zγ + x

))′
R′�̌−1(D1/2G)

× R
(
β̂
(
σ−1 Zγ + x

))
= 0, D1/2G ∈ Rn\N∗)d P0,�(x)

=
∫

Pr

((
β̂
(
σ−1 Zγ + x

))′
R′�̌−1

((
�1/2 + D1/2

)
G
)

× R
(
β̂
(
σ−1 Zγ + x

))
= 0,

(
�1/2 + D1/2

)
G ∈ Rn\N∗)d P0,�(x)

=
∫

P0,�+D

({
y ∈ Rn\N∗ : v(x)′�̌−1(y)v(x) = 0

})
d P0,�(x) (F.4)

with v(x) = Rβ̂
(
σ−1 Zγ + x

)
, the third equality in the preceding display being true since

�1/2G and D1/2G are independent as

E

(
�1/2G

(
D1/2G

)′)= �1/2 D1/2 = 0.

Now the integrand in the last line of (F.4) is zero by Assumption (7) for every x except
when v(x) = 0. Hence, we are done if we can establish that P0,� (v(x) = 0) = 0. Because
span(�) equals the span of the columns of Z , we can make the change of variables x = Zc
and obtain

P0,� (v(x) = 0) = P0,A (v(Zc) = 0) = P0,A

(
R
(
β̂
(

Z
(
σ−1γ + c

)))
= 0
)

where A = (Z ′Z
)−1 Z ′�Z

(
Z ′Z

)−1. Because A is nonsingular, this probability is zero if
the event has λ

Rl -measure zero. But

λ
Rl

({
c : Rβ̂

(
Z
(
σ−1γ + c

))
= 0
})

= λspan(�)

({
z : Rβ̂ (z) = 0

})
= 0

by our assumptions. n

Proof of Theorem 5.19. Fix μ0 ∈M0 and σ , 0 < σ < ∞. Then for every γ ∈ Rl we
have

Pμ0+Zγ,σ 2�m
(W (C)) = Pr

(
sm

[
T
(
μ0 + Zγ +σ�

1/2
m G

)
−C

]
≥ 0
)

which converges to Pr(ξ (γ,σ ) ≥ 0) as shown in the preceding lemma (with �m and �̄
playing the rôles of �m and �, respectively). Consequently, for every γ ∈ Rl

inf
�∈C Pμ0+Zγ,σ 2� (W (C)) ≤ Pr(ξ (γ,σ ) ≥ 0) .
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But now

liminf
M→∞ inf‖γ ‖≥M

Pr(ξ (γ,σ ) ≥ 0) ≤ liminf
M→∞ inf

Rβ̂(Zγ )�=0,‖γ ‖≥M
Pr(ξ (γ,σ ) ≥ 0)

= liminf
M→∞ inf

Rβ̂(Zγ )�=0,‖γ ‖≥M
Pr
(
ξ (γ,σ )/‖γ ‖2 ≥ 0

)

≤ liminf
M→∞ inf

Rβ̂(Zγ )�=0,‖γ ‖=M
Pr
(
ξ (γ,σ )/‖γ ‖2 ≥ 0

)
≤ inf

‖c‖=1,Rβ̂(Zc)�=0
liminf
M→∞Pr

(
ξ̄ (c, M,σ ) ≥ 0

)

where

ξ̄ (c, M,σ ) =
(

R
(
β̂ (Zc)+σ β̂

(
�̄1/2G

)
/M
))′

�̌−1
((

�̄1/2 + D1/2
)
G
)

×R
(
β̂ (Zc)+σ β̂

(
�̄1/2G

)
/M
)

on the event where
(
�̄1/2 + D1/2

)
G ∈ Rn\N∗ and is zero else. The random variable

ξ̄ (c, M,σ ) converges in probability to the random variable ξ̄ (c) as M → ∞. Hence

liminf
M→∞Pr

(
ξ̄ (c, M,σ ) ≥ 0

)= Pr
(
ξ̄ (c) ≥ 0

)

holds for every c ∈ Rl satisfying ‖c‖ = 1 and Rβ̂ (Zc) �= 0, because Pr
(
ξ̄ (c) = 0

)= 0 for
such c in view of Assumption 7 observing that P0,�̄+D is equivalent to λRn as �̄ + D is
nonsingular. This proves that

liminf
M→∞ inf‖γ ‖≥M

inf
�∈C Pμ0+Zγ,σ 2� (W (C)) ≤ inf

‖c‖=1,Rβ̂(Zc)�=0
Pr
(
ξ̄ (c) ≥ 0

)
= inf‖c‖=1

Pr
(
ξ̄ (c) ≥ 0

)
= inf

c∈Rl
Pr
(
ξ̄ (c) ≥ 0

)= K1,

the first two equalities holding because ξ̄ (c) ≡ 0 if Rβ̂ (Zc) = 0 (and in particular if c = 0)
and because Pr

(
ξ̄ (c) ≥ 0

)
is homogenous in c. This establishes the first inequality in (33)

because the left-most expression in (33) is monotonically increasing in M . Furthermore,

sup
�∈C

Pμ0,σ 2� (W (C)) ≥ Pμ0,σ 2�m
(W (C)) ,

and hence we obtain from Lemma F.2 that

sup
�∈C

Pμ0,σ 2� (W (C)) ≥ Pr(ξ (0,σ ) ≥ 0)

= Pr

((
Rβ̂
(
�̄1/2G

))′
�̌−1

((
�̄1/2 + D1/2

)
G
)

Rβ̂
(
�̄1/2G

)
≥ 0,(

�̄1/2 + D1/2
)
G ∈ Rn\N∗) .
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Now observe that �̌−1
((

�̄1/2 + D1/2
)
G
)

= �̌−1(D1/2G) by equivariance and that(
�̄1/2 + D1/2

)
G ∈Rn\N∗ if and only if D1/2G ∈Rn\N∗. Then by the same arguments

as in (F.4) we obtain

Pr(ξ (0,σ ) ≥ 0) =
∫

Pr

((
Rβ̂ (x)

)′
�̌−1

((
�̄1/2 + D1/2

)
G
)

× R
(
β̂ (x)

)
≥ 0,

(
�̄1/2 + D1/2

)
G ∈ Rn\N∗)d P0,�̄(x)

=
∫

Pr
(
ξ̄ (γ ) ≥ 0

)
d P0,A(γ ) = K2,

the last equality resulting from the variable change x = Zγ which is possible since span(�̄)
equals the space spanned by Z . Finally, the inequality K1 ≤ K2 is obvious from the defi-
nition of these constants. n

Proof of Theorem 5.21. Define ϕ = 1(W (C)) and note that invariance of ϕ under
G(M0) as well as the fact that ϕ is λRn -almost everywhere neither equal to 0 or 1 follows
from Lemma 5.15. Part 1 of Theorem 5.10 then implies Part 1 of the theorem. Similarly,
Parts 2 and 3 of the theorem follow from Parts 2 and 3 of Theorem 5.10, respectively, be-
cause condition (22) follows from Part 7 of Lemma 5.15 combined with Remark 5.16 and
because the lower bound in (30) equals 1 under the assumptions of Part 3. To prove Part
4 we use Theorem 5.12. Choose a sequence Ck , 0 < Ck < ∞, that diverges monotoni-
cally to infinity and set ϕk = 1(W (Ck)). Then (26) is satisfied and the result follows from
Theorem 5.12 upon setting C(δ) = Ck0(δ). n

LEMMA F.3. Let β̌ and �̌ satisfy Assumptions 5 and 7. Let T be the test statistic defined
in (28) and let C be a covariance model. If there is a z ∈ span (J (C))∩M with z /∈M0 −μ0
(i.e., with Rβ̂(z) �= 0), then T does not satisfy the invariance condition (34).

Proof. Choose z ∈ span(J (C)) ∩M with z /∈M0 − μ0. Because M is a linear space,
we also have cz ∈ span(J (C))∩M for every c ∈ R. Now cz ∈M entails that y ∈ Rn\N∗
implies y + cz ∈ Rn\N∗. Using the definition of T and Assumption 5 we obtain

T (y + cz) = T (y)+2c
(

Rβ̌ (y)− r
)′

�̌−1 (y) Rβ̂(z)+ c2
(

Rβ̂(z)
)′

�̌−1 (y)
(

Rβ̂(z)
)

for every y ∈ Rn\N∗. Because Rβ̂(z) �= 0, we can in view of Assumption 7 find an y ∈
R

n\N∗ such that(
Rβ̂(z)

)′
�̌−1 (y)

(
Rβ̂(z)

)
�= 0

holds. Hence T (y + cz) = T (y) cannot hold for the so-chosen y and all c �= 0. Because
cz ∈ span(J (C)), Remark 5.11(i) implies that condition (34) is not satisfied. n

Proof of Proposition 5.23. (1) By the assumed equivariance (invariance, respectively)
of θ̄ , �̄, and N̄ (and hence of N̄∗) w.r.t. the transformations y �→ αy + X̄η, the equivariance
(invariance, respectively) of β̄, �̄, and N̄ required in the original Assumption 5 is clearly
satisfied. Now choose z ∈ J (C) and y ∈Rn . If y ∈ N̄∗ then so is y + z because of invariance
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of N̄∗ and because z ∈ J (C) ⊆ M̄ holds by construction. Hence, T (y) = 0 = T (y + z) is
satisfied in this case. Now let y ∈ Rn\N̄∗ (and hence also y + z ∈ Rn\N̄∗). Note that
�̄(y) = �̄(y + z) holds by equivariance. It remains to show that Rβ̄(y) = Rβ̄(y + z).
Because z ∈ J (C) ⊆ M̄ we have z = Xγ + (x̄1, . . . , x̄p

)
δ and thus obtain

Rβ̄(y + z) = (R,0) θ̄(y + z) = (R,0)
(
θ̄ (y)+ (γ ′,δ′)′)= Rβ̄(y)+ Rγ, (F.5)

where we have made use of equivariance of θ̄ . Now observe that
(
x̄1, . . . , x̄p

)
δ ∈

span(J (C)∪ (M0 −μ0)) by construction of the x̄i . Hence, we can find an element

μ#
0 ∈M0 such that

(
x̄1, . . . , x̄p

)
δ −
(
μ#

0 −μ0

)
∈ span(J (C)). Consequently, we obtain

z −
((

x̄1, . . . , x̄p
)
δ −
(
μ#

0 −μ0

))
= Xγ +

(
μ#

0 −μ0

)
.

The left-hand side is obviously an element of span (J (C)), while the right-hand side
belongs to M, implying that the right-hand side is in span J (C) ∩M which is a sub-
set of M0 − μ0 by assumption. Because μ#

0 − μ0 ∈M0 − μ0, we have established that
Xγ ∈M0 −μ0, or in other words, that Rγ = 0.

(2) The very first claim is obvious. If z ∈ span(J (C)) then again we have z = Xγ +(
x̄1, . . . , x̄p

)
δ and θ̄ (z) = (γ ′,δ′)′. Now Rβ̄ (z) = (R,0) θ̄ (z) = Rγ and exactly the same

argument as above shows that Rγ = 0. For the last claim note that X̄ θ̄ (y) = X∗θ∗ (y)
holds because X̄ and X∗ span the same space. This equality can be written as

X β̄(y)− Xβ∗(y) =
p∑

i=1

x∗
i θ∗

k+i (y)−
p∑

i=1

x̄i θ̄k+i (y) .

Because the right-hand side of the above equation belongs to span(J (C)∪ (M0 −μ0)) we
can find μ#

0 ∈M0 such that the right-hand side of

X
(
β̄(y)−β∗(y)

)−(μ#
0 −μ0

)
=

p∑
i=1

x∗
i θ∗

k+i (y)−
p∑

i=1

x̄i θ̄k+i (y)−
(
μ#

0 −μ0

)

belongs to span (J (C)) while the left-hand side belongs toM. Arguing now similarly as in
the proof of Part 1, we conclude that Rβ̄(y) = Rβ∗(y). n

G. APPENDIX: Properties of AR-Correlation Matrices

LEMMA G.1.

1. Suppose the covariance model C contains �(ρm) for some sequence ρm ∈ (−1,1)
with ρm → 1 (ρm → −1, respectively). Then span(e+) ( span(e−), respectively) is
a concentration space of C.

2. CAR(1) has span(e+) and span(e−) as its only concentration spaces. Consequently,
J (CAR(1)) = span(e+)∪ span(e−).
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3. If ρm ∈ (−1,1) is a sequence converging to 1 then �m = �(ρm) satisfies
�m → �̄ = e+e′+ and Dm = 	

span
(
�̄
)⊥�m	

span
(
�̄
)⊥/sm → D as well as

	
span

(
�̄
)⊥�m	span

(
�̄
)/s1/2

m → 0 where sm = tr

(
	

span
(
�̄
)⊥�m	

span
(
�̄
)⊥
)

con-

verges to zero and D is the matrix with (i, j)-th element −n |i − j |/∑i, j |i − j | pre-

and postmultiplied by
(

In −n−1e+e′+
)

. Furthermore, D is regular on span
(
�̄
)⊥.

4. If ρm ∈ (−1,1) is a sequence converging to −1 then �m = �(ρm) satisfies
�m → �̄ = e−e′− and Dm = 	

span
(
�̄
)⊥�m	

span
(
�̄
)⊥/sm → D as well as

	
span

(
�̄
)⊥�m	span

(
�̄
)/s1/2

m → 0 where sm = tr

(
	

span
(
�̄
)⊥�m	

span
(
�̄
)⊥
)

converges to zero and D is the matrix with (i, j)-th element
n(−1)|i− j |+1 |i − j |/∑i, j |i − j | pre- and postmultiplied by

(
In − n−1e−e′−

)
.

Furthermore, D is regular on span
(
�̄
)⊥.

Proof. (1) and (2) are obvious.
(3) Because 	

span
(
�̄
)⊥�m	

span
(
�̄
)⊥ is nonnegative definite, but obviously different

from the zero matrix (recall that n > 1 is assumed), we see that sm is always pos-
itive. Clearly, 	

span
(
�̄
)⊥�m	

span
(
�̄
)⊥ converges to 	

span
(
�̄
)⊥�̄	

span
(
�̄
)⊥ = 0 and

hence sm → 0. By l’Hopital’s rule the limit of Dm can be obtained as the limit of
	

span
(
�̄
)⊥ (d�/dρ)(ρm)	

span
(
�̄
)⊥ divided by the limit of

tr

(
	

span
(
�̄
)⊥ (d�/dρ)(ρm)	

span
(
�̄
)⊥
)

provided the latter is nonzero. The second limit now equals

tr
((

In −n−1e+e′+
)
(d�/dρ)(1)

(
In −n−1e+e′+

))
= tr

(
(d�/dρ)(1)

(
In −n−1e+e′+

))
= tr((d�/dρ)(1))−n−1 tr

(
e′+ (d�/dρ)(1)e+

)
.

Observe that the (i, j)-th element of the matrix (d�/dρ)(1) is given by |i − j |. Hence, the
above expression equals

−n−1 tr
(
e′+ (d�/dρ)(1)e+

)= −n−1
∑
i, j

|i − j | ,

which is clearly nonzero. The first limit exists and equals(
In −n−1e+e′+

)
(d�/dρ)(1)

(
In −n−1e+e′+

)
which shows that D is of the form as claimed in the lemma. We next show that D is regular

on span
(
�̄
)⊥ = span(e+)⊥. This is equivalent to showing that the equation system

(d�/dρ)(1)x +λe+ = 0
e′+x = 0

https://doi.org/10.1017/S0266466614000899 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466614000899


356 DAVID PREINERSTORFER AND BENEDIKT M. PÖTSCHER

has x = 0, λ = 0 as its only solution. We hence need to show that the (n + 1) × (n + 1)
matrix

A =
[
(d�/dρ)(1) e+

e′+ 0

]

has rank n +1. Let B be the (n +1)× (n +1) matrix given by

B =
[

B11 0
0 1

]

where the n ×n matrix B11 has 1 everywhere on the main diagonal, −1 everywhere on the
first off-diagonal above the main diagonal, and zeroes elsewhere. Let the (n +1)× (n +1)
matrices B∗ and B∗∗ be given by

B∗ =
[

0 1
In 0

]
, B∗∗ =

[
In 0
f 1

]
,

where f = − (n −1,n −2,n −3, . . . ,1,0). Observe that B, B∗, as well as B∗∗ are nonsin-
gular and that

B∗B AB∗∗ = C =
[

C11 0
0 1

]

where C11 is an n × n matrix that has 1 everywhere on and above the diagonal and
−1 everywhere below the diagonal. Obviously, C is nonsingular and hence A is so.

Finally, we show that the limit of 	
span

(
�̄
)⊥�m	span

(
�̄
)/s1/2

m equals zero. Because

sm → 0, it suffices to show that the limit of 	
span

(
�̄
)⊥�m	span

(
�̄
)/sm exists and

is finite. Now the same arguments as above show that the latter limit is equal to(
In −n−1e+e′+

)
(d�/dρ)(1)n−1e+e′+ divided by −n−1∑

i, j |i − j |.
(4) For the same reasons as in (3) sm is positive and converges to zero. By the same

argument as in (3) the limit of Dm is[(
In −n−1e−e′−

)
(d�/dρ)(−1)

(
In −n−1e−e′−

)]
/

tr
((

In −n−1e−e′−
)
(d�/dρ)(−1)

(
In −n−1e−e′−

))
.

Note that the denominator is equal to

tr((d�/dρ)(−1))−n−1 tr
(
e′− (d�/dρ)(−1)e−

)= n−1
∑
i, j

|i − j | �= 0,

observing that the (i, j)-th element of (d�/dρ)(−1) is given by (−1)|i− j |+1 |i − j |. We

next show that D is regular on span
(
�̄
)⊥ = span(e−)⊥. This is equivalent to showing that

the equation system

(d�/dρ)(−1)x +λe− = 0
e′−x = 0
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has x = 0, λ = 0 as its only solution. We hence need to show that the (n + 1) × (n + 1)
matrix

A# =
[
(d�/dρ)(−1) e−

e′− 0

]

has rank n +1. Note that this is equivalent to establishing that the matrix

A† =
[
(d�/dρ)(−1) (−1)n+1e−
(−1)n+1e′− 0

]

is nonsingular. Now note that

A† = −E AE

where A is as in (3) and E is an (n + 1) × (n + 1) diagonal matrix with the i-th diag-

onal element given by (−1)i . This proves regularity of D on span
(
�̄
)⊥. The claim for

	
span

(
�̄
)⊥�m	span

(
�̄
)/s1/2

m is proved as in (3). n

LEMMA G.2. For every ν ∈ [0,π ] there exists a sequence �m ∈ CAR(2) converging to
E(ν)E(ν)′.

Proof. For ν = 0 (ν = π , respectively) the matrix E(ν)E(ν)′ equals e+e′+ (e−e′−,
respectively), and the result thus follows from Lemma G.1. Hence assume that ν ∈ (0,π).
Consider for 0 < r < 1 the AR(2)-spectral density

fr (ω) = (2π)−1 c (r)
∣∣∣1−2r cos(ν)exp(−ιω)+ r2 exp(−2ιω)

∣∣∣−2

where

c (r) =
(

1− r2
)((

1+ r2
)2 −4r2 cos2 (ν)

)(
1+ r2

)−1
.

Observe that
∫

fr (ω)dω = 1 where the integral extends over [−π,π ]. Hence the n × n
variance covariance matrix �(r) corresponding to fr belongs to CAR(2). Let ε > 0 be
given and set A (ε) = {ω ∈ [−π,π ] : |ω−ν| ≥ ε}∪{ω ∈ [−π,π ] : |ω+ν| ≥ ε}. Then it is
easy to see that

sup
ω∈A(ε)

| fr (ω)| → 0 for r → 1.

Consequently, for every δ > 0 and every ε > 0 there exists an 0 < r (ε,δ) < 1 such that∫
[−π,π ]\A(ε)

fr (ω)dω > 1− δ

holds for all r satisfying r (ε,δ) < r < 1. In view of symmetry of fr around ω = 0, this
shows that for r sufficiently close to 1 the spectral density fr is arbitrarily small outside of
the union of the neighborhoods |ω−ν| < ε and |ω+ν| < ε and puts mass arbitrarily close
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to 1/2 on each one of the two neighborhoods. A standard argument then shows for every
continuous function g on [−π,π ] that∫

[−π,π ]

g (ω) fr (ω)dω → 0.5g (ν)+0.5g (−ν) =
∫

[−π,π ]

g (ω)d (0.5δν +0.5δ−ν)

where δx denotes unit pointmass at x . Specializing to g (ω) = exp(−ιlω) shows that �(r)
converges to E(ν)E(ν)′. n

Using the arguments in the above proof it is actually not difficult to show that the closure
of the set of AR(2)-spectral densities (with the AR(2)-model having conjugate roots) in
the weak topology is this class of AR(2)-spectral densities plus all spectral measures of the
form 0.5δν + 0.5δ−ν for ν ∈ [0,π ]. This result extends in an obvious way to higher-order
autoregressive models. For a related results in the context of (multivariate) autoregressive
moving average models, see Theorem 4.1 in Deistler and Pötscher (1984).
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