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Classification of Integral Modular
Categories of Frobenius–Perron Dimension
pq4 and p2q2
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Deepak Naidu, Sonia Natale, Julia Yael Plavnik, and Eric C. Rowell

Abstract. We classify integral modular categories of dimension pq4 and p2q2, where p and q are dis-
tinct primes. We show that such categories are always group-theoretical, except for categories of di-
mension 4q2. In these cases there are well-known examples of non-group-theoretical categories, com-
ing from centers of Tambara–Yamagami categories and quantum groups. We show that a non-group-
theoretical integral modular category of dimension 4q2 is either equivalent to one of these well-known
examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quan-
tum group.

1 Introduction

Braided group-theoretical categories are well understood; they are equivalent to fu-
sion subcategories of Rep(Dω(G)), where G is a finite group and ω is a 3-cocycle on
G [Na1,O]. Fusion subcategories of Rep(Dω(G)) are determined by triples (K,H,B),
where K, H are normal subgroups of G that centralize each other and B is a G-in-
variant ω-bicharacter on K × H [NNW, Theorem 5.11]. Triples (K,H,B) for which
HK = G and B satisfies a certain nondegeneracy condition determine the modular
subcategories [NNW, Proposition 6.7]. Moreover, braided group-theoretical cate-
gories enjoy property F: the braid group representations on endomorphism spaces
have finite image [ERW]. Our approach to the classification of integral modular
categories of a given dimension is to consider those that are group-theoretical as un-
derstood and then explicitly describe those that are not.

For distinct primes p, q, and r, any integral modular category of dimension pn,
pq, pqr, pq2, or pq3 is group-theoretical by [EGO, DGNO1, NR]. On the other
hand, non-group-theoretical integral modular categories of dimension 4q2 were con-
structed in [GNN] and [NR]. Furthermore, there are non-group-theoretical integral
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modular categories of dimension p2q4 if p is odd and p|(q + 1), obtained as the Drin-
feld centers of Jordan–Larson categories (see [JL, Theorem 1.1]).

If C is an integral, nondegenerate, braided fusion category, then the set of mod-
ular structures on C is in bijection with the set of isomorphism classes of invertible
self-dual objects of C. Thus, we view the problem of classifying integral modular
categories as being equivalent to the problem of classifying integral nondegenerate
braided fusion categories.

In this work, we classify integral modular categories of dimension pq4 and p2q2.
In particular, we prove the following theorem.

Theorem 1.1 Let C be an integral modular category.
(i) If FPdim(C) = pq4, then C is group-theoretical.
(ii) If FPdim(C) = p2q2 is odd, then C is group theoretical.
(iii) IfC is a non-group-theoretical category of dimension 4q2, then eitherC ∼= E(ζ,±),

as braided fusion categories with ζ an elliptic quadratic form on Zq × Zq, or C is
twist-equivalent to C(sl3, q, 6) or C(sl3, q, 6).

Here, E(ζ,±) are modular categories constructed in [GNN], C(sl3, q, 6) are the
modular categories constructed from the quantum group Uq(sl3) where q2 is a prim-
itive 6th root of unity and C(sl3, q, 6) are the fusion categories defined in Subsection
4.1. The notion of twist-equivalence is defined in Subsection 4.1. The 36-dimen-
sional categories C(sl3, q, 6) are new and will be investigated further in a future work.

We hasten to point out that a coarser classification of these categories has been ob-
tained; in [ENO2] it is shown that any fusion category of dimension paqb is solvable,
that is, such categories can be obtained from the category Vec of finite dimensional
vector spaces via a sequence of extensions and equivariantizations by groups of prime
order. However, the question of whether a given category admits a Zp-extension or
Zp-equivariantization is a somewhat subtle one (see [ENO3, G1]).

2 Some General Results

In this section we will recall some general results about modular categories. These
will be used in the sections that follow.

The Frobenius–Perron dimension FPdim(X) of a simple object X in a fusion
category C is defined to be the largest positive eigenvalue of the fusion matrix NX

with entries NZ
X,Y = dim Hom(Z,X ⊗ Y ) of X, that is, the matrix representing X

in the left regular representation of the Grothendieck semiring Gr(C) of C. The
Frobenius–Perron dimension FPdim(C) of the fusion category C is defined to be
the sum of the squares of the Frobenius–Perron dimensions of (isomorphism classes
of) simple objects. A fusion category C is called integral if FPdim(X) ∈ N for all
simple objects X. If C is an integral modular category, then FPdim(X)2 divides
FPdim(C) for all simple objects X ∈ C [EG, Lemma 1.2] (see also [ENO1, Propo-
sition 3.3]). Note that integral modular categories are pseudounitary [ENO1, Propo-
sition 8.24]; that is, the Frobenius–Perron dimension coincides with the categorical
dimension.
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A fusion category is said to be pointed if all its simple objects are invertible. A
fusion category whose Frobenius–Perron dimension is a prime number is necessarily
pointed [ENO1, Corollary 8.30].

For a fusion category C, the maximal pointed subcategory of C generated by in-
vertible objects will be denoted by Cpt. A complete set of representatives of non-
isomorphic simple objects in C will be denoted Irr(C). The full fusion subcategory
generated by all simple subobjects of X⊗X∗, where X runs through all simple objects
of C, is called the adjoint category of C, and is denoted by Cad. If the (finite) sequence
of categories C ⊃ Cad ⊃ (Cad)ad ⊃ · · · converges to the trivial category Vec, then C

is called nilpotent. Clearly, any pointed fusion category is nilpotent.
Two objects X and Y in a braided fusion category C (with braiding c) are said to

centralize each other if cY,X ◦ cX,Y = idX⊗Y . If D is a full (not necessarily fusion)
subcategory of C, then the centralizer of D in C is the full fusion subcategory

D′ :=
{

X ∈ C | cY,X ◦ cX,Y = idX⊗Y , for all Y ∈ D
}
.

If C′ = Vec (the fusion category generated by the unit object), then C is said to be
nondegenerate. If C′ = C, then C is said to be symmetric. If C is nondegenerate and
D is a full fusion subcategory of C, then (D′)′ = D, and by [M2]

FPdim(D) · FPdim(D′) = FPdim(C).

Recall that a modular category is a nondegenerate braided fusion category
equipped with a ribbon structure.

We record the following theorems for later use.

Theorem 2.1 ([GN, Corollary 6.8]) If C is a pseudounitary modular category, then
(Cpt)′ = Cad.

Theorem 2.2 ([DGNO1, Corollary 4.14]) A modular category C is group-theoretical
if and only if it is integral and there is a symmetric subcategory L such that (L′)ad ⊂ L.

A grading of a fusion category C by a finite group G is a decomposition

C =
⊕
g∈G

Cg

of C into a direct sum of full abelian subcategories such that the tensor product ⊗
maps Cg×Ch to Cgh for all g, h ∈ G. The Cg ’s are called components of the G-grading
of C. A G-grading is said to be faithful if Cg 6= 0 for all g ∈ G. For a faithful grading,
the dimensions of the components are all equal [ENO1, Proposition 8.20]. Every
fusion category C is faithfully graded by its universal grading group U (C) [GN], and
this grading is called the universal grading. The trivial component of this grading is
Ce = Cad, where e is the identity element of U (C). For a modular category C, the
universal grading group U (C) is isomorphic to the group of isomorphism classes of
invertible objects of C [GN, Theorem 6.2], in particular, FPdim(Cpt) = |U (C)|.

Finally, we recall some standard algebraic relations involving the S-matrix S̃, twists
θi , and fusion constants Nk

i, j of a pseudounitary modular category. The matrix S̃ is
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symmetric and projectively unitary, with entries given by the twist equation

S̃i, j = θ−1
i θ−1

j

∑
k

Nk
i, j∗θkFPdim(Xk).

The Gauss sums p± =
∑

k θ
±1
k FPdim(Xk)2 satisfy p+ p− = FPdim(C).

3 Dimension pq4

Theorem 3.1 Let p and q be distinct primes, and letC be an integral modular category
of dimension pq4. Then C is group-theoretical.

Proof Since FPdim(X)2 must divide FPdim(C) = pq4 for every simple object X ∈
C, the possible dimensions of simple objects are 1, q, and q2. Let a, b, and c denote
the number of isomorphism classes of simple objects of dimension 1, q, and q2, re-
spectively. We must have a + bq2 + cq4 = pq4, and so q2 must divide a = FPdim(Cpt).
Since the dimension of a fusion subcategory must divide FPdim(C), it follows that
there are six possible values for FPdim(Cpt): q2, q3, q4, pq2, pq3, and pq4.

Case (i) FPdim(Cpt) = q3. In this case, there are q3 components in the grading of
C by its universal grading group U (C), and each component has dimension pq. For
each g ∈ U (C), let ag , bg , and cg denote the number of isomorphism classes of simple
objects of dimension 1, q, and q2, respectively, contained in the component Cg . We
must have ag + bgq2 + cgq4 = pq, and so q must divide ag . Note that ag 6= 0 for all
g ∈ U (C), since otherwise we would have bgq+ cgq3 = p, a contradiction. Thus, each
component must contain at least q (non-isomorphic) invertible objects, and since
there are q3 components, it follows that there must be at least q4 (non-isomorphic)
invertible objects, a contradiction.

Cases (ii)–(v) FPdim(Cpt) ∈ {q4, pq2, pq3, pq4}. In each case, FPdim(Cad) is a
power of a prime, so Cad is nilpotent [GN]. Consequently, C is also nilpotent, and
since it is integral and modular, it follows that it is group-theoretical [DGNO1].

Case (vi) FPdim(Cpt) = q2. In this case, FPdim(Cad) = pq2. This fact together with
the possibilities for the dimensions of simple objects implies that (Cad)pt must be of
dimension q2, and so Cpt ⊆ Cad. Hence Cpt is symmetric, since Cad = (Cpt)′.

We claim that Cpt is a Tannakian subcategory. This is true if q is odd [DGNO2,
Corollary 2.50], so assume that q = 2 and suppose on the contrary that Cpt is not
Tannakian. Then Cpt contains a symmetric subcategory S equivalent to the category
of super vector spaces. Let g ∈ S be the unique nontrivial (fermionic) invertible
object, and let S′ ⊆ C denote the Müger centralizer of S. By [M1, Lemma 5.4], we
have g ⊗ X � X for any simple object X ∈ S′.

On the other hand, we have Cpt ⊆ S′ and FPdim(S′) = 8p. The possibilities for
the dimensions of simple objects of C imply that the number of simple objects of
dimension 2 in S′ is necessarily odd. Therefore, the action by tensor multiplication
of the group of invertible objects of C on the set of isomorphism classes of simple
objects of FP-dimension 2 of S′ must have a fixed point, which is a contradiction.
Hence Cpt is Tannakian, as claimed.
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Therefore Cpt
∼= Rep(G) as symmetric tensor categories, where G is a group of

order q2. Let Ĉ := CG denote the corresponding de-equivariantization of C. By the
main result of [K, M3], Ĉ is a G-crossed braided fusion category (of dimension pq2),
and the equivariantization of Ĉ with respect to the associated G-action is equivalent
to C as braided tensor categories (see [GNN, Theorem 2.12]).

Furthermore, since C is modular, the associated G-grading of Ĉ is faithful [GNN,
Remark 2.13]. Thus, the trivial component Ĉe ⊇ Ĉad of this grading is of dimension
p, and, in particular, it is pointed. Hence Ĉ is a nilpotent fusion category.

In view of [GN, Corollary 5.3], the square of the Frobenius–Perron dimension
of a simple object of Ĉ must divide FPdim(Ĉe) = p. Since Ĉ is also integral, we

see that Ĉ is itself pointed. It follows from [NNW, Theorem 7.2] that C, being an
equivariantization of a pointed fusion category, is group-theoretical.

Remark 3.2 In this remark, we show that two of the four cases addressed
in Cases (ii)–(iv) of the proof above cannot occur. If FPdim(Cpt) = q4, then
FPdim((Cpt)′) = p, so (Cpt)′ must be pointed. Therefore, (Cpt)′ is contained in Cpt,
and this implies that p divides q4, a contradiction. If FPdim(Cpt) = pq3, then each
component in the universal grading of C has FP-dimension q, and so it cannot ac-
commodate a non-invertible object, a contradiction.

4 Dimension p2q2

In this section, we will make repeated use of the following result.

Theorem 4.1 ([ENO2, Theorem 1.6 and Proposition 4.5(iv)]) If p and q are primes
and C 6= Vec is a fusion category of dimension paqb, then C contains a non-trivial
invertible object.

Theorem 4.2 Let p < q be primes, and let C be an integral modular category of
dimension p2q2. Then one of the following is true:
(i) C is group-theoretical;
(ii) p = 2, q = 3, and FPdim(Cpt) = 3;
(iii) p | q− 1 and FPdim(Cpt) = p.

Proof Since FPdim(X)2 must divide FPdim(C) = p2q2 for every simple object X ∈
C, the possible dimensions of the simple objects are 1, q, and p. Since Cpt is a fusion
subcategory of C, we know that FPdim(Cpt) | p2q2, and hence

FPdim(Cpt) ∈
{

1, p, q, p2, q2, pq, pq2, p2q, p2q2
}
.

Applying Theorem 4.1, we conclude that FPdim(Cpt) > 1. The proof now proceeds
by cases based on FPdim(Cpt). For each g ∈ U (C), let ag , bg , and cg denote the
number of isomorphism classes of simple objects of dimension 1, p, and q in the
component Cg , respectively. Let e denote the identity element of U (C).

Cases (i)–(v) FPdim(Cpt) ∈ {p2q2, pq2, p2q, p2, q2}. In each case, FPdim(Cad) is a
power of a prime, so Cad is nilpotent [GN]. Consequently, C is also nilpotent, and
since it is modular, it follows that it is group-theoretical [DGNO1, Corollary 6.2].
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Case (vi) FPdim(Cpt) = pq. In this case, FPdim(Cg) = pq for all g ∈ U (C). Since
p < q we immediately conclude that cg = 0 for all g ∈ U (C) and thus ag 6= 0 from
the equation pq = ag +bg p2. By Theorem 4.1, we know that Cad contains a non-trivial
invertible object. Since there are pq components, the number of invertible objects is
at least pq + 1, a contradiction.

Case (vii) FPdim(Cpt) = q. In this case, FPdim(Cg) = p2q for all g ∈ U (C). We can
apply Theorem 4.1 to Cad to deduce that Cpt ⊂ Cad. Examining the dimension of Cad

we have p2q = q + be p2 + ceq2. So q must divide be, and hence be = 0. Consequently,
ceq = (p − 1)(p + 1). Since p < q, we must have p = 2 and q = 3.

Case (viii) FPdim(Cpt) = p. As in case (vii) we immediately conclude that Cpt ⊂
Cad, and FPdim(Cg) = pq2 for all g ∈ U (C). Examining the dimension of Cad we
have pq2 = p + be p2 + ceq2. Therefore, ce = 0 and be = (q2 − 1)/p. Similar analysis
of the nontrivial components reveals that bg = 0 and cg = p. We will identify the
simple objects of Cpt with the elements of U (C) and denote them by gk, ordered such
that gk ⊗ g` = gk+` (exponents are computed modulo p). We will denote the objects
of dimension p by Yr and the objects of dimension q in the Cgk component by Xk

i .
We will show that p | q − 1. This is immediate in the case p = 2, so we will

assume that p ≥ 3. We first need to determine some of the fusion rules. Denote
by StabU (C)(Yr) the stabilizer of the object Yr under the tensor product action of
g j ∈ Cpt. Computing the dimension of

Yr ⊗ Y ∗r =
⊕

h∈StabU (C)(Yr)

h⊕

q2−1
2⊕

s=1

NYs
Yr ,Y∗

r
Ys

we see that p must divide | StabU (C)(Yr)| and hence StabU (C)(Yr) = U (C). An analo-
gous argument shows that StabU (C)(Xk

i ) is trivial for all i and k. In particular, the ac-
tion of U (C) on Cgk is fixed-point free, and so we may relabel such that g⊗Xk

i = Xk
i+1

(with indices computed modulo p). These results about the stabilizers allow us to

compute N
Xk

j

Yr ,Xk
i

as follows
p⊕

j=1
N

Xk
j

Yr ,Xk
i
Xk

j = Yr ⊗ Xk
i = (g` ⊗ Yr)⊗ Xk

i = Yr ⊗ Xk
i+` =

p⊕
j=1

N
Xk

j

Yr ,Xk
i+`

Xk
j .

Since this must hold for all ` we can conclude that

N
Xk

j

Yr ,Xk
i
= N

Xk
j

Yr ,Xk
h

for all r, h, i, j, and k. A dimension count gives N
Xk

j

Yr ,Xk
i
= 1.

Denote the S-matrix ofC by S̃ and the entries by S̃A,B (normalized so that S̃1,1 = 1).
Since FPdim(Yr) = p and FPdim(Xk

i ) = q are coprime, [ENO2, Lemma 7.1] implies
that either

S̃Yr ,Xk
i
= 0 or |S̃Yr ,Xk

i
| = pq.

Since the columns of S̃ have squared-length (pq)2, we must have S̃Yr ,Xk
i
= 0.

We compute S̃Yr ,Xk
i

another way using the fusion rules above and the twist equation

to conclude that 0 =
∑p

j=1 θXk
j
. The vanishing of this sum allows us to compute the
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Gauss sums as follows:

p+ =
∑

Z∈Irr(C)

θZFPdim(Z)2 = p

(
1 + p

q2−1
2∑

r=1

θYr

)
.

However, [Ng, Proposition 5.4] shows that C is anomaly free and in particular that
p+ = pq. From this it immediately follows that

q− 1

p
=

q2−1
p∑

r=1

θYr .

The right-hand side of this equation is an algebraic integer, and so we conclude that
p must divide q− 1.

Remark 4.3 In this remark, we show that two of the Cases (i)–(v) of the proof
above cannot occur. If FPdim(Cpt) = p2, then FPdim(Cad) = q2, so applying The-
orem 4.1 we see that there is a nontrivial invertible object in Cad. Therefore, ae ≥ 2
and ae | q2. On the other hand, the invertible objects in Cad will form a fusion sub-
category of Cpt, and so ae | p2, a contradiction. A similar argument shows that the
case FPdim(Cpt) = q2 cannot occur.

Next, we recall a general fact about modular categories. Let C be a modular cate-
gory and suppose that it contains a Tannakian subcategory E. Let G be a finite group
such that E ∼= Rep(G), as symmetric categories. The de-equivariantization CG is
a braided G-crossed fusion category of Frobenius–Perron dimension FPdim(C)/|G|
(see [K, M3]).

Since C is modular, the associated G-grading of CG is faithful, and the trivial com-
ponent C0

G is a modular category of Frobenius–Perron dimension FPdim(C)/|G|2.
Furthermore, as a consequence of [DMNO, Corollary 3.30] we have an equivalence
of braided fusion categories

C� (C0
G)rev ∼= Z(CG).

Notice that this implies that C is group-theoretical if and only if CG is group-theoret-
ical [Na2, Proposition 3.1].

Proposition 4.4 Let p < q be prime numbers. Let C be an integral modular category
of dimension p2q2, and let G ∼= U (C) be the group of invertible objects ofC. Suppose that

C is not group-theoretical. Then there exists a G-crossed braided fusion category Ĉ such

that the equivariantization of Ĉ with respect to the associated G-action is equivalent to

C as braided fusion categories. The corresponding G-grading on Ĉ is faithful; the trivial

component Ĉe is a modular category of Frobenius–Perron dimension FPdim(C)/|G|2,
and there is an equivalence of braided fusion categories

C� (Ĉe)
rev ∼= Z(Ĉ).

Moreover, Ĉ is not group-theoretical.
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Proof In view of the preceding comments, it will be enough to show that the cate-
gory E = Cpt is a Tannakian fusion subcategory.

By Theorem 4.2, we may assume that |G| = p, or FPdim(C) = 36 and |G| =
3. Let D ⊆ C be a nontrivial fusion subcategory. Since the order of G is a prime
number, it follows from Theorem 4.1 that Cpt ⊆ D, so Dpt = Cpt = E. In particular,
Cpt ⊆ Cad = C′pt and therefore Cpt is symmetric. If the order of G is odd, this implies
that E is Tannakian.

So we may assume that |G| = 2. Suppose on the contrary that E is not Tan-
nakian. Then E is equivalent, as a symmetric category, to the category sVec of finite-
dimensional super vector spaces. Therefore E′ is a slightly degenerate fusion category
of Frobenius–Perron dimension 2q2. Let g ∈ E be the unique nontrivial invertible
object. By [M1, Lemma 5.4], we have g ⊗ X � X, for any simple object X ∈ E′.

The possible Frobenius–Perron dimensions of simple objects of C in this case are
1, 2, and q. This leads to the equation FPdim(E′) = 2q2 = 2 + 4a + q2b, where a, b
are non-negative integers. If b 6= 0, then E′ contains a Tannakian subcategory B, by
[ENO2, Proposition 7.4]. Hence, in this case, E is Tannakian, since E ⊆ B.

Otherwise, if b = 0, every non-invertible simple object X of E′ is of Frobenius–
Perron dimension 2, and therefore the stabilizer StabG(X) of any such object under
the action of the group G by tensor multiplication is not trivial, as follows from the
relation

X ⊗ X∗ ∼=
⊕

g∈StabG(X)

g ⊕
⊕

Y∈Irr(C)\Irr(Cpt)

NY
X,X∗Y.

Then we see that the action of G on the set of isomorphism classes of simple objects of
Frobenius–Perron dimension 2 of E′ must be trivial, which is a contradiction. Hence
E is Tannakian, as claimed.

Remark 4.5 Keep the notation in Proposition 4.4. Suppose that C is not group-

theoretical and FPdim(Cpt) = p < q. Then FPdim(Ĉ) = pq2 and Ĉe is a modular
category of Frobenius–Perron dimension q2, and hence it is pointed. Since Ĉad ⊆ Ĉe,
Ĉ is a nilpotent integral fusion category. Then FPdim(X) = 1 or q, for all simple

object X of Ĉ [GN, Corollary 5.3]. Moreover, since Ĉ is not pointed, it is of type
(1, q2; q, p−1) (that is, having q2 non-isomorphic simple objects of dimension 1 and
p − 1 non-isomorphic simple objects of dimension q.)

Theorem 4.6 Let 2 < p < q be prime numbers, and let C be an integral modular
category of dimension p2q2. Then C is group-theoretical.

Proof By Theorem 4.2, we may assume that FPdim(Cpt) = p and p | q − 1. Keep
the notation in Proposition 4.4. The category Ĉ has Frobenius–Perron dimension
pq2. Observe that Ĉ must be group-theoretical. Otherwise, by [JL, Theorem 1.1] we
should have p | q + 1, leading to the contradiction p = 2. Therefore Proposition 4.4
implies that C is group-theoretical, as claimed.

Let A = Zq × Zq, with 2 6= q prime, let ζ be an elliptic quadratic form on A, and
let τ = ±1/q. Then the associated Tambara–Yamagami fusion categories TY(A, ζ, τ )
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are inequivalent and not group-theoretical. By [JL, Theorem 1.1], these are the only
non-group-theoretical fusion categories of dimension 2q2.

Examples of non-group-theoretical modular categories C of Frobenius–Perron di-
mension 4q2 such that FPdim(Cpt) = 2 were constructed in [GNN, Subsection 5.3];
these examples consist of two equivalence classes, denoted E(ζ,±), according to the
sign choice of τ = ±1/q. By construction, there is an embedding of braided fusion
categories E(ζ,±) ⊆ Z(TY(A, ζ, τ )).

Theorem 4.7 Let q 6= 2 be a prime number, and let C be an integral modular category
such that FPdim(C) = 4q2 and FPdim(Cpt) = 2. Then either C is group-theoretical or
C ∼= E(ζ,±) as braided fusion categories.

Proof Keep the notation in Proposition 4.4 and suppose that C is not group-theo-

retical. Then FPdim(Ĉ) = 2q2 and Ĉ is not group-theoretical. Hence, by [JL, Theo-
rem 1.1], Ĉ ∼= TY(A, ζ, τ ) as fusion categories, where ζ is an elliptic quadratic form
on A = Zq × Zq, and τ = ±1/q. In view of Proposition 4.4, we have an equivalence
of braided fusion categories

(4.8) C� (Ĉe)
rev ∼= Z(TY(A, ζ, τ )),

where Ĉe is a pointed modular category of Frobenius–Perron dimension q2.
The center of TY(A, ζ, τ ) is described in [GNN, Section 4]. The group of invert-

ible objects of Z(TY(A, ζ, τ )) is of order 2q2. In particular, Z(TY(A, ζ, τ )) contains a
unique pointed fusion subcategory B of dimension q2, which is nondegenerate. We
note that, since the Müger centralizer E(ζ,±)′ inside of Z(TY(A, ζ, τ )) is of dimen-
sion q2, whence pointed, this implies that E(ζ,±) = B′.

We must have B = (Ĉe)rev. Hence, by (4.8), C ∼= B′ = E(ζ,±), finishing the
proof.

Using Theorem 4.6 and Theorem 4.7, we can now strengthen Theorem 4.2.

Theorem 4.9 Let p < q be primes, and let C be an integral modular category of
dimension p2q2. Then one of the following is true:
(i) C is group-theoretical;
(ii) p = 2, q = 3, and FPdim(Cpt) = 3;
(iii) p = 2, FPdim(Cpt) = 2, and C ∼= E(ζ,±), as braided fusion categories, for some

elliptic quadratic form ζ on Zq × Zq.

Remark 4.10 In view of [JL] there are three equivalence classes of non-group-
theoretical integral fusion categories of Frobenius–Perron dimension 36. The ar-
gument in the proof of Theorem 4.9 implies that a non-group-theoretical integral
modular category that satisfies Theorem 4.9(ii) is equivalent to a fusion subcategory
of the center of one of these.

In Subsection 4.1, we investigate further the non-group-theoretical categories that
satisfy Theorem 4.9(ii).
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4.1 Modular Categories of Dimension 36

We begin by classifying the possible fusion rules corresponding to non-group-theo-
retical modular categories satisfying the conditions of Theorem 4.9(ii).

Proposition 4.11 Let C be a non-group-theoretical integral modular category of di-
mension 36 with Irr(Cpt) = {1, g, g2}.
(i) ThenC = C0⊕C1⊕C2 as a Z3-graded fusion category with respective isomorphism

classes of simple objects

{1, g, g2,Y} ∪ {X, gX, g2X} ∪ {X∗, gX∗, g2X∗},
where FPdim(g i) = 1, FPdim(g iX) = 2 and FPdim(Y ) = 3.

(ii) Up to relabeling g ↔ g−1, the fusion rules are determined by

g ⊗ Y ∼= Y, Y⊗2 ∼= 1⊕ g ⊕ g2 ⊕ 2Y(4.12)

g i ⊗ X ∼= g iX, Y ⊗ X ∼= X ⊕ gX ⊕ g2X

X ⊗ X∗ ∼= 1⊕ Y

and either
(a) X⊗2 ∼= X∗ ⊕ gX∗, or
(b) X⊗2 ∼= g2X∗ ⊕ gX∗.

Proof First note that C is faithfully Z3-graded, so that each graded component has
dimension 12, and simple objects can only have dimension 1, 2 or 3. Solving the
Diophantine equations provided by the dimension formulas (observing that C is not
pointed), we see that Cpt ⊂ C0 = Cad, which gives us the dimensions and objects
described in (i).

The fusion rules given in (4.12) are determined by the dimensions and the sym-
metry rules for the fusion matrices. The remaining fusion rules will be determined
from X⊗2. Clearly X⊗2 ∈ C2, so

X⊗2 ∼= a0X∗ ⊕ a1gX∗ ⊕ a2g2X∗,

where
∑

i ai = 2. We claim that no ai = 2. For suppose X⊗2 ∼= 2g iX∗ for some
0 ≤ i ≤ 2. Then (X∗)⊗2 ∼= 2g−iX, and so

(X ⊗ X∗)⊗2 ∼= 4(g i ⊗ g−i)⊗ X ⊗ X∗ ∼= 4(1⊕ Y ).

On the other hand, X ⊗ X∗ ∼= 1⊕ Y , so

(X ⊗ X∗)⊗2 ∼= (1⊕ Y )⊗2 ∼= 21⊕ g ⊕ g2 ⊕ 4Y,

a contradiction. Therefore X⊗2 is multiplicity free. This leaves three possibilities:
(a) a0 = 1 and a1 = 1, or (b) a0 = 1 and a2 = 1, or (c) a0 = 0 and a1 = a2 = 1. The
first two are equivalent under the labelling change g ↔ g2 proving (ii).

Remark 4.13 The non-group-theoretical integral modular categories C(sl3, q, 6)
have fusion rules as in Proposition 4.11(ii)(a). The category C(sl3, q, 6) is obtained
from the quantum group Uq(sl3) with q2 a primitive 6th root of unity. The data of
this category and a proof of non-group-theoreticity may be found in [NR, Exam-
ple 4.14].
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Next, we classify, up to equivalence of fusion categories, modular categories re-
alizing the fusion rules described in Proposition 4.11. To this end, we will need the
notion of twist-equivalence, defined next. Let G be a finite group, and let e denote its
identity element. Given a G-graded fusion category C := (C,⊗, α) and a 3-cocycle
η ∈ Z3(G,C∗), the natural isomorphism

αηXσ ,Xτ ,Xρ = η(σ, τ , ρ)αXσ ,Xτ ,Xρ , (Xσ ∈ Cσ,Xτ ∈ Cτ ,Xρ ∈ Cρ, σ, τ , ρ ∈ G),

defines a new fusion category Cη := (C,⊗, αη). The fusion categories C and Cη are
equivalent as G-graded fusion categories if and only if the cohomology class of η is
zero; see [ENO3, Theorem 8.9]. We shall say that two G-graded fusion categories
C and D are twist-equivalent if there is a η ∈ Z3(G,C∗) such that Cα is G-graded
equivalent to D (compare with [KW]).

If (C, c) is a G-graded strict braided fusion category, then each g ∈ (Ce)pt defines
a Ce-bimodule equivalence Lg : Cσ → Cσ,X 7→ g ⊗ X with natural isomorphism
cg,V ⊗ idX : Lg(V ⊗ X)→ V ⊗ Lg(X), for every σ ∈ G.

Let C = C(sl3, q, 6) and consider the normalized symmetric 2-cocycle χ : Z3 ×
Z3 → π defined by χ(1, 1) = χ(1, 2) = g2, χ(2, 2) = 1, where π = Irr(Cpt) =
U (C) = {1, g, g2}. We define a new tensor product⊗ : C� C→ C as

⊗|Ci�C j
= Lχ(i, j) ◦ ⊗.

Since H4(Z3,C∗) = 0, it follows by [ENO3, Theorem 8.8] that we can find isomor-
phisms

ωi, j,k : χ(i + j, k)⊗ χ(i, j) −→ χ(i, j + k)⊗ χ( j, k)

such that the natural isomorphisms

α̂ωXi ,X j ,Xk
= (idχ(i, j+k)⊗cχ( j,k),Xi ⊗ idXk ) ◦ (ωi, j,k ⊗ idXi⊗X j⊗Xk ),

define an associator with respect to⊗ and we get a new Z3-graded fusion category

C(sl3, q, 6) := (C,⊗, α̂ω).

Remark 4.14 The notation C(sl3, q, 6) is ambiguous, because we are not specifying
ω. However, C(sl3, q, 6) is unique up to twist-equivalence.

Theorem 4.15 Let A be a fusion category.
(i) If A has fusion rules given by Proposition 4.11(ii)(a), then A is twist-equivalent

to C(sl3, q, 6) for some choice of q.
(ii) If A is braided and has fusion rules given by Proposition 4.11(ii)(b), then A is

twist-equivalent to C(sl3, q, 6) for some choice of q.
(iii) Any fusion category twist-equivalent to C(sl3, q, 6) or C(sl3, q, 6) is non-group-

theoretical.

Proof (i) This follows from the classification results in [KW, Theorem A`].
(ii) Since C(sl3, q, 6) = C(sl3, q, 6) as abelian categories, their simple objects are

the same. However, since the tensor product is different, the duals of simple ob-
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jects can be different, so we shall use the following notation for the simple objects of
C(sl3, q, 6):

1, g, g2, Y, gX, g2X, X, gX, g2X,

where X = X∗ with respect to the original tensor product of C(sl3, q, 6).
Next, we investigate the fusion rules of C(sl3, q, 6). First note that X∗ ∈ C2 and

X⊗X = g2 ⊕ Y , so X∗ = gX and X⊗X∗ = 1 ⊕ Y . Since χ is normalized, the only
important fusion rule that changes is

X⊗X = g2 ⊗ (X ⊕ gX) = g2X ⊕ X = gX∗ ⊕ g2X∗.

Note that the fusion rules of C(sl3, q, 6) are the same as Proposition 4.11(ii)(b).
If A is a braided fusion category with fusion rules given by Proposition 4.11(ii)(b),

then, using the 2-cocycle χ−1, we can construct a fusion category D with the same
fusion rules of C(sl3, q, 6). By (i), there exists a q such that D is twist-equivalent to
C(sl3, q, 6), and, again using the 2-cocycle χ on C(sl3, q, 6), we get a fusion category
twist-equivalent to A.

(iii) Let G be a finite group, and let e denote its identity element. In [G2, Theorem
1.2], it was proved that a G-graded fusion category A is group-theoretical if and only
if there is a pointed Ae-module category M such that Aσ �Ae M

∼= M as Ae-module
categories for all σ ∈ G. If A is twist-equivalent to C(sl3, q, 6) or C(sl3, q, 6), then we
have Ae = C(sl3, q, 6)e as fusion categories and Aσ = C(sl3, q, 6)σ as Ae-bimodule
category. Since C(sl3, q, 6) is non-group-theoretical [NR, Example 4.14], A is also
non-group-theoretical.

S :=



1 1 1 3 2 2 2 2 2 2

1 1 1 3 2 q2 2 q−2 2 q2 2 q−2 2 q2 2 q−2

1 1 1 3 2 q−2 2 q2 2 q−2 2 q2 2 q−2 2 q2

3 3 3 −3 0 0 0 0 0 0

2 2 q2 2 q−2 0 2 q−1 2 q 2 q 2 q−1 −2 −2

2 2 q−2 2 q2 0 2 q 2 q−1 2 q−1 2 q −2 −2

2 2 q2 2 q−2 0 2 q 2 q−1 −2 −2 2 q−1 2 q

2 2 q−2 2 q2 0 2 q−1 2 q −2 −2 2 q 2 q−1

2 2 q2 2 q−2 0 −2 −2 2 q−1 2 q 2 q 2 q−1

2 2 q−2 2 q2 0 −2 −2 2 q 2 q−1 2 q−1 2 q


T := Diag(1, 1, 1,−1, q2, q2, 1, 1, q−2, q−2)

Figure 1: q = eπi/3.
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4.2 Conclusions

In this section, we have classified integral modular categories of dimension p2q2 up to
equivalence of braided fusion categories with the exception of non-group-theoretical
Z3-graded 36-dimensional modular categories, which are classified only up to equiv-
alence of fusion categories.

It can be shown that the category C(sl3, q, 6) is not of the form Rep(H) for a Hopf
algebra H using the same technique as in [GHR, Theorem 5.27]. More generally, a
non-group-theoretical fusion category C with fusion rules as in Proposition 4.11 can-
not be equivalent to a category of the form Rep H, H a Hopf algebra. If C ∼= Rep(H)
for some Hopf algebra H, then since C admits a faithful Z3-grading, we would have
a central exact sequence kZ3 → H → H, where dim H = 12 and Rep H ∼= C0. The
classification of semisimple Hopf algebras of dimension 12 implies that H is a group
algebra. Hence kZ3 → H → H is an abelian exact sequence, and therefore H is
group-theoretical, a contradiction.

The existence of a modular structure on the category C(sl3, q, 6) will be discussed
in a future work, but for the interested reader we provide the modular data for q =
eπi/3 in Figure 1.
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