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ON THE P-NORM OF THE TRUNCATED JV-DIMENSIONAL
HILBERT TRANSFORM

J.N. PANDEY AND O.P. SINGH

It is shown that a bounded linear operator T from Lp(Rn) to itself which commutes
both with translations and dilatations is a finite linear combination of Hilbert-type
transforms. Using this we show that the p-norm of the Hilbert transform is the
same as the p-norm of its truncation to any Lebesgue measurable subset of Rn

with non-zero measure.

1. PRELIMINARIES

For a function /(x) defined on the real line, the Hilbert transform (Hf)(x) is given

by the Cauchy principal value:

(1.1)

One of the fundamental results in the subject is that (Hf)(x) exists for almost every x
if / 6 ^ ( R ) , 1 < p < oo, and H: ^ ( R ) -» ip(R) is both continuous and linear, and

(1.2) \\Sf\\p<Cp\\f\\p forl<p<oo)

where Cp is a constant independent of / [15].

An n-dimensional Hilbert transform (Hf)(x) for / G £p(Rn), p > 1, may be

defined as

(1.3) (Hf)(x) = ±p[ / ( < ) dt

= l ™ 0 ^ /«i—,-|>.i>0 TT» (4._x.\
dt

e u n J t=l,2 n 11»=1 V*» x')

where e = y/e\ + e | + • • • + e* , t = {h,t2,...,tn) and dt = dt1dt2 • • • dtn. The

existence of the singular integral in (1.3) and its boundedness property
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were proved by Kokilashvili [5], In 1989 Singh and Pandey [13] extended the n-
dimensional Hilbert transform to the Schwartz distribution space Z7'(Rn) [12] and
proved that H is an automorphism on the distribution space D'l/P(Rn), p > 1 [7].
They also obtained the following inversion formula

(1.5) (H2f)(x) = (-l)nf{x) almost everywhere

for / G Lp(Rn). The inversion formula (1.5) is a generalisation of the corresponding
one-dimensional result proved by Riesz; see Titchmarsh [15].

Fefferman showed the iterative nature of the double Hilbert transform [3] in 1972.
In 1989 Singh and Pandey [13] proved the iterative nature of the n-dimensional Hilbert
transform over the spaces Xp(Rn) and D'LP(Rn), p > 1. In fact, it was shown that

1> ' V ' '*' ' " ' ̂  d t t .where (Hif){tu . . . . U-u *i, *<+i, • • •, *«) = -P I V

The operators Hi and Hj i, j = 1, 2, . . . , n commute with each other.

During the 1960's O'Neil and Weiss [8], Gohberg and Krupnik [4] tried to obtain

the best possible value C*(— ||J^||P) of Cj> in (1.2). They gave the following upper

and lower bounds for C* .

( tan(7r/2p), K p < 2
where V\P) = \

[ cot(7r/2p), 2^p<oo,

and 1/p + 1/q = 1. Later Pichorides [10] proved that C* = v[p) for 1 < p < oo.

Recently McLean and Elliott [6] found the best possible constant C*E(= \\HB\\-) ,

1 < p < oo, for the truncated Hilbert transform HE , defined by

(1.7) {Bsf)(x) = - . P [ j ^ - d t , x e E
m
 JE * ~ x

where E is a measurable subset of R. It is obvious that there exists a constant Cpt E <

oo such that

\\BBf\\,4CPlB\\f\\p,

for every / £ -£P(R) and moreover the best constant C* E ^ C*. McLean and Elliott

[6] proved that

(1.8) C;tB = C; = u{V) for 1 < p < oo,
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provided the Lebesgue measure of E is not zero.

In the present paper we will extend the result (1.8) to n dimensions. More precisely,

we show that for the n-dimensional Hilbert transform H defined in (1.3),

(1-9) C™E = \\HE\\p = \\H\\p = C;n = [i/(p)]»,

for every measurable subset E of Rn with non-zero Lebesgue measure. The n-

dimensional truncated Hilbert transform HE is defined by

(1.10) (,.«.,_ ip^jjjH^L-j*. meE.

In view of (1.6) and the fact that

ll*«ll, = C; = u(p), 1 < t < n,

it is easy to see that

thus proving the latter half of (1.9).

2. THE MAIN RESULTS

Let a = (ai, a.2, . . . , an) and m = (mi, m.2, ..., mn) 6 R™ with m; > 0 for each
i. We define the translation operator

TO: L"(Rn)

and the dilatation operators

Dm, Dm*

by ro/(x) = f(x - a),

Dm'f(x) = I J J m ; 1 f(mixi,m2x2, . . . , 77inzn). [14, p.50].
\»=i /

Then both TO and X)m are isometric isomorphisms since

and ||T-./| |P - Il/H,,, | |Um/| |p = H/H,, for every / G
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Let B(Lp(Rn)) denote the space of all bounded linear operators from /^ (R") into
itself. Then T G B(Lp(Rn)) is said to commute with translations if raT = Tra for all
a G R and similarly it commutes with dilatations if DmT = T Dm for all m G Rn with
m.i > 0 for 1 ^ t ^ n . The following lemma, the proof of which is trivial, characterises
an integral operator commuting with translations or dilatations.

LEMMA 2 . 1 . Let K in B{Lp{Rn)) be an integral operator given by

Kf(x) = PJn K(x, y)f(y)dy, x G R".

Then

(i) K commutes with translations if and only if K is a difference kernel, that
is,

and

(ii) K commutes with dilatations if and only if K is a Hardy kernel, that is,

K(mx, my) = JJ )

where by mx and my we mean (mixi , m2Xi, ..., mnxn) and
(miyi, m2y2, ••-, mnyn) respectively.

Note that the n-dimensional Hilbert transform H commutes with both translations
and dilatations, since

H — —H1H2 • •. Hn

and each Hi commutes both with translations and dilatations. Actually H is essentially
the only integral operator having this property. To prove this we need the following
two lemmas.

LEMMA 2 . 2 . Let T G B(Lp(Rn)), p > 1 commute with translations. Then there
exists a unique bounded complex-valued Borel measurable function cr(̂ ) satisfying

where a(£) G £«,( /?") .

PROOF: If T G B(L?(Rn)), then TaT (= Tra) G B(Lp(Rn)) for each a G Rn.
The Schwartz testing functions space D(R") is dense in Lp(Rn). Let <p G £>(Rn) and
gm be a sequence of C°° functions with bounded supports such that ||<7m|| = 1 and
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gm * if,i —> {p as m —• oo, in sup norm as well as in Z/^R") norm [7, pp.6-8]. Since <p

and gm are of compact supports, gm * tp are also C°° functions with compact supports
for all m. Therefore in view of the Hiesz representation theorem [11, p.131], there
exists a bounded complex regular Borel measure fi on Rn such that

[T((9m * VXV))](O) = I ( I 9m(x)V(y - x)dx) rfM(y)

= / dxgm(x) I dfi(y)<p(y - x) (by Fubini's Theorem)

= f gm(-x)(TV)(x)dx.
JRn

Hence {gm * T() ) (0) : D(Rn) -» C

is a bounded linear functional. The Riesz representation theorem asserts the existence
of a regular Borel measure fim (depending on gm ) bounded on Rn such that

(gm * 7V)(0) = / p(-*)<fMm(*), f G £ ( R n ) , [11, P-

Hence

(2-2) (gm * T<p)(y) = f <p(y - x)dlim

JRn

for r-yT(gm * <p){0) = (gm * T.vT<p){0)

* TT-V

Since | ^ m | (Rn) < | |T||, we can select a sequence gm in such a way that

(2-3) Urn (*»

in V(Rn) norm as well as in sup norm. Hence from (2.2), and by selecting an appro-
priate subsequence {m,} of {m} and letting m,- —• oo, we have lim flm. = <rU), a

mj—•oo '

bounded complex-valued measurable function

(2.4)

[1, pp.132, 133]. This completes the proof of the lemma. D

COROLLARY 2 . 1 . For T € B(Lp(Rft)) commuting with translations, there ex-

ists <r G £°°(Rn) such that

(2-5) 27(0 = ^ (0 / (0 . *eR" , /G I ' (R" ) ,
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where ~ denotes the operator of Fourier transform.

PROOF: Using the definition of the Fourier transform of / in Lp(Rn), where / is

treated as a regular tempered distribution in S'(Rn), [1, pp.131-132; 7], it follows that

f(() = . lim / /(*)«-'•««**,

where the above limit is interpreted in the sense of S'(Rn) and x •£ is the inner product
of x and £ in Rn. Since D(Rn) is dense in Lp(Rn) the result (2.5) follows from Lemma
2.2, Bergh and Lofstrom [1, pp.132-133] and Stein [14, p.28]. D

THEOREM 2 . 1 . Let 1 < p < co and T eB(Lp(Rn)). Suppose T commutes both

with translations and with dilatations. Then there exist constants a, a,-, a^-, . . . , b such

that
n n

(2.6) T = aI+^2cnHi + ^ aijHiHj + ... + bH,

where / is the identity operator on Lp(Rn).

PROOF: Let T e B(Lp(Rn)), 1 < p < oo, commuting both with translations and
dilatations. Then from (2.5), we have

for some a € X°°(Rn). Since

Dmf(() = ( I J rm 1 /(m^i, ..., mn(n)

a n d T commutes with di latat ions, we have <r(£) = <r(mi£i, m2(2, •••, win£n), for ( =

( 6 . • • • , 6 0 € R n and m i , . . . , m n > 0 .

Hence

f +1, if ^ > 0,
where sgnfi = s

\ - l , if ^ < 0.

When n = 2, it is easy to see that

<K6,6) = ^ [k(i, i) + «-(i, - i) + ^(-1, i) + *(-i, -i)]

+ [<r(l, 1) + *(1, - 1 ) - «r( - l , 1) - < T ( - 1 , -1)] s g n 6

+ K l , 1) - a ( l , - 1 ) + <r(-l , 1) - <r(-l, -1)] s g n 6

+[<r(l, 1) - «r(l, - 1 ) - «r(- l , 1) + cr ( - l , -1)] s g n ^ sgnfc] .
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Generalising this we obtain the following in the n-dimensional case

where ij = +1 or - 1 for j = 1, 2, . . . , n. Since lff(O = ft sgn£,/(£) and Hj~f(£) =

sgn^/(^) , we have the desired result (2.6) see [9]. D

REMARK. The n Riesz transforms Ri, R2, ..., Rn are defined as

(Rif)(x) = lim cn J ^ ^ / ( x - y)dy, j = l,...,n

' f o r / e Z ' P ( R n ) ' ! < P < °° . (14> P " ] -

It is easy to see that in general they do not commute with dilatations Dm for
m = (mi, . . . , m n ) € Rn, mi , . . . , mn > 0. Hence none of the Rj 's can be written in
the form (2.6), despite the fact that in the particular case when m = (mi , m i , . . . , mi)
with mi > 0, the n-Riesz transforms commute with dilatations. But only when n = 1
does the Riesz transform R commute both with translations and with dilatations, so
that it can be written in the form (2.6).

For a measurable set £ c R " , define

-I /(x), if x € E,

0, otherwise.

Since any / G L*(Rn) can be written as
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the space /^(R™) is the direct sum

= LP{E) 0 XI>(Rn - E).

Thus the space £*(.£) can be treated as a closed subspace of Lp(Rn) and for any
bounded linear operator T on 2^(Rn), we define the truncated operator

TE = XETXE-

For £ C R " and m, a 6 Rn,

a + E = {a + x : x € E],

mE = {(mixi, . . . , mnxn) : x G E}

and mE = {(mxi, . . . , mxn) : x € E} whenever m 6 R.

Then we have the following theorem.

THEOREM 2 . 2 . Let E be any measurable subset of Rn.

(i) If T commutes with translations, then

(ii) If T commutes with dilatations, then

\\TmB\\p = \\Ts\\p , forallm€Rn with m1,...,mn>0.

The proof of the above theorem is similar to the one given by McLean and Elliott
[6, Theorem 2.2] for the one-dimensional case.

Let fi be the Lebesgue measure on Rn. Denote by Jg{x) the open box centred at
x, that is,

i ~ 6i> Xi + *•'). * = (*i» • • • • *n) € Rn,

6 - (*i, . . . , 6n) G Rn with each Si > 0.

The density of E at x is denned by

(2.T)
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provided the limit exists. Clearly 0 < dB{x) ^ 1. When x $ E (the closure of E),

then dB(x) — 0 whereas if x G E° (the interior of E) then (1E(X) = 1. The Lebesgue
Density Theorem [2, p.184] asserts that

(2.8) dB[x) = 1 for almost every x e E.

LEMMA 2 . 2 . If J is a. bounded box centred at 0 and m > 0, then

lim /x(J D mE) = dB(0)fi(J).

PROOF: Let E be a measurable subset of Rn. Then for m > 0, we have

...,mxn):x = (xu . . . , * „ ) G E} =

and m(E\ ("I £2) = (mEi) f) ( m ^ ) , for E\, E2 measurable subsets of R". Suppose
J = (-M, M)x •x(-M,M),(n factors) and let m= M/6, 6 > 0; then mJs(0) = J
and hence

dE{0) — hm , T . „— = hm
« o + /i(J«(0)) "»-oo

proving the lemma. U

The following Lemma 2.3 and Theorem 2.3 have proofs similar to that of Lemma

3.2 and Theorem 3.3 of McLean and Elliott [6], so we state them without proof.

LEMMA 2 . 3 . For 1 ^ p < 00, the following are equivalent:

(i) dB(0) = l,

(ii) Jim^ Wx^sfW, = H/llp for all fe Z"(Rn); m > 0,

(iii) i m T ||(1 - XmB)/|L = 0 for all f G £p(Rn), m > 0.

THEOREM 2 . 3 . Suppose dE{0) = 1. 1/ T G fi(£p(R")) commutes with diiata-
tions, tiien

llZfellp = 11211, •
Since the n-dimensional Hilbert transform H commutes both with translations

and with dilatations, Theorems 2.1, 2.2 and 2.3 are true for H.

So, let £ b e a subset of Rn such that n(E) ± 0. Then there exists an x G E such

that dE{x) = 1, by (2.8). Hence d-x+E(0) = 1. Therefore,

Thus we have proved the following theorem.

THEOREM 2 . 4 . If n(E) ^ 0, then \\HB\\p = \\H\\p.
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