# ON UNITARY EQUIVALENCE OF MATRICES OVER THE RING OF CONTINUOUS COMPLEX-VALUED FUNCTIONS ON A STONIAN SPACE

### CARL PEARCY

1. Introduction. This paper is a continuation of the earlier papers (1, 5) in which the author studied matrices with entries from the algebra  $C(\mathfrak{X})$  of all continuous, complex-valued functions on an extremely disconnected, compact Hausdorff space  $\mathfrak{X}$ . (Such spaces are sometimes called Stonian, after M. H. Stone, who first considered them in (8). They arise naturally as maximal ideal spaces of abelian  $W^*$ -algebras.) In this note, three theorems are proved. The first is that abelian \*-subalgebras of the algebra  $M_n(\mathfrak{X})$  of all  $n \times n$  matrices over  $C(\mathfrak{X})$  can be unitarily diagonalized. This result is then used to obtain in Theorem 2 a necessary and sufficient condition that a \*-isomorphism between two  $W^*$ -subalgebras (A  $W^*$ -subalgebras) of a finite  $W^*$ -algebra (AW\*-algebra) of type I be implemented by a unitary element in the larger algebra. This can be regarded as a generalization for finite algebras of (4, Theorem 3), and focuses attention on the question of whether the same theorem can be proved in  $W^*$ -algebras of type  $II_1$ . Finally, using Theorem 2, we prove that if A and B are matrices over  $C(\mathfrak{X})$  and A(t) is unitarily equivalent to B(t) for each  $t \in \mathfrak{X}$ , then A and B are unitarily equivalent in the algebra  $M_n(\mathfrak{X})$ . This generalizes (5, Theorem 3) and enables us to give a "local" complete set of unitary invariants for certain operators on Hilbert space.

**2.** We denote by  $M_n$  the full ring of  $n \times n$  complex matrices under the operator norm. Let  $\mathfrak{X}$  be any Stonian space, and denote by  $M_n(\mathfrak{X})$  the \*-algebra of continuous functions from  $\mathfrak{X}$  to  $M_n$ , where the algebraic operations in  $M_n(\mathfrak{X})$  are defined pointwise. If one sets

$$||A|| = \sup_{t \in \mathfrak{X}} ||A(t)||$$

for  $A \in M_n(\mathfrak{X})$ , then  $M_n(\mathfrak{X})$  becomes a  $C^*$ -algebra (identifiable with the  $C^*$ -algebra of all  $n \times n$  matrices with entries from  $C(\mathfrak{X})$ ), and in fact, an *n*-homogeneous  $AW^*$ -algebra (4). We begin our programme with some structure theory in  $M_n(\mathfrak{X})$ . The reader is referred to (4) for the definition of an  $AW^*$ -subalgebra of  $M_n(\mathfrak{X})$ . A subalgebra  $\mathbf{A}$  of  $M_n(\mathfrak{X})$  is said to be diagonal if for each  $A \in \mathbf{A}$  and each  $t \in \mathfrak{X}$ , the matrix A(t) is diagonal.

THEOREM 1. If A is any abelian \*-subalgebra of  $M_n(\mathfrak{X})$ , then there is a unitary element  $U \in M_n(\mathfrak{X})$  such that the algebra  $UAU^*$  is a diagonal subalgebra.

Received May 15, 1962.

#### CARL PEARCY

**Proof.** It suffices to prove the above in the case that **A** is an  $AW^*$ -subalgebra, since, in any event, the  $AW^*$ -subalgebra generated by **A** (the intersection of all  $AW^*$ -subalgebras containing **A**) will be abelian. (This can be gleaned from **(4**, Lemma **4)**.) Since linear combinations of the projections of an  $AW^*$ subalgebra **A** are dense in **A**, it is clear that it suffices to find a unitary element  $U \in M_n(\mathfrak{X})$  such that for every projection  $E \in \mathbf{A}$ ,  $UEU^*$  is diagonal. To accomplish this, we consider collections  $\{\mathfrak{U}_i\}$  of disjoint, non-empty, compact open sets  $\mathfrak{U}_i \subset \mathfrak{X}$  such that if  $\mathfrak{U}_i \in \{\mathfrak{U}_i\}$ , then there is a unitary-valued function  $U_i \in M_n(\mathfrak{U}_i)$  such that  $U_i(t)E(t)U_i^*(t)$  is diagonal for each  $t \in \mathfrak{U}_i$  and each projection  $E \in \mathbf{A}$ . Choose a maximal collection of this type  $\{\mathfrak{U}_i\}_{i\in I}$ , and let

$$\mathfrak{U}=\overline{\bigcup_{i\in I}\mathfrak{U}_i}.$$

In view of (1, Lemma 2.1), it suffices to prove  $\mathfrak{ll} = \mathfrak{X}$  to complete the argument. Thus, suppose  $\mathfrak{X} - \mathfrak{U} \neq \emptyset$ , and consider collections  $\{E_i\}$  of projections in **A** with the property that at some point  $t \in \mathfrak{X} - \mathfrak{U}$ , the projections  $\{E_i(t)\}$ are all distinct. Clearly there is at least one non-void collection of this type, and clearly any collection of this type can contain at most  $2^n$  projections. Choose a collection  $\{E_j\}_{j \in J}$  having a maximum number of elements. Then if  $t_0 \in \mathfrak{X} - \mathfrak{U}$  is such that the projections  $\{E_1(t_0)\}_{i \in I}$  are all distinct, it is clear that there is a compact open neighbourhood  $\mathfrak{N} \subset \mathfrak{X} - \mathfrak{U}$  of  $t_0$  such that for  $t \in \mathfrak{N}$ , the projections  $\{E_{j}(t)\}_{j \in J}$  remain distinct. It follows from the maximality of the collection  $\{E_j\}_{j\in J}$  that if E is any projection in A and  $t \in \mathfrak{N}$ , then E(t)is some one of the projections  $E_j(t)$ . (Of course j can vary with t.) Thus to obtain a contradiction, it suffices to find some non-empty compact open subset  $\mathfrak{M} \subset \mathfrak{N}$  and a unitary-valued function  $V \in M_n(\mathfrak{M})$  which will simultaneously diagonialize the  $\{E_j\}_{j\in J}$  on  $\mathfrak{M}$ . We do this as follows. For convenience, take J to be the collection of integers  $\{1, 2, \ldots, k\}$ . By applying (1, Corollary **3.3)** to  $E_1$  and changing notation, we can assume that  $E_1$  is diagonal on  $\mathfrak{N}$ . Next choose a point  $t_1 \in \mathfrak{N}$  where the rank of  $E_1(t)$  is a maximum, and then choose a compact open neighbourhood  $\mathfrak{P} \subset \mathfrak{N}$  of  $t_1$  such that  $E_1$  is constant on  $\mathfrak{P}$ . We can clearly assume that

$$E_1(t) = \begin{bmatrix} 1 & & & \\ & \cdot & & & \\ & 1 & & & \\ & 1 & & & \\ & 0 & & \cdot & \\ & 0 & & \cdot & \\ & & & 0 \end{bmatrix} \quad \text{for } t \in \mathfrak{P}.$$

Since  $E_2$  commutes with  $E_1$ , it must be the case that, for  $t \in \mathfrak{P}$ , the matrix  $E_2(t)$  has the form

324

$$E_2(t) = \left[ \begin{array}{c|c} G_1(t) \\ \hline \\ 0 \\ \hline \\ G_2(t) \end{array} \right]$$

where  $G_1$  and  $G_2$  are projection-valued at each  $t \in \mathfrak{P}$ . Application of (1, Corollary 3.3) to  $G_1$  and  $G_2$  yields a unitary element  $W \in M_n(\mathfrak{P})$  of the form

$$W(t) = \begin{bmatrix} W_1(t) & 0 \\ 0 & W_2(t) \end{bmatrix}$$

such that on  $\mathfrak{P}$ ,  $WE_2W^*$  is diagonal. Since W commutes with  $E_1$  on  $\mathfrak{P}$ , we have simultaneously diagonalized  $E_1$  and  $E_2$  on  $\mathfrak{P}$ , and the proof is completed by making an induction argument along the lines indicated above. We omit further details of the induction argument.

Notation. We denote by  $\sigma(A)$  the trace in the usual sense of an  $n \times n$  complex matrix A.

LEMMA 2.1. Suppose that  $\mathbf{A}_1$  and  $\mathbf{A}_2$  are abelian  $AW^*$ -subalgebras of  $M_n(\mathfrak{X})$ , and that  $\phi$  is an algebraic \*-isomorphism of  $\mathbf{A}_1$  onto  $\mathbf{A}_2$  with the property that for each  $A \in \mathbf{A}_1$  and each  $t \in \mathfrak{X}$ ,  $\sigma[A(t)] = \sigma[\phi(A)(t)]$ . Then there is a unitary element  $U \in M_n(\mathfrak{X})$  such that  $\phi(A) = UAU^*$  for each  $A \in \mathbf{A}_1$ ; i.e.,  $\phi$  is implemented by U.

*Proof.* Since  $\phi$  is trace-preserving, it follows easily that if  $A \in \mathbf{A}_1$  and  $t \in \mathfrak{X}$ , then

$$||A(t)||^{2} = ||A^{*}(t)A(t)|| = ||\phi(A^{*})(t)\phi(A)(t)|| = ||\phi(A)(t)||^{2},$$

so that  $\phi$  is actually norm-preserving also. For  $t \in \mathfrak{X}$ , let  $\mathbf{A}_1(t)$  be the \*-algebra of all matrices A(t) where  $A \in \mathbf{A}_1$ , and let  $\mathbf{A}_2(t)$  be defined similarly. It follows from the fact that  $\phi$  is norm-preserving that for each  $t \in \mathfrak{X}$ ,  $\phi$  gives rise to a \*-isomorphism  $\tilde{\phi}_t$  of  $\mathbf{A}_1(t)$  onto  $\mathbf{A}_2(t)$  defined by  $\tilde{\phi}_t: A(t) \to \phi(A)(t)$ . These properties of  $\phi$  are used several times in the course of the proof. Now consider collections  $\{\mathfrak{U}_i\}$  of disjoint, non-empty, compact open subsets  $\mathfrak{U}_i \subset \mathfrak{X}$  such that if  $\mathfrak{U}_i \in \{\mathfrak{U}_i\}$ , then there is a unitary-valued element  $U_i \in M_n(\mathfrak{U}_i)$  such that for each  $t \in \mathfrak{U}_i$  and each  $A \in \mathbf{A}_1$ ,  $\phi(A)(t) = U_i(t)A(t)U_i^*(t)$ . Choose a maximal collection  $\{\mathfrak{U}_i\}_{i \in I}$ , and let

$$\mathfrak{U}=\overline{\bigcup_{i\in I}\mathfrak{U}_i}.$$

As before, it suffices to prove that  $\mathfrak{U} = \mathfrak{X}$ , so we suppose that  $\mathfrak{X} - \mathfrak{U} \neq \emptyset$ . Since  $\phi$  is norm-preserving, and since the linear combinations of the projections in an  $AW^*$ -subalgebra are dense in the subalgebra, it is easy to see that to obtain a contradiction, it suffices to find a non-empty, compact open subset  $\mathfrak{M} \subset \mathfrak{X} - \mathfrak{U}$  and a unitary-valued element  $V \in M_n(\mathfrak{M})$  such that for each projection  $E \in \mathbf{A}_1$  and for each  $t \in \mathfrak{M}$ ,  $\phi(E)(t) = V(t)E(t)V^*(t)$ . We obtain such an  $\mathfrak{M}$  and V as follows. By virtue of Theorem 1 we can assume that  $A_1$  and  $A_2$  are both diagonal subalgebras. We now choose a non-empty collection  $\{E_j\}_{j \in J}$  of projections in  $A_1$ , a point  $t_0 \in \mathfrak{X} - \mathfrak{U}$ , and a compact open neighbourhood  $\mathfrak{N} \subset \mathfrak{X} - \mathfrak{U}$  of  $t_0$  just as in the proof of Theorem 1; i.e., so that for  $t \in \mathfrak{N}$ , the projections  $\{E_i(t)\}\$  are all distinct, and furthermore if E is any projection in  $A_1$  and  $t \in \mathfrak{N}$ , then E(t) is some one of the projections  $\{E_i(t)\}_{i\in J}$ . Just as before, we can drop down to a non-empty, compact open subset  $\mathfrak{P}_1 \subset \mathfrak{N}$  such that on  $\mathfrak{P}_1$  the projection  $E_{j_1}$  is constant, and by an obvious induction argument, we can eventually obtain a non-empty, compact open set  $\mathfrak{P} \subset \mathfrak{P}_1 \subset \mathfrak{N}$  such that on  $\mathfrak{P}$  the projections  $\{E_i\}_{i \in I}$  are all constant. Going one step further and making a similar induction argument on the  $\{\phi(E_i)\}_{i\in J}$ , we can drop down to a non-empty, compact open subset  $\mathfrak{M} \subset \mathfrak{P}$ such that the projections  $\{\phi(E_j)\}_{j\in J}$  are also all constant on  $\mathfrak{M}$ . Note that to obtain a contradiction, it now suffices to find a unitary element  $V \in M_n(\mathfrak{M})$ satisfying  $\phi(E_i)(t) = V(t)E_i(t)V^*(t)$  for each  $j \in J$  and  $t \in \mathfrak{M}$ , because then if E is any projection in  $A_1$  and  $t \in \mathfrak{M}$ , we have from the above that E(t) is some  $E_i(t)$ , and thus  $\phi(E)(t) = \phi(E_i)(t) = V(t)E_i(t)V^*(t) = V(t)E(t)V^*(t)$ . To obtain such a V, choose any point  $t_1 \in \mathfrak{M}$ , and recall that  $\tilde{\phi}_{t_1}$  is a tracepreserving \*-isomorphism between the matrix algebras  $A_1(t_1)$  and  $A_2(t_1)$ . It is an easy matter to obtain a unitary matrix W implementing  $\tilde{\phi}_{i_1}$ , and upon defining  $V(t) \equiv W$  for  $t \in \mathfrak{M}$ , the desired unitary element  $V \in M_n(\mathfrak{M})$  is obtained.

The above lemma can be extended to:

LEMMA 2.2. Suppose A and B are any AW\*-subalgebras of  $M_n(\mathfrak{X})$  and  $\phi$  is an algebraic \*-isomorphism of A onto B with the property that for each  $A \in \mathbf{A}$ and each  $t \in \mathfrak{X}$ ,  $\sigma[A(t)] = \sigma[\phi(A)(t)]$ . Then there is a unitary element  $U \in M_n(\mathfrak{X})$ that implements  $\phi$ .

Proof. The mapping  $\phi$  implements a trace-preserving \*-isomorphism between the centres of the subalgebras **A** and **B**. Thus by making an application of Lemma 2.1 and changing notation, we can assume that the algebras **A** and **B** have the common centre **Z** and that  $\phi$  is constant on **Z**. Now **A** and **B** must be finite  $AW^*$ -algebras of type I, and it follows from (4, Lemma 18) and (3, Lemma 4.10) that **A** and **B** are each finite  $C^*$ -sums of homogeneous algebras. Thus we write **A** as the  $C^*$ -sum  $\mathbf{A} = \{\mathbf{A}_m\}_{m \in M}$ , where each  $\mathbf{A}_m$  is an *m*-homogeneous  $AW^*$ -subalgebra and M is some subset of the first *n* positive integers. Since *m*-homogeneity is an algebraic invariant, we must also have  $\mathbf{B} = \{\mathbf{B}_m\}_{m \in M}$ . It is clear that for each  $m \in M$ ,  $\phi$  gives rise to a trace-preserving \*-isomorphism between the homogeneous algebras  $\mathbf{A}_m$  and  $\mathbf{B}_m$ , so for the moment we fix *m* and consider the isomorphic algebras  $\mathbf{A}_m$ and  $\mathbf{B}_m$  with common centre  $\mathbf{Z}_m$ . If m = 1, we have done all we need to do; otherwise, let  $\{E_{ij}\}$  be a set of matrix units for  $\mathbf{A}_m$ . (Thus each  $E_{ii}$  is an abelian projection in  $\mathbf{A}_m$ .) Then, of course, the corresponding collection  $\{F_{ij} = \phi(E_{ij})\}\$  is a set of matrix units for  $\mathbf{B}_m$ , and we consider the isomorphic abelian  $AW^*$ -subalgebras  $E_{11} \mathbf{Z}_m$  and  $F_{11} \mathbf{Z}_m$  of  $\mathbf{A}_m$  and  $\mathbf{B}_m$  respectively. Another application of Lemma 2.1 yields a unitary element  $Y \in M_n(\mathfrak{X})$  such that  $YE_{11}CY^* = F_{11}C$  for each  $C \in \mathbf{Z}_m$ . Define  $V_1 = YE_{11}$ , and for  $i = 2, \ldots, m$ , define  $V_i = F_{i1} V_1 E_{1i}$ . Then define

$$V^{(m)} = \sum_{i=1}^{m} V_i.$$

Calculation yields  $V_i V_i^* = F_{ii}$ ,  $V_i^* V_i = E_{ii}$ , and  $V^{(m)*} V^{(m)} = V^{(m)} V^{(m)*} = I_m$ , where  $I_m$  is the common unit of the algebras  $\mathbf{A}_m$  and  $\mathbf{B}_m$ . Also for  $i, j = 1, 2, \ldots, m$ , one has  $V^{(m)} E_{ij} V^{(m)*} = V_i E_{ij} V_j^* = F_{ij}$ , and for each  $C \in \mathbf{Z}_m$ ,  $V^{(m)} C V^{(m)*} = \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{j=$ 

$$V^{(m)}CV^{(m)*} = \sum_{i,j} F_{i1}V_{1}E_{1i}CE_{j1}V_{1}^{*}F_{1j} = \sum_{k} F_{k1}V_{1}E_{11}CV_{1}^{*}F_{1k}$$
$$= \sum_{k} F_{k1}F_{11}CF_{k1} = C\sum_{k} F_{kk} = C.$$

Hence  $V^{(m)}$  commutes with  $\mathbf{Z}_m$ , and since any element  $A \in \mathbf{A}_m$  can be written as

$$A = \sum_{i,j} C_{ij} E_{ij},$$

where the  $C_{ij} \in \mathbf{Z}_m$ , we have

$$\phi(A) = \sum_{i,j} C_{ij} F_{ij} = \sum_{i,j} V^{(m)} C_{ij} V^{(m)*} V^{(m)} E_{ij} V^{(m)*} = V^{(m)} A V^{(m)*}.$$

Thus  $V^{(m)}$  implements  $\phi$  on  $\mathbf{A}_m$  for each  $m \in M$ , and we define

$$W = \sum_{m \in M} V^{(m)}.$$

Clearly  $W^*W = WW^* = I$ , where I is the unit of **A**, and it is also clear that W implements  $\phi$  on **A**. Finally define U = (1 - I) + W, where 1 is the unit of  $M_n(\mathfrak{X})$ . Then U is a unitary element in  $M_n(\mathfrak{X})$  and if  $A \in \mathbf{A}$ ,  $UAU^* = WAW^* = \phi(A)$ , so that the proof is complete.

Given the preceding lemma, the proof of Theorem 2 is easy. The reader is referred to (2, p. 260) for information concerning the unique Dixmier central trace on finite  $W^*$ -algebras and to (9) for information on the trace in  $AW^*$ -algebras.

THEOREM 2. Suppose **R** is any finite W\*-algebra (AW\*-algebra) of type I,  $A_1$  and  $A_2$  are any W\*-subalgebras (AW\*-subalgebras) of **R**, and  $D(\cdot)$  is the unique central trace on **R**. If  $\phi$  is an algebraic \*-isomorphism of  $A_1$  onto  $A_2$ , then there is a unitary element  $U \in \mathbf{R}$  such that  $\phi(A) = UAU^*$  for each  $A \in A_1$ if and only if  $D(A) = D(\phi(A))$  for each  $A \in A_1$ .

*Proof.* Since  $D(\cdot)$  is a unitary invariant, the "only if" half of the theorem is immediate. Turning to the proof of the other half of the theorem, one knows that **R** is a direct sum  $\mathbf{R} = {\mathbf{R}_i}_{i\in I}$  of *i*-homogeneous algebras, and

that  $D(\cdot)$  is the sum of the unique central traces  $D_i(\cdot)$  on the algebras  $\mathbf{R}_i$ . If  $E_i$  is the unit of  $\mathbf{R}_i$ , then  $E_i \mathbf{A}_1$  and  $E_i \mathbf{A}_2$  are  $W^*$ -subalgebras  $(A W^*$ -subalgebras) of  $\mathbf{R}_i$ , and the mapping  $E_i A \to E_i \phi(A)$  is easily seen to be a \*-isomorphism of  $E_i \mathbf{A}_1$  onto  $E_i \mathbf{A}_2$  which preserves the central trace  $D_i(\cdot)$ . Thus the problem is reduced to the case in which  $\mathbf{R}$  is a homogeneous algebra, and the fact that this makes Lemma 2.2 applicable can be obtained from (5, § 3).

The following lemma enables us to apply Theorem 2 to the question of unitary equivalence of elements of  $M_n(\mathfrak{X})$ .

LEMMA 2.3. Let A be any \*-subalgebra of  $M_n(\mathfrak{X})$ , and for each  $t \in \mathfrak{X}$  denote by  $\mathbf{A}(t)$  the \*-algebra of matrices  $\{A(t) \mid A \in \mathbf{A}\}$ . Let  $\mathfrak{S}$  be any compact open subset of  $\mathfrak{X}$  with the property that for each  $t \in \mathfrak{S}$ , the algebra  $\mathbf{A}(t)$  contains the same number k > 0 of linearly independent matrices, and define the subset  $\mathbf{R} \subset M_n(\mathfrak{S})$  by:  $B \in \mathbf{R}$  if and only if  $B \in M_n(\mathfrak{S})$  and  $B(t) \in \mathbf{A}(t)$  for each  $t \in \mathfrak{S}$ . Then the collection  $\mathbf{R}$  is an  $AW^*$ -subalgebra of  $M_n(\mathfrak{S})$ .

*Proof.* It is clear that **R** is an algebraic \*-subalgebra of  $M_n(\mathfrak{S})$ , and it follows from the fact that for  $B \in \mathbf{R}$ ,

$$||B|| = \sup_{t \in \mathfrak{S}} ||B(t)||,$$

that **R** is a C\*-subalgebra of  $M_n(\mathfrak{S})$ . We separate out the next fact to be verified as a sublemma.

SUBLEMMA. If  $\{E_{\lambda} \mid \lambda \in \Lambda\}$  is any collection of mutually orthogonal projections in **R**, and  $E = \sup_{\lambda} E_{\lambda}$  (as calculated in  $M_n(\mathfrak{S})$ ), then  $E \in \mathbf{R}$ .

Proof. Suppose this sublemma is false. Then there is a point  $r \in \mathfrak{S}$  such that  $E(r) \notin \mathbf{A}(r)$ . Let  $\{A_1(r), \ldots, A_k(r) \mid A_i \in \mathbf{A}\}$  be a basis for  $\mathbf{A}(r)$ . Then the matrices  $E(r), A_1(r), \ldots, A_k(r)$  are linearly independent, and by continuity there is a compact open neighbourhood  $\mathfrak{N} \subset \mathfrak{S}$  of r such that for  $t \in \mathfrak{N}, \{A_1(t), \ldots, A_k(t) \mid A_i \in \mathbf{A}\}$  remains a basis for  $\mathbf{A}(t)$  and also the matrices  $E(t), A_1(t), \ldots, A_k(t)$  remain linearly independent. Thus for  $t \in \mathfrak{N}, E(t) \notin \mathbf{A}(t)$ . Now for  $t \in \mathfrak{N}$ , let  $C_t$  be the collection of all  $\lambda \in \Lambda$  such that  $E_{\lambda}(t) \neq 0$ . Note that for any  $t, C_t$  contains a maximum number of elements. Then, by continuity, there is a compact open neighbourhood  $\mathfrak{P} \subset \mathfrak{N}$  of  $t_0$  such that  $C_t = C_{t_0}$  for each  $t \in \mathfrak{P}$ . Consider the projection  $F \in M_n(\mathfrak{S})$  defined by

$$F(t) = \sum_{\lambda \in C_{t_0}} E_{\lambda}(t)$$

for  $t \in \mathfrak{P}$  and F(t) = E(t) for  $t \in \mathfrak{S} - \mathfrak{P}$ . Then *F* is an upper bound for the collection  $\{E_{\lambda} \mid \lambda \in \Lambda\}$ , and  $F \leq E$ . Thus F = E, and it follows that for  $t \in \mathfrak{P}$ ,

$$E(t) = \sum_{\lambda \in C_{t_0}} E_{\lambda}(t),$$

328

which implies that for  $t \in \mathfrak{P}$ ,  $E(t) \in \mathbf{A}(t)$ . This is a contradiction. (It is perhaps worth noting that implicit in the above argument is a new proof of (3, Lemma 4.11).)

To show that **R** is an  $AW^*$ -subalgebra of  $M_n(\mathfrak{S})$  there remains only one further fact to verify, and we also treat it as a sublemma.

SUBLEMMA. If  $B \in \mathbf{R}$ , then the right projection (rp) of B (as calculated in  $M_n(\mathfrak{S})$ ) is also an element of  $\mathbf{R}$ .

*Proof.* Note that  $rp[B] = rp[B^*B]$ , so that B can be taken to be positive, and also that if E = rp[B] then E can be characterized as the smallest projection in  $M_n(\mathfrak{S})$  satisfying BE = B. Again we assume the sublemma false, i.e., that there is a point  $r \in \mathfrak{S}$  such that  $E(r) \notin \mathbf{A}(r)$ . Then, just as before, it follows that there is a compact open neighbourhood  $\mathfrak{N} \subset \mathfrak{S}$  of r such that for  $t \in \mathfrak{N}$ ,  $E(t) \notin \mathbf{A}(t)$ . We proceed to a contradiction as follows. For each  $t \in \mathfrak{S}$ , consider the characteristic equation of B(t). It follows from (1, Theorem 1) that there exist *n* functions  $c_1, \ldots, c_n \in C(\mathfrak{S})$  with the property that for each  $t \in \mathfrak{S}$ , the numbers  $c_1(t), \ldots, c_n(t)$  are exactly the eigenvalues (with correct multiplicities) of B(t). For  $t \in \mathfrak{N}$ , let  $I_t$  be the set of integers i such that  $c_i(t) \neq 0$ . Choose  $t_0 \in \mathfrak{N}$  such that  $I_{t_0}$  has a maximum number of elements. Then, by continuity, there is a compact open neighbourhood  $\mathfrak{M} \subset \mathfrak{N}$  of  $t_0$  such that for each  $t \in \mathfrak{M}$ ,  $I_t = I_{t_0}$ . Let  $\eta > 0$  be such that for each  $t \in \mathfrak{M}$  and each  $i \in I_{t_0}$ ,  $c_t(t) > \eta$ . Let f be any continuous function mapping the real line into itself such that f(0) = 0 and f(s) = 1for  $s > \eta/2$ . Then  $F = f[B] \in \mathbf{R}$  (recall that **R** is  $C^*$ ), and it is easy to see that for each  $t \in \mathfrak{S}$ , F(t) = f[B](t). Thus for  $t \in \mathfrak{M}$ , F(t) is the projection on the range of B(t), and as such, F(t) is the smallest projection satisfying B(t)F(t) = B(t). It follows that for  $t \in \mathfrak{M}$  we must have E(t) = F(t), which is a contradiction since  $F \in \mathbf{R}$ .

It now follows from the sublemmas and (4, Lemma 2) that **R** is an  $AW^*$ -subalgebra of  $M_n(\mathfrak{S})$ .

We are finally in a position to prove:

THEOREM 3. If  $A, B \in M_n(\mathfrak{X})$ , and if A(t) is unitarily equivalent to B(t) for each  $t \in \mathfrak{X}$ , then there is a unitary element  $U \in M_n(\mathfrak{X})$  such that  $A = UBU^*$ .

*Proof.* We consider collections  $\{\mathfrak{U}_i\}$  of disjoint, non-empty, compact open subsets  $\mathfrak{U}_i \subset \mathfrak{X}$  such that if  $\mathfrak{U}_i \in \{\mathfrak{U}_i\}$ , then there is a unitary element  $U_i \in M_n(\mathfrak{U}_i)$  such that for  $t \in \mathfrak{U}_i$ ,  $A(t) = U_i(t)B(t)U_i^*$  (t). If  $\{\mathfrak{U}_i\}_{i \in I}$  is a maximal collection of this kind and

$$\mathfrak{U}=\overline{\bigcup_{i\in I}\mathfrak{U}_i},$$

then again in view of (1, Lemma 2.1), it suffices to prove  $\mathfrak{U} = \mathfrak{X}$ . Suppose  $\mathfrak{X} - \mathfrak{U} \neq \emptyset$ , and taking  $\mathbf{A}(t)$  as defined in Lemma 2.3, choose  $r \in \mathfrak{X} - \mathfrak{U}$  so

#### CARL PEARCY

that the number of linearly independent matrices in the algebra  $\mathbf{A}(t)$  is a maximum (over  $\mathfrak{X} - \mathfrak{U}$ ) at r. Let  $p_1(A(r), A^*(r)), \ldots, p_k(A(r), A^*(r))$ , be a basis for  $\mathbf{A}(r)$ , and choose a compact open neighbourhood  $\mathfrak{S} \subset \mathfrak{X} - \mathfrak{U}$  of r so that on  $\mathfrak{S}$  the matrices  $p_1(A(t), A^*(t)), \ldots, p_k(A(t), A^*(t))$  remain linearly independent. It follows from the hypothesis that for  $t \in \mathfrak{S}$ , the matrices  $p_1(B(t), B^*(t)), \ldots, p_k(B(t), B^*(t))$  are a basis of the \*-algebra  $\mathbf{B}(t)$  generated by B(t). Now let  $\mathbf{R}(A)$  be the  $AW^*$ -subalgebra of  $M_n(\mathfrak{S})$  corresponding to  $\mathbf{A}(t)$ , which Lemma 2.3 gives rise to, and let  $\mathbf{R}(B)$  be the corresponding  $AW^*$ -subalgebra of  $M_n(\mathfrak{S})$  for  $\mathbf{B}(t)$ .

It follows that each  $C \in \mathbf{R}(A)$  can be written in the form

$$C(t) = \sum_{i=1}^{k} c_i(t) p_i(A(t), A^*(t))$$

for  $t \in \mathfrak{S}$ , and it is not difficult to see that the  $c_i(\cdot)$  are uniquely determined continuous complex-valued functions on  $\mathfrak{S}$ . Elements of  $\mathbf{R}(B)$  can be written similarly, and thus one can define a mapping

$$\phi\colon \sum_{i=1}^k c_i(\cdot)p_i(A(\cdot), A^*(\cdot)) \to \sum_{i=1}^k c_i(\cdot)p_i(B(\cdot), B^*(\cdot))$$

of  $\mathbf{R}(A)$  onto  $\mathbf{R}(B)$ .

By virtue of Theorem 2, to complete the proof of the theorem it suffices to verify that  $\phi$  is a trace-preserving \*-isomorphism of  $\mathbf{R}(A)$  onto  $\mathbf{R}(B)$  which maps A to B. This one does pointwise, using the hypothesis to show that any polynomial  $q(A(t), A^*(t))$  vanishes if and only if  $q(B(t), B^*(t))$  does also. See (5) for further details of similar verifications.

3. We now briefly summarize some results of the author (5) on unitary equivalence, preparatory to obtaining a local complete set of unitary invariants for a certain class of operators on Hilbert space. Let W be the free multiplicative semi-group on the symbols x and y, and denote words in W by w(x, y). Specht (7) showed that the collection of traces

$$\{\sigma[w(A, A^*)] \mid w(x, y) \in W\}$$

is a complete set of unitary invariants for  $n \times n$  complex matrices. The author was able to improve this by showing in (5) that for n fixed but arbitrary, there is always a subset  $W_n \subset W$  containing less than  $4^{n^2}$  words such that the collection

$$\{\sigma[w(A, A^*)] \mid w(x, y) \in W_n\}$$

is already a complete set of unitary invairants for  $n \times n$  complex matrices. Better results are known for n = 2 and n = 3 (6). Now if A is an operator generating a finite  $W^*$ -algebra  $\mathbf{R}(A)$  of type I, and  $D_a(\cdot)$  is the unique Dixmier central trace on  $\mathbf{R}(A)$ , then (5, Theorem 5) A is unitarily equivalent to an operator B if and only if B generates a finite  $W^*$ -algebra  $\mathbf{R}(B)$  of type I and

330

there is a unitary isomorphism  $\phi$  such that  $\phi D_a[w(A, A^*)]\phi^{-1} = D_b[w(B, B^*)]$ for each  $w(x, y) \in W$ , where  $D_b(\cdot)$  is the Dixmier trace on  $\mathbf{R}(B)$ . Thus a global set of unitary invariants for such operators A was provided.

However, in the case that A and B are operators in the same finite  $W^*$ -algebra **R** of type I, one might expect that the unitary equivalence of A and B relative to **R** would follow from the equations  $D[w(A, A^*)] = D[w(B, B^*)]$ ,  $w(x, y) \in W$ . The author was unable to prove this in (5) except in the special case in which A generates **R**, but we can now obtain this result easily from Theorem 3.

COROLLARY 3.1. If **R** is a finite W\*-algebra of type I, A,  $B \in \mathbf{R}$ , and  $D(\cdot)$  is the unique central Dixmier trace on **R**, then A is unitarily equivalent to B relative to **R** if and only if  $D[w(A, A^*)] = D[w(B, B^*)]$  for each  $w(x, y) \in W$ .

*Proof.* **R** is a direct sum of homogeneous algebras  $\{\mathbf{R}_i\}$  and the Dixmier trace on **R** is the sum of the Dixmier traces on the homogeneous algebras. Thus the problem reduces to the case in which **R** is homogeneous, and the traces assumed equal above ensure that the hypotheses of Theorem 3 are satisfied. (For more detail in this connection, see 5.)

## 4. Remarks.

1. Because of Specht's theorem mentioned above and the continuity of the functions  $\sigma[w(A(t), A^*(t))]$ , Theorem 3 remains true if it is assumed only that A(t) is unitarily equivalent to B(t) for t in any dense subset of  $\mathfrak{X}$ .

2. If in Corollary 3.1 **R** is assumed to be an *n*-homogeneous algebra, then one can obtain the same result by assuming only that  $D[w(A, A^*)] = D[w(B, B^*)]$  for  $w(x, y) \in W_n$ , in view of (5, Theorem 1).

3. The statements of Theorem 2 and Corollary 3.1 make sense in any  $W^*$ -algebra of type II<sub>1</sub>, and the author conjectures that they are true there. However, he is unable to prove this except in one special case.

#### References

- 1. D. Deckard and C. Pearcy, On matrices over the ring of continuous complex-valued functions on a Stonian space, to appear in Proc. Amer. Math. Soc.
- 2. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Paris, 1957).
- 3. I. Kaplansky, Projections in Banach algebras, Ann. Math., 53 (1951), 235-249.
- 4. Algebras of type I, Ann. Math., 56 (1952), 460-472.
- 5. C. Pearcy, A complete set of unitary invariants for operators generating finite W\*-algebras of type I, to appear in Pacific J. Math.
- 6. A complete set of unitary invariants for 3 × 3 complex matrices, Trans. Amer. Math. Soc., 104 (1962), 425–429.
- W. Specht, Zur Theorie der Matrizen II, Jahresber. Deutsch. Math. Verein., 50 (1940), 19-23.
- 8. M. H. Stone, Boundedness properties in function lattices, Can. J. Math., 1 (1949), 176-186.
- 9. T. Yen, Trace on finite AW\*-algebras, Duke Math. J., 22 (1955), 207-222.

Humble Oil & Refining Company