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Plurigenera of general type surfaces

in mixed characteristic

Junecue Suh

Abstract

We construct general type surfaces in mixed characteristic whose geometric genera can be
made to jump by an arbitrarily prescribed positive amount under specialization. We then
show that this phenomenon of jumping geometric genus presents itself in some compact
Shimura surfaces. Finally, we find a set of conditions, met by the latter Shimura surfaces,
that forces the higher plurigenera to remain constant in reduction modulo p.

Introduction

In equal characteristic zero, it has been proven by Iitaka (for surfaces), by Kollár–Mori (for three-
folds) and by Siu (in arbitrary dimension) that the plurigenus

Pm(X/K) = dimK H
0(X,ω⊗m

X/K), for m � 1

of a projective smooth variety X/K (where ωX/K stands for the canonical bundle) is invariant under
deformation.

On the other hand, in mixed characteristic (0, p) or in equal characteristic p, where p is a prime
number, Pm is no longer invariant under deformation; in [Lan83, Theorem 1.4], Lang shows that a µ2

Enriques surface in characteristic two, whose geometric genus is one, lifts algebraically to the Witt
vectors, and that the generic fibre of the lifting (which can also be shown to be an Enriques surface)
has geometric genus zero; and in [KU85, Examples 8.7 and 8.8], Katsura and Ueno construct (a) a
deformation of an elliptic surface in equal characteristic p and (b) a lifting of an elliptic surface in
characteristic p > 0 to characteristic zero (where one allows tame ramification above p), in which
fibres have different plurigenera.

In this article, we first construct surfaces of general type over any discrete valuation ring of
mixed characteristic (0, p) whose fibres have any possible prescribed gap in geometric genera. More
precisely, we have the following.

Theorem 0.1. Let R be a discrete valuation ring with residue class field k of characteristic p > 0
and with fraction field K of characteristic zero. Given any integer e � 1, there exists a projective
smooth scheme Y/R of relative dimension d = 2 (respectively d � 2) with geometrically connected
fibres such that

pg(Yk/k) = pg(YK/K) + e

(respectively pg(Yk/k) � pg(YK/K) + e),

where pg = P1 stands for the geometric genus. Moreover, the fibres may be assumed to have ample
canonical bundles.

Received 8 August 2007, accepted in final form 9 January 2008, published online 22 July 2008.
2000 Mathematics Subject Classification 14L30, 14J29, 14G35.
Keywords: algebraic surface, plurigenus, mixed characteristic.
This journal is c© Foundation Compositio Mathematica 2008.

https://doi.org/10.1112/S0010437X08003527 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X08003527


Plurigenera of general type surfaces in mixed characteristic

Next we show that some compact Shimura varieties exhibit this phenomenon.

Theorem. Let X be a connected component of a quaternionic or unitary Shimura surface of the
type considered in § 3.1. Then for any finite set of rational prime numbers p1, . . . , pn satisfying
the conditions in § 3.2 and for any integer e � 0, there exists a finite étale cover Y (which is a
Shimura variety of the same type as X) of X, defined over a number field EY , such that for any
prime ℘ of EY dividing pi (i = 1, . . . , n), Y has good reduction Y℘ at ℘ and one has

pg(Y℘) � pg(Y ) + e.

Finally, we find some conditions under which the plurigenera remain the same in reduction
modulo p; see Theorem 1.2.1 and Corollary 1.2.4.

Notation

The following notation is used in the first two sections. We denote by p a prime number and by
R a discrete valuation ring of mixed characteristic (0, p), with k (respectively K) its residue class
field (respectively its fraction field). For any scheme Z over R, we denote by Zk (respectively ZK)
its special fibre Z ⊗R k (respectively its generic fibre Z ⊗R K). Similarly, for any R-morphism
f : Z ′ −→ Z, we denote by fk : Z ′

k −→ Zk (respectively fK : Z ′
K −→ ZK) its base change by

R −→ k (respectively R −→ K).

For any field F and a proper smooth variety X/F , we denote by

Pm(X/F ) = dimF H
0(X,ω⊗m

X/F )

the mth plurigenus of X/F , where ωX/F denotes the canonical line bundle (the highest exterior
power of the sheaf of Kähler differentials). Finally, put

pg(X/F ) = P1(X/F ).

1. Group cohomology and plurigenera of general type surfaces

1.1 Group cohomology and geometric genus

Let us fix an integer e � 1 and put G := (Z/pZ)⊕e, the e-fold direct product of the finite group
Z/pZ. Recall that if F is a field of characteristic different from p, then the group cohomology
ring H·(G,F ), where F is equipped with the trivial action, is concentrated in degree 0, where it
is F . In contrast, if charF = p, then H·(G,F ), with trivial G-action on F , is isomorphic either to
the polynomial ring F [x1, . . . , xn] with degxi = 1 in case p = 2, or to the tensor product of the
polynomial ring F [y1, . . . , yn] and the exterior algebra

∧·(z1, . . . , zn), with deg yi = 2 and deg zi = 1,
in case p � 3 (see, for example, [AM94, Corollary II.4.3 and Theorem II.4.4]).

Lemma 1.1.1. Let X/R be a projective smooth scheme of relative dimension d with geometrically
connected and nonempty fibres, equipped with a free R-morphic action of G. Denote by Y/R the
quotient of X/R by G.

(i) Suppose d = 2 and H1(XK ,OXK ) = 0. Then

pg(Yk/k) � pg(YK/K) + e.

If, in addition, we assume H1(Xk,OXk) = 0, then we actually have equality.

(ii) Suppose d � 2 and

H i(XK ,OXK ) = 0 = H i(Xk,OXk) for every 0 < i < d.
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Then pg(Yk/k) − pg(YK/K) is equal to

Gd(e) = (−1)d−1
d−1∑
i=1

(−1)i dimH i(G, k),

which, for a fixed d � 2, is a polynomial in e of degree d− 1 with positive leading coefficient.
In particular, Gd(e) → ∞ as e→ ∞.

Proof. (i) By the assumptions on X/R, we have

H0(XK ,OXK ) = K and H0(Xk,OXk) = k

Therefore, the Serre–Hochschild spectral sequence gives

H0(YK ,OYK ) = K, H0(Yk,OYk) = k and H1(YK ,OYK ) = 0,

together with an exact sequence

0 −→ H1(G,H0(Xk,OXk)) −→ H1(Yk,OYk) −→ H1(Xk,OXk)
G.

Thus, we obtain dimkH
1(Yk,OYk) � dimH1(G, k) = e; when H1(Xk,OXk) vanishes, one even

obtains an equality.
As Y/R is smooth, hence flat, we have [EGAIII, Théorème 7.9.4]

χ(YK ,OYK ) = χ(Yk,OYk),

which implies

dimkH
2(Yk,OYk) = dimK H

2(YK ,OYK ) + dimkH
1(Yk,OYk).

We conclude by Serre duality.
(ii) The Serre–Hochschild spectral sequence gives, for each 0 < i < d,

H i(YK ,OYK ) = 0 while H i(Yk,OYk) ∼= H i(G, k).

The invariance of Euler characteristic and Serre duality imply the equality above. It follows from
the explicit description of H·(G, k) recalled above that Gd(e) has the asserted property.

This lemma will be applied in the following sections in order to construct quotients where the
geometric genus jumps. Before that, we turn to higher (m � 2) plurigenera Pm of general type
surfaces.

1.2 Plurigenera of general type surfaces in mixed characteristic

Theorem 1.2.1. Let R be a discrete valuation ring whose fraction field K (respectively residue field
k) has characteristic zero (respectively is perfect of characteristic p > 0) and let X/R be a proper
smooth algebraic space of relative dimension two.

(i) One has

pg(Xk) − pg(XK) = dim Tgt0(PicXk/k) − dim PicXk/k .

In particular, pg(Xk) = pg(XK) if and only if PicXk/k is reduced.

(ii) If Xk lifts to W2(k) and is of general type, then one has

Pm(XK) = Pm(Xk) for every integer m � 2.

Proof. By extending R if necessary, we may and do assume that R is complete and that k is
algebraically closed.
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Plurigenera of general type surfaces in mixed characteristic

(i) By Serre duality and invariance of Euler characteristic (cf. Lemma 1.1.1), we have

pg(Xk) − pg(XK) = dimkH
1(Xk,OXk) − dimkH

1(XK ,OXK )
= dimTgt0(PicXk/k) − dimTgt0(PicXK/K).

As K has characteristic zero and as X/R has geometrically normal fibres, we conclude by (the
translation in terms of algebraic spaces of) [Gro62, Théorème 2.1(ii) and Corollaire 2.7].

(ii) By [KU85, Lemmas 9.4 and 9.6], after passing to an extension of R, we get a proper smooth
algebraic space Xmin/R with an R-morphism X −→ Xmin such that (i) both Xk −→ Xmin

k and
XK −→ Xmin

K are obtained by successive blow-downs of (−1)-curves and (ii) Xmin
k and Xmin

K are
minimal (thus, their canonical bundles are big and numerically effective). The next proposition
shows that Xmin

k /k lifts to W2(k).

Proposition 1.2.2. Let Y be a proper smooth surface over a field k and let A be an Artin local ring
with residue field k and with square-zero maximal ideal m. Consider a k-rational point p ∈ Y (k)
and the blow-up Y ′ := Blp(Y ). Then the obstruction class

o(Y/k/A) ∈ H2(Y,m ⊗k TY/k)

to the existence of a flat lifting Ỹ /A of Y/k vanishes if and only if the analogous class o(Y ′/k/A) ∈
H2(Y ′,m ⊗k TY ′/k) does.

Proof. Let π : Y ′ −→ Y denote the blow-up and i : E ↪→ Y ′ the inclusion of the exceptional divisor.
Then we have an exact sequence

0 −→ π∗Ω1
Y/k −→ Ω1

Y ′/k −→ i∗Ω1
E/k −→ 0.

Taking RHom(−,OY ′), we get an exact triangle

RHomOY ′ (i∗Ω
1
E/k,OY ′) �� TY ′/k �� π∗TY/k

+1 �� . (1)

By Grothendieck duality, the first term is isomorphic to

i∗RHomOE (Ω1
E/k, Ri

!OY ′) ∼= i∗(TE/k ⊗Ri!OY ′)
∼= i∗(TE/k ⊗NE/Y ′)[−1],

where NE/Y ′ denotes the normal bundle of E in Y ′, whose degree is equal to

degE NE/Y ′ = E2 = −1.

As degE TE/k = 2, the first term of (1) is isomorphic to i∗OE(1)[−1]. The long exact cohomology
sequence now gives an exact sequence

H1(E,OE(1)) −→ H2(Y ′, TY ′/k) −→ H2(Y ′, π∗TY/k) −→ 0,

hence, the natural morphism

H2(Y ′,m ⊗k TY ′/k) −→ H2(Y ′,m ⊗k π
∗TY/k)

is an isomorphism. On the other hand, by the projection formula, we have

Rπ∗π∗TY/k ∼= TY/k ⊗OY Rπ∗OY ′ ∼= TY/k,

hence, an identification of three cohomology groups

H2(Y ′,m ⊗ TY ′/k)
∼ �� H2(Y ′,m ⊗ π∗TY/k) H2(Y,m ⊗ TY/k),

∼��

via natural morphisms. We conclude with [Ill05, Remark 8.5.10(a)].
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Coming back to the proof of the theorem, we are reduced to the case where both Xk and XK are
minimal (note that Pm is a birational invariant). Then by Kodaira vanishing [DI87, Corollaire 2.8],

Pm(Xk) = χ(Xk, ω
⊗m
Xk

) = χ(XK , ω
⊗m
XK

) = Pm(XK)

for every integer m � 2.

Remark 1.2.3. When R has equal characteristic p > 0, a similar argument proves the invariance of
higher plurigenera of general type surfaces, assuming that both geometric fibres lift to W2.

Corollary 1.2.4. Let X and R be as in Theorem 1.2.1. If the special fibre Xk:

(i) lifts to W2(k) (automatic if R is unramified);

(ii) has reduced Picard scheme; and

(iii) is of general type;

then we have

Pm(XK) = Pm(Xk), for every m � 1.

2. Finite quotients of complete intersections

In this section, we construct complete intersections with free (Z/p)⊕e actions, so that Lemma 1.1.1
can be applied to yield Theorem 0.1.

The idea of using complete intersections with finite group actions to construct pathological
examples goes back to Godeaux and Serre [Ser58]. A more general situation, where the base can be
a noetherian complete local ring and the group (scheme) is allowed to have infinitesimal part, was
considered by Raynaud in [Ray79, Proposition 4.2.3] which can then be used to construct, among
other things, surfaces with non-reduced Picard schemes; in view of Theorem 1.2.1, these surfaces
have jumping geometric genus.

We recall the construction, with more focus on the explicit number of variables and degrees
involved. This is used when we analyze the Kodaira dimension in § 2.4. The analysis shows, in
essence, that the examples in Theorem 0.1, with the exception of p = 2 and e′ = 1 (considered
in § 2.5), necessarily have ample canonical bundles.

2.1 Complete intersection with free G-action

Lemma 2.1.1. Let ρ : G −→ PGL(N,R) be a projective representation of a finite group G and let
G act on PN−1

R via ρ. Let r � 1 be an integer and suppose that the closed subscheme

∆ =
⋃

e �=g∈G
Fix(g)

has closed fibre ∆k of dimension at most N − 2 − r. Then there exist G-stable hypersurfaces
H1, . . . ,HN−1−r in PN−1

R whose intersection X is smooth of relative dimension r over R on which G
acts freely. Moreover, the hypersurfaces can be chosen so that the fibres of X have ample canonical
bundles.

Proof. We follow Serre’s proof [Ser58] (also explained in [Ill05, Proposition 8.6.2]), except that now
we work with R (and not only with k) and that we allow k to be finite by using [Gab01].

1218

https://doi.org/10.1112/S0010437X08003527 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003527


Plurigenera of general type surfaces in mixed characteristic

First, let us consider the quotient scheme Z := PN−1
R /G; it is also projective over R by [EGAII

Corollaire 6.6.4] and we fix a closed immersion i of Z into PM over R:

PN−1
R

π

����
Z

� � i �� PMR

(2)

Then let us consider the base change by R −→ k. As ∆ is projective over R, the restriction of π to
∆ induces a surjection, which we still denote by π, of ∆ onto its scheme-theoretic image π(∆) in Z;
as surjectivity is stable under base change [EGAI, Proposition 3.5.2(ii)], ∆k ⊆ PN−1

k surjects onto
(π(∆))k ⊆ Zk under πk. Hence,

dim(π(∆))k � dim(∆k) � (N − 1) − 1 − r.

By Bertini’s theorem [Gab01, Corollary 1.7] applied to (π(∆))k ⊆ Zk sitting in PMk via ik, there
exist hypersurfaces

{H ′
i = (f ′i = 0)}i=1,...,N−1−r

of respective degrees d′1, . . . , d′N−1−r in PMk such that: (a) their intersection H ′ := H ′
1∩· · ·∩H ′

N−1−r
is disjoint from ik((π(∆))k); and (b) H ′ ∩ ik(Zk) is smooth of dimension r over k.

We then lift f ′i arbitrarily to

f ′i ∈ Γ(PMR ,OPMR (d′i)),

set H ′
i := (f ′i = 0) in PMR for each i, and then put H ′ := H ′

1 ∩ · · · ∩H ′
N−1−r. Then it follows that:

(a) H ′∩ iπ(∆) = ∅, for this intersection is a projective scheme over R with empty special fibre; and
(b) H ′ ∩ i(Z) is smooth of relative dimension r over R (it is flat by [EGAIV, Proposition 0.15.1.16]
and then smooth by [SGA1, II, Proposition 1.1 and Théorème 2.1], given that it is proper over R).

We note here that by using hypersurface sections of higher degree (which amounts to changing i
suitably), we can make the degrees d′i as large as we want. Thus, we may assume that the resulting
varieties have ample canonical bundles.

Now we return to the diagram (2). As (iπ)∗OPMR (1) is ample, it is isomorphic to OPN−1
R

(δ) for
some integer δ > 0. We pull back the sections {f ′i} by iπ:

fi := (iπ)∗f ′i ∈ Γ(PN−1
R ,OPN−1

R
(di)),

where we put di := δ · d′i, and let

Hi := (fi = 0) ⊆ PN−1
R

for each i = 1, . . . , N − 1 − r. Evidently, Hi is invariant under G for each i, and putting

X := H1 ∩ · · · ∩HN−1−r,

one sees that X is disjoint from ∆.

2.2 Some representations
Let e′ � 1 be a given integer and put G := (Z/pZ)⊕e′ .

Let A := Z[T ]/(T p − 1) be the free Z-module of rank p on which multiplication by T acts as
an automorphism of exact order p; A is isomorphic to the group ring Z[Z/pZ]. We denote this pair
by (A,T ). Put � = �(p, d) := �(d + 1)/(p − 1)	 and M := A⊕� with the automorphism TM = T⊕�,
which we still denote by T . (The choice of � will be justified by Lemma 2.2.1 later.) Finally,

Pe′ := M(1) ⊕ · · · ⊕M(e′),
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where M(i) is a copy of M for each i = 1, . . . , e′. We denote by T(i) the automorphism of Pe′ that acts
as an identity on M(j) for j �= i and as T on M(i). Then T(i) form a set of commuting automorphisms
of exact order p.

Now we define a representation

ρ̃ : G −→ GL(e′ · rankZ(M),Z)

by mapping the element (0, . . . , 0, 1, 0, . . . , 0) with the sole 1 in the ith place to the element T(i) and
then extending it Z/pZ-linearly. Then we denote by

ρ : G −→ PGL(e′ · rankZ(M),Z)

the composite of ρ̃ with the natural morphism GL −→ PGL. Put m := rankZM = �p.

Lemma 2.2.1. Let G act on Pe
′m−1
Z via ρ. For a = (a1, . . . , ae) ∈ G with exactly n non-zero

components, where 0 < n � e′, the closed subscheme of fixed points of a

Fix(a) ⊆ Pe
′m−1
Z

is contained in a closed subscheme Ea in Pe
′m−1
Z , flat of relative dimension

(e′m− 1) − n(p− 1)�

over Z. In particular, the locus on which G does not act freely:

∆ =
⋃

0�=a∈G
Fix(a)

has all fibres (over all prime fields) of dimension at most (e′m− 1) − (d+ 1).

Proof. For any non-zero element a ∈ Z/pZ, one has (M,T ) ∼= (M,T a) as Z-modules with automor-
phisms; therefore, one is reduced to the case where a is of the form gn := (1, . . . , 1, 0, . . . , 0) with n
1s. Then the first assertion follows from the next lemma, and the last inequality follows from the
choice of �: (p− 1)� � d+ 1.

Lemma 2.2.2. Let a � 1 and b � 0 be integers and let Q be the free Z-module A⊕a⊕Z⊕b with basis

{X(α),i : 1 � α � a and i ∈ Z/pZ} ∪ {Yj : 1 � j � b},
where for each α and i, X(α),i denotes the image of T i in the αth copy of A = Z[T ]/(T p − 1).
Consider the projective linear action of

φ = T
⊕
a ⊕ 1Z

⊕
b

on P(Q). Then the subscheme Fix(φ) ⊆ P(Q) is contained in the subscheme E of P(Q) defined by
a(p− 1) equations

(X(α),i)
p = (X(α),i+1)

p

for each pair (α, i) with 1 � α � a and i ∈ {0, . . . , p− 2} ⊆ Z/pZ.

Proof. We need to prove the inclusion of S-valued points: Fix(φ)(S) ⊆ E(S) for any commutative
ring S with 1. For this, we may assume that S is local. Let

[· · · : x(α),i : · · · : yj : · · · ]
be an S-valued point of Fix(φ); that is, all the x(α),i and yj are in S and there exists a unit λ ∈ S∗

such that
φ(x : y) = (λx : λy).

This implies, in particular, that

x(α),i = λx(α),i+1 for each α and every i, (3)
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Plurigenera of general type surfaces in mixed characteristic

hence (by increasing i by p to come back),

(1 − λp)x(α),i = 0 for all α, i.

It then follows
(x(α),i)

p = (λx(α),i+1)
p = λp(x(α),i+1)

p = (x(α),i+1)
p.

The rational map from P(Q) to P(Z⊕a ⊕ Z⊕b) mapping [(x(α),i)α,i : (yj)j] to [(x(α),0)α : (yj)j],
restricts to a finite morphism on E. Thus, E is flat of relative dimension at most a+b−1 over Z.

2.3 Proof of Theorem 0.1
Now we prove Theorem 0.1. Given R, d � 2 and e � 1, we choose e′ to be equal to e if d = 2
and large enough so that Gd(e′) � e if d � 3. We take the module Pe′ ⊗Z R and the associated
projective space P on which G = (Z/pZ)⊕e′ acts projective linearly. Then Lemma 2.2.1 says that the
pair (P, G) satisfies the condition of Lemma 2.1.1 with r = d. Thus, we obtain a smooth complete
intersection X/R; that it has geometrically connected fibres with trivial H i(O) for 0 < i < d follows
from [SGA7, XI, Théorème 1.5]. Hence Lemma 1.1.1 applies and the resulting quotient Y/R has

pg(Yk) = pg(YK) +Gd(e′).

Note that when d = 2, G2(e′) = e.

2.4 Kodaira dimension and plurigenera of the examples
In this section, we analyze the Kodaira dimension of the examples and show that they have ample
canonical bundles. We analyze the exceptional cases, where the Kodaira dimension can be zero, in
the next section.

Lemma 2.4.1. The value of δ in the proof of Lemma 2.1.1, when applied to our example for e′ � 1,
is divisible by p (and, hence, is at least p).

Proof. By passing to an algebraic closure if necessary, we may assume that k is algebraically closed
and we dispose of sufficiently many hyperplanes. Then considering N − 1 hyperplanes of Bertini
type in PMk , and then comparing the intersection numbers, one deduces

δN−1 = deg(ik, Zk,PMk ) · deg πk = deg(ik, Zk,PMk ) · pe′ .
Corollary 2.4.2. If e′ � 2 or if e′ = 1 and (d + 1)/(p − 1) is not an integer, then the resulting
example Y/R necessarily has ample canonical bundle.

Proof. It suffices to prove that ωX/R = π∗ωY/R is ample [EGAII, Corollaire 6.6.3]. We have

ωX/R ∼= OX

(
−e′�p+

e′�p−d−1∑
i=1

di

)

(to prove this formula, take the highest exterior power of the short exact sequence in [SGA7, XI,
Equation 1.3.1] and see [SGA7, XI, § 1.4]) and, by the previous lemma,

−e′�p+
e′�p−d−1∑

i=1

di � −e′�p+ (e′�p− d− 1)p = e′(p− 1)�p − (d+ 1)p.

This is positive in the two cases, because of the choice of �.

Corollary 2.4.3. Except possibly in the special case e′ = 1 and p−1|d+1, there exists an integer
m0 = m0(Y ) such that

Pm(YK/K) = Pm(Yk/k) for all m � m0.
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Proof. As ωY is ample, by Serre’s theorem [EGAIII, Théorème 2.2.1], there exists an integer m0

such that all the higher cohomology groups of ω⊗m vanish for m � m0. Then the invariance of Euler
characteristic gives the desired equality. See also Theorem 1.2.1, where one can take m0 := 2.

2.5 Exceptional cases

Finally, let us place ourselves in the possible exceptional case; that is, in addition to e′ = 1 and
p− 1|d+ 1, let us assume that we can take δ in Lemma 2.1.1 equal to p (smallest possible) so that
ωX/R ∼= OX . We do not know whether this is indeed possible.

If p is odd, (p − 1)|(d + 1) implies that d is odd. Then dimkH
i(Z/pZ, k) = 1 for every i � 0,

and
∑d−1

i=1 (−1)i dimkH
i(Z/pZ, k) = 0, which means there is no jump in geometric genus. (Thus,

in dimension at least three, the presence of infinitesimal torsion in the Picard scheme does not
necessarily result in the gap in geometric genus.)

So let us turn to the case p = 2. Again, if d is odd, pg(Yk) = pg(YK), so let d be even. In this
case � = �(p, d) = (d+1)/(2− 1) = d+1, and X is a smooth complete intersection of d+1 quadrics
in P2d+1

R . The canonical bundles ωXK/K and ωXk/k are trivial, and as Picτ (Y/R) ∼= µ2 (the Cartier
dual of Z/2), it follows that ω⊗2

YK/K
and ω⊗2

Yk/k
are trivial.

On the other hand, we calculate that χ(X,OX ) = 2, hence χ(Y,OY ) = 1. As dimkH
i(Z/2Z, k) =

1 for i � 0 and H i(Z/2Z,K) = 0 for i > 0, it follows that pg(YK/K) = dimK H
0(YK , ωYK/K) = 0

and pg(Yk/k) = dimkH
0(Yk, ωYk/k) = 1. Therefore, we have

ωYk/k
∼= OYk , ωYK/K �∼= OYK and ω⊗2

YK/K
∼= OYK .

These imply

P2m(Yk/k) = 1 = P2m(YK/K),
P2m+1(Yk/k) = 1 = P2m+1(YK/K) + 1,

for all m � 0. We note that in case d = 2, X/R is a smooth intersection of three quadrics in P5, that
is, a K3 surface, and that Y/R is the quotient of X/R by a free Z/2-action, that is, an Enriques
surface.

3. Quaternionic and unitary Shimura surfaces

We consider certain compact Shimura varieties obtained as quotients, either of the two-fold product
of the Poincaré upper half-plane by irreducible lattices in SL2(R)× SL2(R), or of the complex two-
dimensional unit ball by lattices in SU(1, 2). In both cases, global sections of the canonical bundle
can be interpreted as holomorphic modular forms.

These surfaces are canonically defined over number fields, and have integral models for all but
finitely many primes. We exhibit cases where the special fibre has larger geometric genus than the
generic fibre; in such cases, we can say that we have more modular forms modulo p.

First, we set up the situation and recall some facts.

3.1 Shimura data

We will be in one of the following three situations. We refer to [Rei97] and [Kot92] for details.

3.1.1 Quaternionic case. Let F be a totally real number field of degree d � 2 over Q, and
let D be a central division algebra of dimension four over F such that D ⊗Q R is isomorphic to
the product of two copies of M2(R) and d − 2 copies of the Hamilton’s quaternion algebra H.
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Define the Q-algebraic group G := D× by

D×(R) = (D ⊗Q R)×,

for any Q-algebra R. Denoting S := ResC/RGm and using the decomposition of D⊗R as above, we
have the conjugacy class X of the homomorphism h : S −→ GR mapping z = a+ bi ∈ C× to

(
a b
−b a

)
(respectively to 1) in the factor GL2(R) (respectively H×). Thus, we have a Shimura datum (G,X).

3.1.2 Unitary case A1 × A1. Let F+ be a totally real number field of degree d � 2 over Q, F
a quadratic totally imaginary extension of F+, and D a central division algebra of dimension four
over F with a positive involution ∗ inducing complex conjugation on F . Considering V = D as a
left D-module, let

ψ : V × V −→ Q

be an alternating D-hermitian (meaning ψ(bu, v) = ψ(u, b∗v)) bilinear form.
The pairing ψ induces an involution ∗ψ on C := EndD(V ); let h : C −→ CR be an R-algebra

homomorphism such that (i) h transforms complex conjugation on C into ∗ψ on CR and (ii) the
symmetric R-bilinear form (u, v) �→ ψ(u, h(i)v) on VR is positive definite.

We define the Q-algebraic group G by

G(R) = {g ∈ C ⊗Q R : gg∗ψ ∈ R×},
for any Q-algebra R, and assume that Gder

R is isomorphic to the product of two copies of SU(1, 1)
and d− 2 copies of SU(2). Then the G(R)-conjugacy class X of the induced group homomorphism
h : S −→ GR defines a Shimura datum (G,X) (see [Kot92, § 5]).

3.1.3 Unitary case A2. Let F+ be a totally real number field of degree d � 1 over Q, F a
quadratic totally imaginary extension of F+, and D a central division algebra of dimension nine
over F . Let ∗, V , ψ and h be as in the case above, with C and G defined similarly.

We assume, in this case, that Gder
R is isomorphic to the product of one copy of SU(1, 2) and d−1

copies of SU(3). This again defines a Shimura datum (G,X) (see [Kot92, § 5]).

3.1.4 Canonical models and connected components. Given a Shimura datum (G,X) as above,
the Shimura varieties

ShK(G,X) := G(Q)\X ×G(Af )/K,

as K ranges over open compact subgroups of G(Af ), are canonically defined over a number field
E(G,X) called the reflex field. The variety ShK(G,X) is a finite disjoint union of varieties of the
form X+

Γ := X+/Γ, where X+ is a connected component of X and Γ is a congruence subgroup of
Gder(Q). Each X+

Γ is then defined over an abelian extension (depending on K) of E(G,X), specified
by the reciprocity map. When Γ is torsion-free, X+

Γ is a smooth variety, and an inclusion Γ1 ⊆ Γ
of congruence subgroups induces a finite étale morphism X+

Γ1
−→ X+

Γ , defined over an abelian
extension of E(G,X).

We note that the derived group Gder is simply connected and that ShK(G,X) is projective in
all of the three cases.

3.2 Integral models and the set of good primes
In both of the unitary cases as well as in the quaternionic case with d = 2 (so that D ⊗Q R is
totally indefinite), the Shimura variety attached to (G,X) has a PEL modular interpretation, and
has integral canonical models [Kot92, Moo98]. For models in the quaternionic case with d > 2,
see [Rei97, §§ 1–6].
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We use the following fact: we have a finite set Σ of rational primes p and (hyperspecial) open
compact subgroups Kp of G(Qp) for each p outside Σ, such that whenever Kp is a sufficiently small
compact open subgroup of G(Ap

f ):

(i) ShKpKp has a smooth projective model MKpKp over OE(G,X) ⊗ Z(p);

(ii) the connected components of ShKpKp are defined over an abelian extension of E(G,X), which
is unramified above p (see [Moo98, Lemma 3.15]); and

(iii) for an open compact subgroup Kp
1 ⊆ Kp, the transition morphism extends to a finite étale

morphism MKpK
p
1
−→ MKpKp .

For the explicit description of Σ, we refer to [Rei97, § 6] and [Kot92, § 5].

3.3 Statement of theorem
Now let N = p1 · · · pn be a given product of distinct rational primes outside Σ and e � 1 a given inte-
ger. Denote by AN

f := Q⊗∏
p�N Zp the ring of finite adeles away from N and put KN := Kp1 · · ·Kpn .

For a sufficiently small open compact subgroup KN of G(AN
f ), any connected component Y of

ShKNKN is defined over an abelian extension EY of E(G,X) and has an integral model Y℘ over
(OEY )℘, for each prime ℘ of EY dividing N . Then YC is of the form X+

Γ , where X+ is a connected
component of X and Γ is a congruence subgroup of Gder(Q). One writes Γ = Gder(Q) ∩ C, where
C = CNC

N is a compact open subgroup of Gder(Af ) = Gder(
∏
p|N Qp) ·Gder(AN

f ).

Theorem 3.4. Fix (G,X) and Σ as in the previous sections, and let N, e, Y be given as above.
Then there exists an open subgroup CN1 of CN such that the corresponding Y1/EY1 and Y1,℘ have

pg(Y1,℘ ⊗ κ(℘)) � pg(Y1) + e

for every prime ℘ of EY1 dividing N .

Proof. We find subgroups CN0 ⊆ CN1 in CN such that the resulting congruence subgroups Γi :=
Gder(Q) ∩ CNi CN for i = 0, 1 satisfy

Γ1/Γ0
∼= CN1 /C

N
0

∼= (Z/NZ)e;

the first isomorphism follows from the strong approximation theorem.
Let us first assume that we have located these subgroups. Then, in the quaternionic case and the

unitary case A1 ×A1, Γi define irreducible lattices in SL2(R)× SL2(R), and hence Γab
i = Γi/[Γi,Γi]

is finite. Putting Yi := X+
Γi

for i = 0, 1, one deduces H1(Yi,OYi) = 0. The unitary case A2 is much
more subtle, for SU(1, 2) has real rank one and does admit cocompact congruence subgroups with
non-zero first Betti number [Kaz77, § 4]. However, our choice of G (and hence of Γi) was made
precisely so that [Rog90, Theorem 15.3.1] (for d = 1) and [Clo93, Theorem 3.2(i)] (for d � 1) apply,
from which we deduce H1(Yi,OYi) = 0 for i = 0, 1 (see also [Sar05]).

Then we apply Lemma 1.1.1 to the integral model of Y1, which has a connected finite étale
Galois covering with group (Z/NZ)⊕e, hence also one with group (Z/piZ)⊕e for each pi dividing N .

It remains to construct the subgroups. First by shrinking CN if necessary, we may assume that
it is of the form

CN =
∏
p�N

Cp,

where Cp are open compact subgroups of Gder(Qp). Then there are infinitely many prime numbers
� outside Σ such that (i) � ≡ 1 (mod N) and (ii) C� ∼= SL2(Z�)d (respectively C� ∼= SL3(Z�)d) in
the quaternionic case and the unitary case A1 × A1 (respectively in the unitary case A2). We take
M := e ·n of them, say {�1, . . . , �M}, and let C0,�i be the subgroup of C�i consisting of the elements
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congruent to 1 modulo �i. We let

CN0 :=
M∏
i=1

C0,�i ×
∏

(p,N�1···�M )=1

Cp.

We note that the cardinalities of SL2(F�)d and SL3(F�)d are divisible by N , hence by each pi,
for � = �1, . . . , �M . Thus, there exists a subgroup of CN/CN0 that is isomorphic to (Z/NZ)⊕e, which
corresponds to the desired subgroupCN1 , sitting between CN and CN0 , with CN1 /C

N
0

∼= (Z/NZ)e.

Remark 3.5. The canonical number fields over which the models are defined are unramified over any
rational prime dividing N , as noted above. Moreover, these surfaces have ample canonical bundles.
Therefore, it follows from Theorem 1.2.1(ii) that their higher plurigenera (Pm with m � 2) are
invariant under reduction.
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