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A SIMPLE C*-ALGEBRA GENERATED BY 
TWO FINITE-ORDER UNITARIES 

MAN-DUEN CHOI 

§ 1. I n t r o d u c t i o n . We present an example which illustrates several peculiar 
phenomena tha t may occur in the theory of C*-algebras. In particular, we 
show tha t a C*-subalgebra of a nuclear (amenable) C*-algebra need not be 
nuclear (amenable). 

The central object of this paper is a pair of abst ract uni tary matrices, 

0 0 l" 
1 0 0 
0 1 0. 

acting on a common Hilbert space. For an explicit construction, we may 
decompose an infinite-dimensional Hilbert space H into H = i f o 0 Hi, 
Hi = Ha(§) Hp with dim H0 = dim Hi = dim Ha = dim H$, letting u, 
v £ B(H) be any two uni tary operators such tha t 

and u2 = 1, vs = 1. Whereas many choices of u, v are possible, it might be 
surprising to see tha t C*(u, v), the C*-algebra generated by u and v, is alge­
braically unique; namely, if (ui,Vi) is another pair of such unitaries, then 
C*(u, v) is canonically *-isomorphic with C*(iii, Vi) (Theorem 2.6). In fact, we 
deduce further tha t C*(u,v) is a simple C*-algebra with a unique (faithful) 
trace (Theorem 2.8). 

In spite of its very elegant s tructure, C*(u, v) does possess several ' ' pa tho­
logical" properties. Foremost, we show directly tha t C*(u, v) is non-amenable 
in the sense of Johnson [16]. This appears to be the first explicit example in 
l i terature tha t a C*-algebra may have a non-vanishing cohomological coeffi­
cient with respect to a dual Banach bimodule. In answering a question of 
Thayer [22], we show tha t C*(u,v), as a tracial C*-algebra, is not quasi-
diagonal. Another peculiar fact lies in the non-nuclearity of C*(u, v) ; actually, 
we prove tha t C*(u, v) fails to enjoy a completely positive metric approxima­
tion property. The last result, having an interesting counterpar t in Banach 
space theory, leads to a highly plausible conjecture: C*(u, v) might not have 
a Schauder basis. 
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Recently, Cuntz has given a systematic investigation of Û 2, the simple 
C*-algebra generated by 2 isometries s, /sat isfying ss* + //* = 1. I t has been 
shown tha t û2 is nuclear [14] and even amenable [19]. By a straightforward 
verification, we see t ha t C*(u, v) is indeed a subalgebra of Û%. This enables us 
to assert tha t a C*-subalgebra of a nuclear (amenable) C*-algebra need not be 
nuclear (amenable) . 

Notably , the proof of Theorem 2.8 is a var ian t of Powers' t r ea tmen t [18] on 
C r e g*(F2) , the left regular representation of the free group on two generators. 
While some results of this paper are applicable to C r e g*(F2) as well, we remark, 
however, t ha t C*{a, v) is feasible for a space-free description and possesses a 
much more t ractable s t ructure . Typically, u, v being finite-order unitaries leads 
to immediate consequences: C*(u,v) is singly generated and contains non-
trivial projections. I t appears unlikely (in fact, it remains open) t ha t C reg*(F2) 
could have similar properties. 

Acknowledgement. The author would like to express his thanks to Kdward 
G. Effros for many stimulating discussions on related topics. 

§ 2. The basic structure. We begin with simple observations on words in 

u and v subject to the equality u2 = vz = 1. By a reduced word w, we mean a 
formal product X\X2 . . . xh with xt Ç {u,v,v~~1}, satisfying the condition: 
whenever j < / we have 

Xj = U => Xj+i = V±l 

Xj — V±l =̂ > Xj+\ = U. 

The subscript / is called the length of w. Obviously, each formal product , sub­
ject to u2 = v* = 1, can be simplified to a unique reduced wrord. 

LEMMA 2.1. Let w be a reduced word in u,v (u2 = v3 = 1) of length / > 0, and 
zn = (vu)nv~l. Then the reduced form for zn~

lwzn begins with v±l and ends with 
v±l whenever 2n ^ /. 

Proof. We note t ha t the last en t ry v~l in z„ continues to be the last en t ry in 
the reduced form for wzn, because length (w) < length (zn). Suppose the reduced 
form for zn~

lwzn were ending with u. Then the last en t ry v~l in wzn would be 
cancelled out by the ent ry v in the left multiplication of zn~

l = v(uv~l)n; i.e., 
zn~

Awzn = 1, w = 1, which were impossible from the assumpt ion of length (w) 
> 0. Therefore, the reduced form for zn~

lwzn ends with v±l, and similarly 
begins with v±l. T h u s the lemma is proved. 

We will also need some manipulat ions on 2 X 2 matr ix-operators . Wi th 
respect to a fixed orthogonal decomposition of a Hilber t space H = H0 © Hi, 
we can write each operator a G B(H) in the form 

a n #12 

L&21 CL22J 
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In particular, e = 
1 0 

0 0 
is the projection onto Ho, and 

a = if and only if eae = 0, 

a = 
# # 
.# 0. 

if and only if (1 — e)a{\ — e) — 0, 

where #'s s tand for entries we do not have to evaluate. 

LEMMA 2.2. Let U\, . . . un be unitaries such that each utu* is of the form 

# 
# o 

whenever i ^ j . Suppose b is an operator of the form 

(l/n)Y,t-iHHt*bui\\ Û 2 | |& | | /V^. 

Proof. We first assume tha t b = 

o # 
# # 

; then 

0 0 

0 0 

.# #. 
Then it is clear tha t whenever 

, we have ||/> + c\\2 ^ | |6||2 + ||c||2. From the fact 

(UjU?)b(UiU*) 

we derive tha t 

"# #1 
L# oJ L# #J L# oJ = "# #" 

-0 0_ (i^j), 

II ^ 1 = 1 " « ,*/)«,;!!2 = | | « I (X«- I "«**«*)MI*I I 8 = \\b+ E *-*"«!« «**«*«!* II2 

^ IIH!2+ llZf-2B«i««*fr"*«i*ll2 = 11*11* + II Z ^ W M I 2 

and continuing this process, 

[ | £ i = 1 " 7 ^ M . - [ [ 2 ^ « ! H I 2 . 

Now giver 
0 0" 

L /; = "o f 
J #. 

^ 2 = . Then 
J o_ 

we write fri + ^2* where b\ = 
0 0 

# # 

| |X<=lW^<ll ^ | |£<=1"tt,*M<|| + | | X * = l W ^ | | 

^ V^ | | 6 i | | + V ^ H M g 2 V ^ p | | . 

Therefore, the desired inequality follows. 

PROPOSITION 2.3. Let e be a projection, and u, v be two unitary operators 
satisfying u2 = vs = 1 awd (1 — e)w(l — e) = 0, eve = 0. r/zew 

(i) C*(u, v) has a unique tracial state r. 
(ii) For each a £ C*(u,v) and e > 0, there exist an integer n and unitary 

operators u\, . . . un £ C*(u, v) such that 

\r{a)\ — (l/n)Y<u*<i>Ui\\ è e. 
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Proof. (0) Lett ing e = 
1 0 
0 0 

Î I - I = v* = "0 f 
J #. 

, M»*1 = 
r# # 
Lo # 

, we have w = 

, and for ôj = ± 1 , 

# # 
# o 

, y = 
o # 
# # 

. Hence 

( a » ' 1 ) ( « * * ) . . . (««,«") = [ J J 
( M » 4 1 ) ( « » ' * ) . . . (uv") > = I ! f L# 0 

v (uv ){uv ) . . . ( ^ n ) = y " 

T h a t is, a reduced word beginning and ending with u is of the form 

while a reduced word beginning and ending with v±l is of the form 
0 #' 

# o 

(1) On the algebra of all finite linear combinations of reduced words in 
u,v (it2 = vz = 1), we define a linear functional r such that r(a) = a whenever 
a = al + X / * ^ (wi a r e reduced words of length > 0) . A routine computa­

tion leads to r(ab) = r(ba). We claim tha t r is contract ive in operator norm. 

T h u s r is well defined on the pre-C*-algebra generated by u, v, and the exten­

sion of r by cont inui ty is a trace on C*(u, v). (Note t ha t the posit ivity of r 

follows from ||r| | = 1 = r ( l ) . ) 

To prove the claim, we note tha t if a = a l + ^i=ikaiWu then from Lemma 

2.1, there exists a uni tary operator z ( = zn for a sufficiently large n) such tha t 

the reduced form for z*wtz begins with v±l and ends with v±l for each i. There­

fore z*az = al + Y;aiz*wiz admi ts a 2 X 2 matr ix-operator expression 

"al 
_ 0 

0 " 
a l_ + "o #" 

L# #J 
= 

"al 

L # 
and \T(O,)\ = |a| ^ ||z*az|| = [|«|j as claimed. 

(2) T o prove (ii), it suffices to assume tha t a is a finite linear combination of 
words in u, v. Replacing a by its uni tary equivalence, we may further assume 

"o # 
from the preceding paragraph t ha t a = a l + b, where r(a) — a, b = 
Lett ing Uf = uv~l(uv)\ we get t ha t 

4 _ i , .i-j )uv~1{uv)l~3~luv~lu (if i > j) 
UtUi = UV (UV) VU — \ , _ i X 7 - V - 1 , . f • ^ . \ 

\UVU(v It) ' VU (ill < J) 

L# #. 

has a reduced form beginning and ending with w when i ^ j \ hence UjU* 
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(i ^ j). Therefore, by Lemma 2.2, we derive that 

||r(a)l - (l/n)Y,u*aUi\\ = \\{l/n)Y,u*bUi\\ ^ 2||&||/\/w 

= 2||A - T(a)l||/Vw ^ 4||a||/\/w" 

which is smaller than any prescribed e when n is sufficiently large. 

(3) I t remains to prove tha t r is the unique trace. Suppose C*(u, v) has 
another trace a, then from (ii), we have 

\T(CI) - a(a)\ = |cr(r(a)l - (l/n)^*aUi)\ 

^ \\r(a)l - (l/n)Zui*aut\\ g e. 

Since € is arbi t rary, we conclude tha t r = a as desired. Thus the theorem is 
proved. 

We are going to deal with a pair of concrete uni tary operators. Let H be an 
infinite-dimensional Hilbert space with orthogonal decompositions H = 
Ho © Hi, Hi = Ha ® Hp, where dim H0 = dim Hi = dim Ha = dim Hp. Wi th 

respect to H = H0 ® Hi, we define w G $ ( # ) by the expression u = 

(herein, H0 and Hi are identified via an arbi t rary onto isometry). Similarly, 
with respect to H = H0 © Ha © Hp, we write 

e B{H) 

by identifying H0 = Ha = Hp. In other words, (w, z;) is any pair of uni tary 
operators in B (H) such tha t u2 = v* = 1 and 

r° 0 l 
i 0 0 

Lo l 0 

Ho —> Hi 

Hi—^Ho' { Ho —> Ha 

Ha-^Hp. 
Hp —> Ho 

To get an equational description, we let e £ B(H) be the projection onto Ho] 
then u, v £ B(H) are completely characterized by the equations 

(2.1) u = u~l = u*, e + u*eu = 1, 

(2.2) v2 = z;-1 = *;*, ^ z;etr 1. 

LEMMA 2.4. Let e be a projection of the form 

0 s2* 
(2.2) if and only if v is the form 

SiSi* + S2S2* = 1. 
Sl ^2^1 

1 0 
0 0 

. Then an operator v satisfies 

where Si, s2 are isometries satisfying 

Proof. The "if" par t follows from a straightforward computat ion. Con­

versely, suppose v satisfies (2.2) and v = 
X S2 

si y 
with x, y, si, s2 to be deter-
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mined. Then the equation 

= e + v*ev + vev* = 1 0 
0 1. 

1 + X*X + XX* # 

# SiSi* + 5 2 5 2 * 

leads to 

1 = SiSi* + 5252* (a ) 

"0 52*~ 
and x = 0, i.e., z; = 

si y 
. From ^ being an order-3 uni tary, we derive t ha t 

and 

1 0 
0 1 

1 0 
0 1 

0 5i* 

= v*v = 

w* 

51*51 # 

. # #. 

*2*52 # 

• yS2 #. 

, i.e., 5i is an isometry. 

, i.e., 52 is an isometry, 0 = ys2 (b), 

= ZT = V 
lysi -52 y 

Combining (a) (b) (c), we get 

y = yisxsi* + s2s2*) = ystfi* = s2si*, 

, i.e., 52 = ysi (c). 

i .e., v = 
5i 525i 

, as desired. 

We denote by û2, the C*-algebra generated by two isometries si, 52 satisfying 
5i5i* + 5252* = 1, as analyzed in detail by Cuntz . An interesting feature of 0 2 

lies in the fact t ha t €\ is independent of the choice of 5i, 52 (namely, if t\, /2 

are isometries satisfying t\t* + t2t2* = 1, then C*(5i, 52) is canonically 
*-isomorphic with C*(/i, /2)) ([14, Theorem 1.12]). The following lemma is a 
simple consequence. 

LEMMA 2.5. M2{û2) is *-isomorphic with &\ 

Proof. Let t ing Ô\ — C*(su s2) where 5i, 52 are isometries satisfying 
1 = 5i5i* + s2s2*, we note tha t 

5 i * 5 2 = 5 i * ( 5 i 5 i * + S2S2*)S2 = 5 i * 5 2 + 5 i*5 i * ç 0 = 9,^* ^ 5 i 5 2 , 

i.e., 5i*52 = 0 and, by taking adjoint, 52*5i = 0. Now we write 

then 

h = 
5] 

0 
52 

0_ , t2 = 
0 

- 5 i 

0 
52 J 

5i*5i 5 l * 5 2 "1 0 
-S2*Si 5 2 * 5 2 . _0 1 

, € Ms(ûi); 
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and 

hh* + hh* = 
sisi* + s2s2* 0 

0 S1S1* + S2S2*. 

1 0 

0 1 

Hence C*(h, h) is *-isomorphic with C*(si, s2) from the fact mentioned before 
this lemma. On the other hand, a direct computat ion, through 

Hi 
1 °i 
0 OJ ' 

0 0 
0 1 

* 1 * 2 * = 

0 1 
LO OJ ' 

leads to an easy conclusion tha t C*{t\,h) = ¥ 2 ( ^ 2 ) . Therefore, ¥ 2 ( ^ 2 ) is 
*-isomorphic with €2 as desired. 

T H E O R E M 2.6. Suppose e is a projection and u, v are operators satisfying 
(2.1)-(2.2) . Then C*(e, u,v) is *-isomorphic with ©2- Consequently, C*(e, u,v)is 
algebraically unique; i.e., if e\, e2 are projections and (eu uu vt), i = 1, 2, are 
triples satisfying (2 .1)-(2.2) , then C*(ei, U\, Vi) is canonically*-isomorphicwith 
C*(e2, U2, v2). 

1 01 ro i i . . T 
n ' u = ' then ^y Lemma 2.4, 

Proof. We write e 

0 S2* 

Si S2Si* 

where Si, s2 are isometries satisfying s\Si* + S2S2* = 1. Hence it follows easily 
tha t 

C*(e, u, v) = M 2 ( C * ( A ' I , S2)) ^ M2(02) ^ ©2-

Since all *-isomorphisms are canonically defined, C*(e, u, v) is thus algebraic­
ally unique. 

COROLLARY 2.7 Suppose e is a projection and u, v are operators satisfying 
(2.1)-(2.2) . Then C*(n, v) is *-isomorphic with the left regular representation of 
a discrete group. 

Proof. We denote by G, the quotient group of F> with a presentation 
{u, v. u1 — v7, = 1}. Then there exists S, a subset of G, satisfying the condition 

(2.3) S r\ uS = 0,Sr\vS = 0, and G = S U uS = S U vS U v^S. 

T o construct such S, we may define the membership of S by induction on the 
length of reduced words as follows: 

(i) The empty word 1 (? S. 
(ii) Whenever z is a reduced word of length n ( ^ 0 ) , and w = xz 

(x Ç {u, v, v~1)) is a reduced word of length n + l,we have tha t 

(w G S if x ^ v~l and z d_ S, 
\w (f S ii x = v~l or z G S. 
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Now on the Hilbert space l2(G), we let E G B(l2(G)) be the projection onto 
12{S), and let L(u), L(v) G B(l2(G)) be the left t ranslat ions induced by n,v 

respectively. It is straightforward to check tha t L(u) and L(v) are unitaries 
satisfying L(u)2 = L(vY = 1. From the condition (2.3), we get 

E + L(u)*EL(u) = 1, E + L(v)*EL(v) + L(v)EL(v)* = 1. 

Therefore, by Theorem 2.6, we conclude tha t C*(tf, ?/, ZJ) is canonically "^-iso­
morphic with C*(£, L(&)> L(v)). In part icular , C*(z*,z;) is *-isomorphic with 
C*(L(u), L(v)) = Creg*(G) as desired. 

The proof of the following theorem is an immitat ion of Powers ' work on 

the simplicity of Creg*(JF2) ([18], see also [1, Theorem VD]). 

T H E O R E M 2.8. Suppose e is a projection and u, v are operators satisfying 

(2.1)-(2.2). Then C*(u,v) is a simple C*-algebra possessing a unique tracial 

state. 

Proof. Clearly, u and v satisfy the hypothesis of Proposition 2.3. Hence 

C*(u, v) has a unique tracial s ta te r. We claim tha t r is faithful. Indeed, r is 

associated with a representation 7rr of C*(u, v) on a Hilbert space HT and a 

cyclic vector £T, satisfying r(a) = (7rT(a)£T, £T) for all a G C*(u,v). I t is 

straightforward to check t ha t HT is identical with l2(G), where G is the group 

with a presentation {u, v. u2 = v3 = 1}, under the correspondence 

2>«iW< G /2(G) ^> E i n « ^ r ( W i ) ? r 6 ^ r («>, G G). 

Consequently, TT(C*(U, V)) is jus t Creg*(G). From Corollary 2.7, we deduce 
t ha t C*(u, v) is canonically *-isomorphic with TT(C*(U, V)); i.e., irT is faithful, 
thus r is faithful as claimed. 

Alternatively, we observe directly tha t Creg*(G)} as of the proof of Corollary 
2.7, has a faithful trace, defined by « H (#£,£) where £ G l2(G) satisfying 
£(1) = l a n d É ( g ) = Oîorg^ l . 

Now suppose / is a non-zero 2-sided ideal of C*(u,v); then J contains a 
positive element <7 ^ 0, whence r ( a ) = a j* 0 from the faithfulness of r. By 
Proposition 2.3 (ii), there exist unitaries ii\, . . . w„ G C*(w, fl) such tha t 
| |al — (l/n)J2ui*aui\\ = « /2 . Hence J^u^aiii is invertible, and the ideal 
generated by a is C*(u,v). Therefore / = C*(u,v) and we conclude t ha t 
C*(u, v) is simple. 

§ 3. S o m e pecu l iar propert ies . Throughou t this section, we let e be a pro­
jection, and u, v be operators satisfying the conditions (2.1)-(2.2) ; i.e., u, v are 
uni tary operators satisfying u2 = vs — 1 and 

(f) e + u*eu = 1, e + v*ev + z;^* = 1. 

From §2, C*(u, v) is a tracial C*-algebra t ha t can be imbedded into 6\ as a 
subalgebra. Whereupon, we will show further t h a t C*(u,v) is an explicit 
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example for several types of pathologies in C*-algebraic s tructure theory. 

Notably, a condition similar to ( | ) has been employed in recent l i terature 

([8, p. 173], [12, Lemma 4.2], and [2]) for exploring some striking but different 

features of C reg*(F2). While partial results of this section are also applicable to 

Creg*(F2), we will work on C*(w, v) exclusively since C*(w, v) possesses a much 
more flexible and tractable structure. 

In regard to some algebraic topological aspects of Banach algebras, Johnson 
[16] has introduced the notion of amenabili ty. Namely, a unital Banach 
algebra A is amenable if and only if for each Banach A -bimodule X, each 
bounded derivation D: A —» X* is inner (i.e., given any bounded linear map 
D: A -+ X* satisfying 

D(ab)(x) = D(a)(bx) + D(b) (xa) for all a, b G A,x G X, 

there exists 6 G X* such tha t D(a)(x) = 6 (ax — xa) for all a G A, x G X). 
The existence of non-amenable C*-algebras is revealed in a result of Bunce 

[5] ; the C*-algebra generated by the left regular representation of a discrete 
group is amenable if and only if the group is amenable. Due to the recent work 
of Connes [13, Corollary 2] (see also [6, Corollary 5] for a different proof), we 
know further tha t every non-nuclear C*-algebra is non-amenable. However, all 
known proofs, involving deep structure theory, probably do not admit easy 
interpretat ions on concrete examples. The following explicit demonstrat ion on 
C*(u, v) may provide a clearer illustration of the non-amenability. 

Example A: A separable non-amenable C*-algebra. 

Demonstration. Let X be the quotient Banach space B(H)/C*(u, v); then 
X* can be identified with 

y = {6£ B(H)*:0\c*(UtV) = 0} 

and 5^ is thus a dual C*(u, z;)-bimodule under the action 

(a.6)(t) = 6(ta), (d.a)(t) = 6(at) 

for a G C*(u, v), t G B(H), 6 G 5^. We construct a linear map D: C*(u, v) 
—>y by D(a)(t) = p(at — ta), where p is any s tate on B(H) satisfying 
p\c*(u,v) = trace r. I t is straightforward to check tha t D(a)\c*(u,v) = 0 a n d 
D is a bounded derivation. Now suppose tha t D is inner; i.e., there exists 
6 G y such tha t for all a G C*(u, v), t G B(H), 

6(at - ta) = D(a)(t) = p(at - ta). 

Lett ing a = p — 6, we have tha t a (at — ta) = 0, and 

a-(l) = p ( l ) - 0 ( 1 ) = p ( l ) = 1. 

Thus 

(j(u*eu — e) = a(u*eu — uu*e) = 0, 

https://doi.org/10.4153/CJM-1979-082-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-082-4


876 MAN-DUEN CHOT 

and similarly, 

a(v*ev — e) = 0, a(vev* — e) = 0. 

Hence the condition (f) leads to 

2(7 (g) = O-(l) = 1,3(7(6) = (7(1) = 1, 

which is impossible. Therefore, D is not inner, and C*(n} v) is not amenable. 

Remark. Bunce ([4, Proposition 2]: See also [5, Proposition 1]) has proved 
that a imitai C*-algebra A is amenable if and only if for any yl-bimodules 
X Ç F, each 8 Ç X* satisfying ^(Î£/*XÎC) = 0(x) for all x ^ I , unitary w (z A 
has an extension #i Ç F* satisfying 0i(?£;*;yw) = 0i(;y) for all y Ç F, unitary 
îiif 4 . Using this result, we can also deduce immediately that C*{n,v) is 
non-amenable. Namely, by letting A = X = C*(u,v), Y = C*(e, u,v) or 
B(H)y and 6 = trace r, it is transparent that the condition (f) does not admit 
0 to have the above extension. 

We say that a C*-algebra A Ç £>(#) is quasi-diagonal if and only if there is 
an increasing net of finite-rank projections pv G B(H) converging to 1 strongly 
and \\apv — pva\\ —> 0 for all a £ A. In answering a question of Thayer 
[22, p. 56], we show that C*(u, v) serves as 

Example B. A tracial separable C*-algebra that is not quasi-diagonal. 

Demonstration. Suppose there is a rank-w projection p G B(H) such that 
j|z//> — /?H|| ^ e and ||z;p — /w|| ig £• Then 

p(e — vev*)p = pev*(vp — pv)p + (pev*p)(pvp) — (pvp)(pev*p) 

+ p(vp — pv)ev*p. 

Letting rn be the imitai trace on pB(H)p ( ~ Mn), we have 

|rn(£(g - vev*)p)\ = \T„(pev*(vp - pv)p) + rn(p(vp - pv)ev*p)\ 

^ 2||fl/> - H I ^ 2e. 
Similarly, 

|rw(/>(c - **«/)/>)! ^ 2c, |rn(/>(* - H*ea)/>)| ^ 2e. 

But from (f), we have 

Tn{p(e + u*eu)p) — 1, rn(p(e + zr*ez; + vev*)p) = 1. 

Hence, 

2rn(pep) ^ 1 - 2e, 3rn(pep) ^ 1 + 4e, 

which are impossible, if e is sufficiently small. Therefore, C*(u,v) is not quasi-
diagonal. 

Remark. The meaning of a quasi-diagonal C^-algebra is equivalent to that of 
a quasi-triangular C*-algebra. On the other hand, by the spectral characteriza-
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tion theorem for quasi-triangular operators [3], we can deduce tha t every 

operator in C*(n, v) is quasi-triangular. Hence, C*(w, v) serves as an example 

for another peculiar feature: a C*-algebra such tha t every element is quasi-

triangular, but globally the C*-algebra, as a whole, is not quasi-triangular. 

We proceed to establish tha t C*(u,v) fails to have certain approximation 
properties. For this purpose, we will estimate how far a general unital com­
pletely positive linear map is away from being multiplicative. 

We note tha t each unital completely positive linear map <p on a unital 
C*-algebra A has the property: 

<p(a*a) ^ <p(a*)<p(a) ^ 0 for all a 6 A. 

Incase <p(a0*tt0)
 = ^ (a 0 *)^(a 0 ) , we have then (p(aa0) = (p(a)<p(ao) for all a G A 

(see e.g., [7, Theorem 3.1]). Hence the value of ||<p(a0*«o) — <p(ao*)<p(do) \\ 
can be regarded as the "amoun t of non-mult ipl icat ivi ty" of <p a t a0. This 
notion can be further justified in the following proposition and its corollary. 

PROPOSITION 3.1. Let A be a unital C*-algebra and <p be a unital completely 
positive linear map: A —> B(H). If 

\\<p((ii*ai) - (p(ai*)(P(ai)\\ ^ Or (i = 0, 1), then 

| |<p(tt i*«o) - <p(tt i*)<p(tfo) | | ^ ôiôo. 

Proof. From Stinespring's decomposition theorem [20], there exist a ^ r e p ­
resentation T of A on a Hilbert space K, and an into isometry s: H —> K such 
that<p(a) = s*Tr{a)s for all a G ^4. Lett ing x^ = (1 — ss*)ir{aj)sy we get 

x >x ?- = s*ir (a * ) ( 1 — .s\v* ) 7T (a 7-) .9 = s*ir (a **a ;- ) s — 5*7r (a * ) 55*7r (a -,• ) s 

= viafcij) - ip{a?)ip{(ij). 
Therefore, 

| |*(ai*a0) - <p(<H*)<p(ao)\\ = ||*i**o|| g ||3CI*XI||1/2||JC0*3CO||1/2 

= ||*>(ai*ai) - v(«i*)^(«i)l |1 / 2 . |k(«o*ao) - ¥>(ao*)*>(ao) l|1/2 ^ Mo 

as desired. 

COROLLARY 3.2. Let A be a unital C*-algebra and <p be a unital completely 
positive linear map: A —> B(H). If 

||<p(a0*«o) - <p(rto*M«o)|| ^ <52, 

| |^(aao) ~ ^(a)^( r t 0 ) | | S ô\\a\\ for all a G A. 

Proof. Note tha t 

0 ^ <p(aa*) - ^( ( i )^( i*) ^ ^(aa*) ^ ||aa*|| = ||a||2. 

So Proposition 3.1 applies. 

We say tha t a unital C*-algebra A is nuclear if and only if it satisfies one of 
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the following four equivalent conditions (see [9, Theorem 3.1] [10, Corollary 
3.2] [11, Theorem 3]): 

(/) There exist finite-rank unital completely positive linear maps <pv: A —» A 
such that ipv converge to the identity map in point-norm topology. 

(77) There exist unital completely positive linear maps 

A % M n h A 

(certainly, nv changes with v) such that 6vO av converge to the identity map in 
point-norm topology. 

(III) For each C*-algebra B, the algebraic tensor product A ® B has a 
unique C*-norm. 

(IV) The second dual of A is injective. 

It is well known that there exist (non-nuclear) C*-algebras failing to enjoy 
the condition (III) or (IV) (see e.g., [21, pp. 119-121] [23, Prop. 7.4] [17, 
p. 175] [8, pp. 172-173] [24, Corollary 1.9]). By virtue of abstract theorems, 
these C*-algebras do not satisfy the condition (/) or (77) either. However, 
the abstract proofs involve deep W^*-algebra theory, throwing not much light on 
explicit examples. Thus, it might be desirable to see directly (without using 
any l^*algebra theory) that C*(u, v) fails to have completely positive metric 
approximation property. In fact, C*(u, v) serves as 

Example C. A singly generated non-nuclear C*-algebra. 

Demonstration. Since v is a finite-order unitary, there exists a hermitian 
operator a such that C*(v) = C*(a). Therefore, from u and a being hermitian, 
C*(u, v) = C*(u, a) = C*(u + \/ — la) is a singly generated C*-algebra. 

Now suppose C*(u,v) is nuclear; then from condition (77), given ô > 0, 
a 8 

there exist unital completely positive linear maps C*(u, v) —+ Mn —> C*(u, v) 
such that 

\\6(a(u)) - u\\ S ¥ \ and \\6(a(v)) - v\\ S è<52. 

Extending a to a completely positive linear map ov C*(e,u,v) —• Mn and 
letting 

<p = dO o-i: C*(e, u} v) —» C*(u, v), 

we still have \\<p(v) — v\\ ^ %82 and 

\\<p(v*v) - <p(v*)<p(v)\\ = ||1 - <p(v*)<p(v)\\ £ \\v*[v - <p(v)]\\ 

+ | | b - cp(v)]*<p(v)\\ g ^ + W = Ô2. 
From Corollary 3.2, we get 

\\<p(v*ev) - <p(v*)<p(e)<p(v)\\ ^ \\<p(v*ev) - <p(v*e)<p(v)\\ 

+ \\[<p(ev) - <p(e)<p{v)]*<p(v)\\ S 2Ô. 
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Hence, 

\\<p(v*ev) - v*(p(e)v\\ ̂  \\<p(v*ev) - <p(v*)(p(e)tp(v)\\ 

+ \\<p(f)<p(e)[<p(v) -v]\\ + \\[<p(v) - v]*<p(e)v\\ ^ 2 0 + ft* + |52 

= 2S + Ô2, = t, say. 

Applying the trace r, we derive 

|(TO<^)(Z;*CT — e)| = |r(<p(z;*efl) — *rVW*>)| 

^ ||<p(?;*ez;) — z;*<p(e)z;|| ^ e, 

and similarly, 

| ( r O <p)(u*eu - e)\ S e, | ( r O <p) (î/ei;* - e)| ^ e. 

T h u s the equations e + u*eu = 1, e -\- v*ev + z;ew* = 1 lead to 

2r(<p(e)) M - e , 3 T ( * ( C ) ) g 1 + 2e, 

which are impossible for a sufficiently small e. Therefore, C*(u,v) is non-

nuclear as asserted. 

Finally, we conclude with an example tha t gives a negative answer to a 

widely held conjecture. 

Example D. A non-nuclear (non-amenable) C*-subalgebra of a nuclear 

(amenable) C*-algebra. 

Demonstration. From the demonstrat ions of Examples A and C, we know 

tha t C*(u, v) is neither nuclear nor amenable. From [14] and [19], we know 

tha t ûi is nuclear and even amenable. As established in §2, C*(u,v) C 

C*(e, u, v) cm © ^ Thus we are done. 
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