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This paper focuses on the wave inverse cascade instability analysis with self-regulating
feedback control for a fixed external potential field and a highly localized finite-amplitude
initial pulse. The wave inverse cascade instability analysis is carried out by solving the
corresponding two-dimensional generalized nonlinear Schrödinger equation. The wave
field firstly suffers from the modulation instability, followed by collapse into turbulence
containing the shortest-wavelength modes in the system. This is followed by inverse
cascade of the shortest wavelength modes back to the longer-wavelength ones, until a
statistical stationary turbulent state is reached. It is found that the inverse cascade is
limited to the shorter-wavelength modes with the wavenumber |k| ≥ 100. This shows that
the viscous damping pi acts like a control switch to the inverse cascade, and the feedback
control can also regulate the intensity of the inverse cascade mode.
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1. Introduction

The Schrödinger equation in quantum mechanics is a partial differential equation
describing the evolution of the quantum state of the physical system with time, and is
one of the fundamental equations of quantum mechanics. It reveals the basic law of the
matter movement in the microscopic physical world. It is a powerful tool for dealing with
all non-relativistic problems in atomic physics, and is widely applied in atomic, molecular,
solid-state physics, nuclear physics, chemistry and other fields.

The nonlinear Schrödinger equation (NLSE) is related to various nonlinear problems in
theoretical physics, such as nonlinear optics, fluid mechanics, condensed matter physics,
electromagnetism and ionic acoustic waves of plasmas (Zakharov 1972; Pereira & Stenflo
1977; Goldman 1984; Silberberg 1990; Sulem & Sulem 1999; Porras 2010). The NLSE
has been widely applied to describe different kinds of nonlinear waves in physics, such
as the propagation of a laser beam in a medium whose refractive index is related to the
wave amplitude, the propagation of an optical pulse in a nonlinear dispersive medium,
the water wave of an ideal fluid on a free surface and plasma waves. Since the nonlinear
Schrödinger equation is a nonlinear partial differential equation, only numerical solutions
can be obtained except for some special one-dimensional NLSEs (Pereira & Stenflo 1977;
Nie & Li 2020). The numerical methods for solving the NLSE include two categories,
the finite difference method and the pseudo-frequency spectrum method. In contrast to
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the finite difference method, the pseudo-frequency spectrum method is one to two orders
of magnitude faster under the same accuracy condition, and the step-by-step Fourier
transform method is a kind of pseudo-frequency spectrum method widely used to solve
the pulse transmission problem of nonlinear dispersion media, and it is a fast and efficient
numerical method (Bernatz 2010).

In recent years, the standard NLSE has been applied to the formation, properties,
other local structures and interactions of solitons. Pereira and Stenflo considered the
one-dimensional complex coefficient cubic NLSE and obtained the soliton solution by
using the approximate estimation method (Pereira & Stenflo 1977). Subsequently, this
equation was widely extended to the study of singular solitons, vortices, specklegram and
other results (Gupta, Som & Dasgupta 1981; Conway & Riecke 2007; Shukla et al. 2009;
Bernatz 2010; Skarka, Aleksic & Leblond 2010). In recent decades, the phenomenon of
wave collapse (amounting to the mathematical singularity problem) often appears in many
theoretical studies of nonlinear wave interaction. The study of wave collapse is also based
on the NLSE (Grindrod 1966; Zakharov 1972; Grimes & Adams 1979; Goldman 1984;
Zakharov, Musher & Rubenchik 1985; Musher, Rubenchik & Zakharov 1995; Sulem &
Sulem 1999; Kivshar & Pelinovsky 2000). When both the group dispersion coefficient
p = pr + ipi and the nonlinear coefficient q = qr + iqi in the nonlinear Schrödinger
equation are complex constants, it is also called the generalized nonlinear Schrödinger
equation(GNSE). It is also a kind of generalized nonlinear reaction–diffusion equation.
Different kinds of novel instability phenomena have been found successively through a
numerical study based on the two-dimensional GNSE. Zhao & Yu (2011), Zhao et al.
(2012), Cui, Yu & Zhao (2013), Yu, Cui & Zhao (2015) and Cui, Lv & Xin (2016) found
that the localized large-amplitude pulse first undergoes modulational instability and then
collapses into the shortest-wavelength modes, and then the collapse is followed by the
inverse cascade of energy back to modes of longer wavelengths, until a stationary state
homogeneous turbulence with a spiky energy spectrum appears. Further, Cui et al. (2013),
Yu et al. (2015) and Cui et al. (2016) found that the inverse cascade or decay following the
collapse can then lead to asymptotic states with nearly single-mode-dominated turbulence
and, finally, the energy was condensed in the same wavenumber |k| mode with eight phase
angles in the phase space, or near the terminals of three different wave vectors, rather than
into the homogeneous turbulence state filling the whole space.

In this paper, we mainly focus on the analysis of the wave inverse cascade instability
with a simple self-regulating feedback control based on a two-dimensional GNSE. As
expected (Zhao & Yu 2011; Zhao et al. 2012; Cui et al. 2013; Yu et al. 2015; Cui et al.
2016), at the start of the evolution the initial pulse firstly suffers the modulation instability,
followed by collapse into the shortest-wavelength modes in the system. This is followed by
the inverse cascade of the shortest-wavelength modes back to the longer-wavelength ones,
until a statistical stationary turbulent state is reached. And the inverse cascade is limited
to the shorter-wavelength modes with the wavenumber |k| ≥ 100. The viscous damping
pi plays an important part in the process of the inverse cascade. Under the self-regulating
feedback control in the system, the inverse cascade can be regulated in a way.

2. Generalized NLSE

The two-dimensional GNSE including a simple self-regulating feedback control term
can be written as follows:

i∂tE + p∇2E + (V(x, y) + q|E|2)E + β|E|2 = 0, (2.1)

where it is applied to describe the evolution of instability with time in the electron plasma
wave packet field. In (2.1), E(x, y, t) is a complex wave packet function of space position
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(a) (b)

FIGURE 1. External potential and initial perturbation.

(x, y) and time t, V(x, y) represents the initially given external potential energy, i is the
imaginary unit and i2 = −1. ∇2 is a Laplace operator which satisfies

∇2 = ∂2

∂x2
+ ∂2

∂y2
. (2.2)

Equation (2.1) is different from the standard cubic NLSE, here, both the group dispersion
coefficient p = pr + ipi and the nonlinear coefficient q = qr + iqi are complex constants,
where pr is the coefficient of group velocity dispersion pr∇2E, and pi is the coefficient
of viscous damping (growth) determined by wavelength pi∇2E. Also, qi is the coefficient
of growth (damping) determined by amplitude, qr|E|2E is the nonlinear frequency shift of
dispersion and qi|E|2E is the nonlinear damping (growth). The last term β|E|2(β �= 0) is
a feedback control term in the system; when β = 0 there has no feedback control in the
system.

In this paper, we study the evolution of the initial perturbation of the local finite
amplitude with time under a given external potential energy. In general, the total energy
is not conserved (except pi = qi = 0). The evolution of the total wave energy w =∫∫

D |E(t, x, y)|2 dx dy (where D is the whole xy plane region) can be obtained from (2.1)

∂tw = 2
∫∫

D
[ pi|∇E|2 − qi|∇E|4 + βEi|E|2] dx dy. (2.3)

This shows that positive values of pi and qi, respectively, correspond to gain and loss of
the total wave energy. For non-dissipative systems, w is conserved.

The external potential energy is given by

V(x, y) = V0 cos [(x/a)2 + ( y/b)2]. (2.4)

Here, V0 = −3.0, a = 5.0, b = 6.0. As for the form of the external potential energy
equation, many kinds of forms have been tried by trial and error, and it has finally been
found that the different forms have less influence on the analysis. The initial pulse is given
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 2. Evolution of energy spectrum |E(kx, ky)|2 with time for
p = 3.5 + 0.5i, q = 8.0 + 0.9i.

by

E(0, x, y) = E0 exp [ − (x2 + y2)/r0
2]. (2.5)

Here, E0 = 0.05, r0 = 2.0. The spatial structures of the external potential and the initial
perturbation are shown in figure 1.

The simulation region is D = [−2π, 2π;−2π, 2π] under the periodic boundary
conditions. It can be seen from figure 1 that a small perturbation is given at the initial time
in the system. It is in the centre of the simulation region and has a narrow spatial contour,
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FIGURE 3. Evolution of total system energy
∫∫

D |E(t, x, y)|2 dx dy for
p = 3.5 + 0.5i, q = 8.0 + 0.9i.

and the amplitude is obviously smaller than the external potential energy |V(x, y)|. The
evolution process of the initial small disturbance with time is studied based on the GNSE.
In this paper, the GNSE is numerically solved using the spectral method by carrying
out the step-by-step Fourier transform method in space and a fourth-order Runge–Kutta
method in time. The number of grids is 256 × 256, and the time step is �t = 10−3. We
also have verified that the grids are sufficiently fine to ensure low level aliasing effects and
the absence of preferential alignment of small turbulence structures.

3. Numerical results
3.1. In the absence of feedback control in the system

The GNSE is investigated numerically for p = 3.5 + 0.5i, q = 8.0 + 0.9i in the absence
of the feedback control term β|E|2(β = 0). We consider a system with positive
group dispersion pr > 0, viscous heating pi > 0, nonlinear frequency upshift qr|E|2 >

0 and nonlinear damping qi|E|2 > 0, as well as an external potential V(x, y).
Figure 2 shows a quadrant of the evolution of energy spectrum |E(t, kx, ky)|2
at t = 0.005, 0.01, 0.015, 0.05, 0.5, 1.5.

It is clearly found in figure 2 that the localized large-amplitude pulse first condenses,
forming an intense spot in the small k (long-wavelength) corner, that is, the pulse
undergoes modulational instability at time t = 0.005. In a very short time, a part of
the instability energy has been transferred to the shortest-wavelength region (large
wavenumber k ) allowed by the system at time t = 0.01. After a while, at around t =
0.015, the energy has been completely transferred to the shortest-wave region (maximum
wavenumber k), and the initial pulse has evolved into the shortest-wave modes. The whole
process is a very typical wave collapse process (Grindrod 1966; Zakharov 1972; Grimes &
Adams 1979). In this case, the wave collapse occurs quickly, and the energy of the system
quickly increases. Soon the short-wave modes gradually develop to the longer-wave modes
(the value of k is smaller), and there is onset of the inverse cascade instability. Unlike
before (Cui et al. 2013; Yu et al. 2015; Cui et al. 2016), the inverse cascade energy remains
in the shorter-wave region (the smaller wavenumber k) for a long time until t = 1.5. We
also can see that the system energy is concentrated in the k(|k| ≥ 100) space region,
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(a) (b)

(c) (d)

FIGURE 4. Comparison of system energy spectrum |E(1.5, kx, ky)|2; (a) pi = 0.5, (b) pi = 0.6,
(c) pi = 0.8, (d) pi = 1.0.

and the short-wave mode energy is higher than the longer-wave mode energy. Generally,
the relative stable region forms a round domain with radius |k| = 100 in the whole k
space.

Figure 3 shows the evolution of the total energy of the system
∫∫

D |E(t, x, y)|2 dx dy
with time for p = 3.5 + 0.5i, q = 8.0 + 0.9i. It can be seen from figure 3 that, at initial
time (t < 0.01), the total energy of the system is close to zero. At the time t = 0.01 , the
total energy rises in a straight line and rapidly. increases to the highest point (singularity).
Meanwhile, the wave collapse phenomenon occurs in the whole system, and then, in a
very short time, the system energy decreases sharply until t = 0.02, and then the energy
of the whole system fluctuates around a stable value.

The viscous damping (growth) pi in the GNSE is determined by the wavelength. The
effect of pi on the inverse cascade instability is investigated. By fixing the parameters
in the GNSE except pi, and gradually increasing the value of pi(≥ 0.5), figure 4 shows
the comparison of the system energy spectrum |E(kx, ky)|2 at time t = 1.5 for pi =
0.5, 0.6, 0.8, 1.0. It can be clearly seen from figure 4 that the short-wave mode region
of the inverse cascade is gradually reduced with the increase of the value of pi, that is, the
increase of the value pi in this case can suppress the inverse cascade process. Meanwhile,
it is found that the solution of (2.1) diverges to infinity for pi ≥ 1.1.

Figure 5 shows the comparison of the system energy spectrum |E(kx, ky)|2 at the time
t = 1.5 for pi = 0.5, 0.4, 0.2, 0.1. It is found that the inverse cascade process gradually
expands to the long-wave region when the value of pi decreases. While pi = 0.1, the
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(a) (b)

(c) (d)

FIGURE 5. Comparison of system energy spectrum |E(1.5, kx, ky)|2; (a) pi = 0.5, (b) pi = 0.4,
(c) pi = 0.2, (d) pi = 0.1.

system energy transfers back to the long-wave region, and eventually the whole k phase
space is filled with a spiky turbulent state.

By analysing figures 4 and 5, it is easily found that the inverse cascade process can be
regulated by the viscous damping pi for pr = 3.5, q = 8.0 + 0.9i. The larger the value of
pi is, the smaller the inverse cascade process is. When the value of pi varies from 0.1 to
1.0, the viscous coefficient pi determined by the wavelength acts as a regulating switch,
which can regulate the inverse cascade process in a way.

3.2. With feedback control in the system
The GNSE is investigated numerically for p = 3.5 + 0.5i, q = 8.0 + 0.9i with a simple
feedback control term β|E|2(β �= 0). Figure 6 shows the evolution of total energy∫∫

D |E(t, x, y)|2 dx dy for the different levels of self-regulated feedback control β|E|2. One
can see the total energy of the system is close to zero at the initial time (t < 0.01).
At approximately t = 0.01, the total energy for the different β transforms in a vertical
straight line and rapidly increases to the highest point (singularity) almost at the same
time. The mode amplitudes are unequal for the different feedback control values β|E|2
in the singular point, and the amplitude is the least when β = 0. Meanwhile, the wave
collapse occurs in the four systems, and the feedback control affects the wave collapse
amplitude, whereafter the system energy sharply decays until approximately t = 0.015.
From t = 0.015 to t = 0.02, there are obviously larger fluctuations in the system for β �= 0.
From t = 0.02, the four kinds of system energy all fluctuate around a stable value. In this
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(a) (b)

(c) (d)

FIGURE 6. Evolution of total system energy
∫∫

D |E(t, x, y)|2 dx dy for β = 0, 5, 10, 20; (a)
β = 0, (b) β = 5, (c) β = 10, (d) β = 20.

case, the right-hand side of (2.3) can vanish during the evolution, so that the total energy
becomes constant, i.e. the summed effect of growth and damping of all the modes in the
system become balanced.

Fixing p = 3.5 + 0.5i, q = 8.0 + 0.9i under a simple feedback control β|E|2(β �= 0)
in (2.1), we present the energy spectrum |E(kx, ky)|2 at t = 0.5 with various β values
(different levels of self-regulated feedback control β|E|2) in figure 7. One can see that,
for small β = 1, the inverse cascade energy spectrum is similar to that for β = 0. For
β = 5 and 10, the shorter-wave mode slowly converts to a longer-wave mode. However,
even for large β = 20, there is also mode conversion. This can explain how the feedback
controls invoked here regulate the mode amplitudes, and the inverse cascade mode process
is mainly determined by the viscous damping.

4. Conclusion

This research has analysed the entire evolution of a pulse disturbance in a plasma
modelled by the two-dimensional GNSE including group dispersion, diffusion, dissipation
and self-regulated feedback control. The total system energy can become balanced during
the evolution. The system here is open and non-conservative, and existing theories such
as resonant three-wave interaction and wave kinetic equations do not work (Sagdeev &
Galeev 1969; Stenflo 1994; Mendonça & Bingham 2002; Mendonça & Hizanidis 2011).
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(a) (b)

(c) (d)

FIGURE 7. Value of |E(kx, ky)|2 for different levels of self-regulated feedback control at
t = 0.5; (a) β = 1, (b) β = 5, (c) β = 10, (d) β = 20.

For the two-dimensional GNSE, it is unable to obtain a definite theoretical description,
so we can get some results from numerical simulation. In the absence of self-regulated
feedback control, β|E|2(β = 0), as expected, modulation instability, wave collapse and
inverse cascade occur one after another until a statistical stationary turbulent state is
reached. Different from the previous results, it is found that the perturbation energy
after the inverse cascade is mainly concentrated in the region |k| ≥ 100 under p =
3.5 + 0.5i, q = 8.0 + 0.9i, i.e. the inverse cascade is limited to the shorter-wavelength
mode region. Meanwhile, a regular relative circular stable region appears for |k| ≤ 100
(long-wavelength modes region).

The viscous damping pi is an important factor in the evolution. It is found that the
energy in the short-wave region shrinks gradually with increasing pi(0.5 < pi ≤ 1.0). The
regular relatively stable region expands continuously. While reducing the imaginary part
pi(0.1 ≤ pi < 0.5) gradually, the regular relatively stable region is continuously reduced
until it disappears, and the inverse cascade fills the whole space in a sharp-fork turbulent
state. The viscous damping pi acts like a control switch for the process of inverse cascade.
Under a simple self-regulated feedback control β|E|2(β �= 0), it is clearly found that the
feedback control acts like a switching mechanism. Our results can be directly applied to
laser filamentation (Liao, Kelley & Ouellette 2012), Langmuir wave turbulence (Robinson
1997) and other phenomena governed by two-dimensional GNSE in material science, fluid
dynamics, atomic and plasma physics, biology and other areas (Grindrod 1966; Grimes &
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Adams 1979; Murray, Sprenger & Wenk 1990; Murray 1993; Aranson & Kramer 2002;
Reis, Ingale & Shattuck 2006). The new nonlinear state and the more useful feedback
control in the improved nonlinear system remain to be discovered.
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