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A SIMPLE C*-ALGEBRA GENERATED BY
TWO FINITE-ORDER UNITARIES

MAN-DUEN CHOI

§ 1. Introduction. We present an example which illustrates several peculiar
phenomena that may occur in the theory of C*-algebras. In particular, we
show that a C*-subalgebra of a nuclear (amenable) C*-algebra need not be
nuclear (amenable).

The central object of this paper is a pair of abstract unitary matrices,

0(0 1
u=[? (1)] and =10 0],
0i1 0

acting on a common Hilbert space. For an explicit construction, we may
decompose an infinite-dimensional Hilbert space H into H = H.P H,,
H, = H,® Hy with dim Hy = dim H, = dim H, = dim Hs, letting u,
v € B(H) be any two unitary operators such that

Hy— H, Hy— H.
u: H,— Hy' H,— Hp
1 0 Hs— H,

and u? = 1, v = 1. Whereas many choices of u, v are possible, it might be
surprising to see that C*(u, v), the C*-algebra generated by u and v, is alge-
braically unique; namely, if (u#;,v,) is another pair of such unitaries, then
C*(u, v) is canonically *-isomorphic with C* (1, ;) (Theorem 2.6). In fact, we
deduce further that C*(u, v) is a simple C*-algebra with a unique (faithful)
trace (Theorem 2.8).

In spite of its very elegant structure, C*(u, v) does possess several ‘‘patho-
logical’’ properties. Foremost, we show directly that C*(u, v) is non-amenable
in the sense of Johnson [16]. This appears to be the first explicit example in
literature that a C*-algebra may have a non-vanishing cohomological coeffi-
cient with respect to a dual Banach bimodule. In answering a question of
Thayer [22], we show that C*(u,v), as a tracial C*-algebra, is not quasi-
diagonal. Another peculiar fact lies in the non-nuclearity of C*(u, v); actually,
we prove that C*(u, v) fails to enjoy a completely positive metric approxima-
tion property. The last result, having an interesting counterpart in Banach
space theory, leads to a highly plausible conjecture: C*(u, v) might not have
a Schauder basis.
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Recently, Cuntz has given a systematic investigation of ,, the simple
(C*-algebra generated by 2 isometries s, ¢ satisfying ss* + #t* = 1. It has heen
shown that &, is nuclear [14] and even amenable [19]. By a straightforward
verification, we see that C*(u, v) is indeed a subalgebra of ¢,. This enables us
to assert that a C*-subalgebra of a nuclear (amenable) C*-algebra need not be
nuclear (amenable).

Notably, the proof of Theorem 2.8 is a variant of Powers’ treatment [18] on
Creg® (F2), the left regular representation of the free group on two generators.
While some results of this paper are applicable to Cy* (F2) as well, we remark,
however, that C*(u, v) is feasible for a space-free description and possesses a
much more tractable structure. Typically, i, v being finite-order unitaries leads
to immediate consequences: C*(u,v) is singly generated and contains non-
trivial projections. It appears unlikely (in fact, it remains open) that C.e* (F)
could have similar properties.

Acknowledgement. The author would like to express his thanks to lidward
G. Effros for many stimulating discussions on related topics.

§ 2. The basic structure. We begin with simple observations on words in

1w and v subject to the equality #* = v* = 1. By a reduced word w, we mean a
formal product xjx, ... x, with x; € {u, v, v}, satisfying the condition:
whenever j < [ we have

X; = U = X4 = 0F!
x; = 0E = x4 = 1.

The subscript / is called the length of w. Obviously, each formal product, sub-
ject to u#? = v® = 1, can be simplified to a unique reduced word.

LeMmma 2.1. Let w be a reduced word in u, v (u® = v® = 1) of length | > 0, and
2, = ()= Then the reduced form for z,”'wz, begins with v' and ends with
! whenever 2n = .

Proof. We note that the last entry ! in 2, continues to be the last entry in
the reduced form for wz,, because length (w) < length(z,). Suppose the reduced
form for z,7'wz, were ending with #. Then the last entry v=' in wsz, would be
cancelled out by the entry » in the left multiplication of z,7' = v(uv~")"; i.e.,
2, 'wz, = 1, w = 1, which were impossible from the assumption of length (w)
> 0. Therefore, the reduced form for z,7'wz, ends with »*!, and similarly
begins with »*'. Thus the lemma is proved.

We will also need some manipulations on 2 X 2 matrix-operators. With
respect to a fixed orthogonal decomposition of a Hilbert space H = Hy @ H,,
we can write each operator « ¢ B(H) in the form

[(111 (112]
a = .
Q21 Q22
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In particular, e = l:(l) 8} is the projection onto Hy, and

0 #] . .
a= if and only if eae = 0,
[# # g

a = [i ﬁ:l if and only if (1 — e)a(1 —e) = 0,

where #'s stand for entries we do not have to evaluate.

Lemma 2.2, Let wuy, ... u, be unitaries such that each wai* is of the form
[;i ﬁ] whenever 1 # j. Suppose b is an operator of the form [; #]; then
1(1/n) 20 i u*ouy]) < 2[0]/~/n.

Proof. We first assume that b = (?; 2 . Then it is clear that whenever
c = [Ef ﬁ], we have [[6 + ¢]|2 £ [[b]]2 + [l¢]|®. From the fact

o= (2 4102 4108 2113 4] on

we derive that

D e a2 =l (2 e *bu)ur® |2 = [0+ D omttyu *bu e * ||?
< 002+ 1 22w nw Fowann* |2 = [[b]12 4[] 20 *buy|?

and continuing this process,

D i *uy ) £ nllb

Now given b = [O #}, we write 0 =0+ 0,* where b = [;)4 2],

4 4
by = [(; 8] Then

1Dyl < 100 o *bas || + 1] X imi™ae *boue |
< Vallbll + Vallba|| = 240

Therefore, the desired inequality follows.

ProrosiTiON 2.3. Let e be « projection, and u, v be two unitary operators
satisfying u* = v* = land (1 — e)u(l — e) = 0, eve = 0. Then

(1) C*(u, v) has a unique tracial state 7.

(it) For each a € C*(u,v) and ¢ > 0, there exist an integer n and unitary
operators uy, . . . u, € C*(u, v) such that

[r(a)l — (1/n)XuFau,|] < e
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#0 #
vl = ¢* = [0 #], wypt! = [# #:l, and for §; = +1,

Proof. (0) Letting ¢ = [(1) 8:', we have u = [# #}, v = [0 #} Hence
# 0 #

(™) wo™) ... (™) = [ﬁ ;ﬂ ,

(uvé')(lw&z) L. (zwa")u = [z (ﬂ ,

S0/ 8 5 |0 #
v (uw )(uv)...(uv)—[# #]

That is, a reduced word beginning and ending with u is of the form [# i

ol

while a reduced word beginning and ending with »%!is of the form {(; i]

(1) On the algebra of all finite linear combinations of reduced words in

o (1* = v* = 1), we define a linear functional 7 such that 7(¢) = a whenever
a =al + Y aw,; (w,; are reduced words of length > 0). A routine computa-
tion leads to 7(ab) = r(ba). We claim that 7 is contractive in operator norm.
Thus 7 is well defined on the pre-C*-algebra generated by u, v, and the exten-
sion of 7 by continuity is a trace on C*(u, v). (Note that the positivity of 7
follows from ||7|| = 1 = 7(1).)

To prove the claim, we note thatif « = al + Zizl"a a;, then from Lemma
2.1, there exists a unitary operator z (=2, for a sufficiently large #) such that
the reduced form for z*wz begins with v*! and ends with v%! for each 7. There-
fore s*az = al + Y aiz*wzadmitsa 2 X 2 matrix-operator expression

3 8+l 463
0 «al # # # #1’
and |7(a)] = |a| £ |lz*ez| = lla]l as claimed.
(2) To prove (ii), it suffices to assume that « is a finite linear combination of

words in u, ». Replacing « by its unitary equivalence, we may further assume

. 0
from the preceding paragraph that ¢« = al + b, where 7(¢) = o, b = [# #] .
Letting u; = uv~'(uv)’, we get that

i—j—1 1

w™ " (uw) wv e (if 1 > j)

—1 i
= u v) lou = 1 i A
Wit v (ur) ‘ {zwu(v WY o (i < 7)

has a reduced form beginning and ending with « when 7 # j; hence uu* =
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[ i ﬂ (1 # 7). Therefore, by Lemma 2.2, we derive that

Ir(@)1 = (U/n)XuFau,l| = [[(1/n)XuXou|| < 2! /v/n
= 2lla = r(@)1][/v/n < 4fal/vn

which is smaller than any prescribed e when # is sufficiently large.

(3) It remains to prove that 7 is the unique trace. Suppose C*(u,v) has
another trace o, then from (ii), we have

[7(a¢) — a(a)| = la(r(a)1 — (1/n) > uFau,)|
< v @)1 — (1/n)>XuXau,| = e

Since e is arbitrary, we conclude that r = ¢ as desired. Thus the theorem is
proved.

We are going to deal with a pair of concrete unitary operators. Let H be an
infinite-dimensional Hilbert space with orthogonal decompositions H =
H,® H,, H, = H, ® Hg, where dim Hy = dim H, = dim H, = dim Hz. With

. . 1
respect to H = Hy @ H,, we define u € B(H) by the expression u = [(1) O]
(herein, Hy and H, are identified via an arbitrary onto isometry). Similarly,
with respect to H = Hy ® H, ® Hjp, we write

001
v=|100|€e B(H)
010

by identifying Hy = H, = Hps. In other words, (u,v) is any pair of unitary
operators in B(H) such that #* = v® = 1 and

}]0__)[_[1 HO_)Ha
Wy g U H,— Hj.
1 0 Hy — H,

To get an equational description, we let ¢ € B(H) be the projection onto Hy;
then u, v € B(H) are completely characterized by the equations

(2.1) u=u"'=u* e+ ureu = 1,

(2.2) 92 =o' = 0¥ ¢ 4 v¥ev + ver* = 1.

. 10] .. .

LeMMmA 2.4. Let e be a projection of the form [0 0]. Then an operator v satisfies
-k

(2.2) of and only if v is the form [ 0 s *] where s1, Sy are isomelries satisfying

S1 251
5131* + 5252* = 1.

Proof. The “if”’ part follows from a straightforward computation. Con-

ok
. X s
versely, suppose v satisfies (2.2) and v = [Y :

] with x, y, s1, 52 to be deter-
V1
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mined. Then the equation

0] [E R
[0 J = e + v*ev 4+ ver* = 4 s157F A sas0*
leads to

1 = si57* 4 s252*  (a)

0 .\‘2*

andx = 0,1e.,v = [
S1

]. From v being an order-3 unitary, we derive that

L O] =¥y = [Sl*sl #] 1.e., sy Is an isometr
0 # # y L. 01 C y.

10 *ss . . .
0 } =w* = [S;SZZ ﬂ ,1.e., S is an isometry, 0 = ys2  (b),

and

LSQ y* sy #:| y L€, S = Y& (C)

Combining (a) (b) (c), we get
y = y(s151* + 5250%) = ysisi* = sas0¥,

. 0 Sz* .
e, v = « |, as desired.
S1 S981

We denote by @75, the C*-algebra generated by two isometries s, s; satisfying
s157% 4 s250% = 1, as analyzed in detail by Cuntz. An interesting feature of ¢,
lies in the fact that @, is independent of the choice of sy, 5o (namely, if t;, £,
are isometries satisfying ;4% + tof2* = 1, then C*(sy, 52) is canonically
*.isomorphic with C*(¢;, £»)) ({14, Theorem 1.12]). The following lemma is a
simple consequence.

LEMMA 2.5. Mo(Oy) is *-isomor phic with O,

Proof. Letting Oy = C*(sy, s,) where s, s, are isometries satisfying
1 = s5157% + s05.%, we note that

51*52 = Sl* (SlSl* —f‘ 52.\‘2*)32 = Sl*.\‘g + 51*82 = 2\\'1*.\'2,

i.e., si*s; = 0 and, by taking adjoint, s*s; = 0. Now we write

b o= [8‘ gg] ty = [O 0] L€ My(OD,);

S1 S

L [sl*sl 51*52] _ [1 O:I
. 52*51 52*.5‘2 0 1 !

then
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and

* Sk [5181* + SQS;}* O :] _ ':1 O:I
tltl + [ZtQ L O 8181* + 3252* O 1 ’

Hence C*(t, t,) is *-isomorphic with C*(s;, s2) from the fact mentioned hefore
this lemma. On the other hand, a direct computation, through

1 0 0 0 [0 1]
* _ SK = *
tix _[0 O]' bola [o 1}’ b =g o]

leads to an easy conclusion that C*(t,, ts) = My(O5). Therefore, M»(O5) is
*_.isomorphic with @7, as desired.

THEOREM 2.6. Suppose ¢ is a projection and wu,v are operators satisfying
(2.1)=(2.2). Then C*(e, u,v) is *-isomorphic with O ,. Consequently, C*(e, u,v) is
algebraically unique; 1.e., if ey, ex are projections and (e, wu;, v4), 1 = 1,2, are
triples satisfying (2.1)—(2.2), then C*(ey, uy, v1) 1s canonically *-isomor phic with
C*(ey, us, v2).

Proof. We write ¢ = [(1) 8}, = [

[0 82* ]
7) =
S1 \\‘251*

where sy, 52 are isometries satisfying s;5:* 4+ s.50* = 1. Hence it follows easily
that

01

1 0]; then by Lemma 2.4,

C*(e, 1, v) = Ms(C*(s1, $2)) ~ Mo(Oy) ~ O,.

Since all *-isomorphisms are canonically defined, C*(e, u, v) is thus algebraic-
ally unique.

COROLLARY 2.7 Suppose e is « projection and wu,v are operators satisfying
(2.1)-(2.2). Then C*(u,v) is *-isomor phic with the left regular representation of
« discrete group.

Proof. We denote by G, the quotient group of F., with a presentation
{u, v: u* = v* = 1}. Then there exists S, a subset of G, satisfying the condition

23) SNuS=0,SNsS =0, andG =SJuS =SUsSUr1S.

To construct such S, we may define the membership of .S by induction on the
length of reduced words as follows:

(i) The empty word 1 4 S.

(i) Whenever z is a reduced word of length n (=0), and w = x2
(x € {u,v,v71}) is a reduced word of length n + 1,we have that

we SifxZvtandz ¢ S,
wd Sifx=9v"'orz €S
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Now on the Hilbert space [2(G), we let E € B(2(G)) be the projection onto
12(S), and let L(u), L(v) € B(I*(G)) be the left translations induced by u, v
respectively. It is straightforward to check that L(x) and L(v) are unitaries
satisfying L(u)? = L(v)* = 1. From the condition (2.3), we get

E+ Lw)*EL(u) = 1,E + LO)*EL(@) + L@)EL@)* = 1.

Il

Therefore, by Theorem 2.6, we conclude that C*(e, u, #) is canonically *-iso-
morphic with C¥*(E, L(u), L(»)). In particular, C*(u, ) is *-isomorphic with
C*(L (1), L(v)) = Creg*(G) as desired.

The proof of the following theorem is an immitation of Powers’ work on
the simplicity of C,o*(F2) (18], see also [1, Theorem 1 D]).

THEOREM 2.8. Suppose e 1s a projection and u, v are operators satisfying
(2.1)-(2.2). Then C*(u,v) 1s a simple C*-algebra possessing a unique tracial
state.

Proof. Clearly, u and v satisfy the hypothesis of Proposition 2.3. Hence
C*(u, v) has a unique tracial state 7. We claim that 7 is faithful. Indeed, r is
associated with a representation 7. of C*(u,v) on a Hilbert space H, and a
cyclic vector ¢, satisfying 7(a) = {(w.(a)&,, &) for all « ¢ C*(u,v). It is
straightforward to check that H, is identical with [>(G), where G is the group
with a presentation {u, v: #*> = v* = 1}, under the correspondence

Dlaqw; € B(G) = Ylam (w)i, € H, (wi € G).

Consequently, «,(C*(u, v)) is just Cre* (G). From Corollary 2.7, we deduce
that C*(u, ) is canonically *-isomorphic with =, (C*(u, v)); i.e., =, is faithful,
thus 7 is faithful as claimed.

Alternatively, we observe directly that C...*(G), as of the proof of Corollary
2.7, has a faithful trace, defined by « > {(a¢, £) where £ € [2(G) satisfying
(1) = land £(g) = O for g = 1.

Now suppose J is a non-zero 2-sided ideal of C*(u, v); then J contains a
positive element a = 0, whence 7(¢) = « £ 0 from the faithfulness of . By
Proposition 2.3(¢i), there exist unitaries uy,...u, € C*(u,2) such that
llel — (1/n) X uFaw, £ a/2. Ilence > u*au, is invertible, and the ideal
generated by a is C*(u,v). Therefore J = C*(u,v) and we conclude that
C*(u, v) is simple.

§ 3. Some peculiar properties. Throughout this section, we let ¢ be a pro-
jection, and #, v be operators satisfying the conditions (2.1)-(2.2);1.e., u, v are
unitary operators satisfying #? = 93 = 1 and

@) e + u¥eu = 1, e + v*ev + ver* = 1.

From §2, C*(u, v) is a tracial C*-algebra that can be imbedded into @, as a
subalgebra. Whereupon, we will show further that C*(u,v) is an explicit
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example for several types of pathologies in C*-algebraic structure theory.
Notably, a condition similar to (1) has been employed in recent literature
((8. p. 173], [12, Lemma 4.2], and [2]) for exploring some striking but different
features of C,e* (F2). While partial results of this section are also applicable to
Creg™ (F2), we will work on C* (i, v) exclusively since C* (i, v) possesses a much
more flexible and tractable structure.

In regard to some algebraic topological aspects of Banach algebras, Johnson
[16] has introduced the notion of amenability. Namely, a unital Banach
algebra A4 is amenable if and only if for each Banach 4-bimodule X, each
bounded derivation D: A — X* is inner (i.e., given any bounded linear map
D: A — X* satisfying

D(ab)(x) = D(a)(bx) + D(b)(xa) foralla,b € 4,x € X,

there exists § ¢ X* such that D(a)(x) = 0(ax — xa) foralla € 4, x € X).

The existence of non-amenable C*-algebras is revealed in a result of Bunce
[5]; the C*-algebra generated by the left regular representation of a discrete
group is amenable if and only if the group is amenable. Due to the recent work
of Connes [13, Corollary 2] (see also [6, Corollary 5] for a different proof), we
know further that every non-nuclear C*-algebra is non-amenable. However, all
known proofs, involving deep structure theory, probably do not admit easy
interpretations on concrete examples. The following explicit demonstration on
C*(u, v) may provide a clearer illustration of the non-amenability.

Example A: A separable non-amenable C*-algebra.

Demonstration. Let X be the quotient Banach space B(H)/C*(u, v); then
X* can be identified with

S =10 € B(H)*: 0l¢*u.y = 0}
and .% is thus a dual C*(u, v)-bimodule under the action
(a.0)(t) = 6(ta), (B.a)(t) = 0(at)

for a € C*(u,v), t € B(H), 6 € .. We construct a linear map D: C*(u, v)
—.% by D(a)(t) = plat — ta), where p is any state on B(H) satisfying
ple*w,n = trace 7. It is straightforward to check that D(¢)|c*w.» = 0 and
D is a bounded derivation. Now suppose that D is inner; i.e., there exists
0 € .% such that for all « € C*(u,v), t € B(H),

6(at — ta) = D(a)(t) = p(at — ta).

Letting ¢ = p — 6, we have that ¢(at — ta) = 0, and
a(l) = p(1) —6(1) = p(1) = L.

Thus

o(u*eu — e) = o(u*eu — uu*e) = 0,
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and similarly,
o(v*ev — ¢) = 0, o(ver* — e) = 0.
Hence the condition () leads to
20(e) = o(1) = 1,30(e) = o(1) =1,
which is impossible. Therefore, D is not inner, and C*(u, v) is not amenable.

Remark. Bunce (|4, Proposition 2]: See also [5, Proposition 1]) has proved
that a unital C*-algebra 4 is amenable if and only if for any 4-himodules
X C YV, each 8 € X* satisfying 6(w*xw) = 6(x) for all x € X, unitary w ¢ 4
has an extension 8, € V* satisfying 6, (w*yw) = 6,(y) for all y € ¥, unitary
w € A. Using this result, we can also deduce immediately that C*(u,v) is
non-amenable. Namely, by letting 4 = X = C*¥(u,v), ¥ = (*(e, u,v) or
B(H), and 6 = trace 7, it is transparent that the condition (1) does not admit
6 to have the above extension.

We say that a C*-algebra 4 ¢ B(H) is quasi-diagonal if and only if there is
an increasing net of finite-rank projections p, € B(H) converging to 1 strongly
and lap, — pyal]| =0 for all « € 4. In answering a question of Thayer
(22, p. 56], we show that C*(u, v) serves as

Example B. A tracial separable C*-algebra that is not quasi-diagonal.

Demonstration. Suppose there is a rank-n projection p ¢ B(H) such that
lup — pul] < eand [Jlvp — pv|l £ e Then

ple — vev*)p = pev*(vp — po)p + (pev*p)(pvp) — (pvp) (pev*p)
+ pop — pv)ev*p.
Letting 7, be the unital trace on pB(H)p (=~ M,), we have

Ira(p(e — vev*)p)| = |7, (pev* (vp — pv)p) + 7,(p(vp — pv)ev*p)]
< 2flvp — pofl < 2e
Similarly,

iTu(ple — v*ev)p)| < 2¢, [r,(ple — weu)p)| < 2e
But from (1), we have

m.(ple + u*ew)p) = 1, 7,(p(e + v*ev + vev*)p) = 1.
Hence,

27, (pep) = 1 — 2¢ 3r,(pep) = 1+ 4e,

which are impossible, if € is sufficiently small. Therefore, C* (1, v) is not quasi-
diagonal.

Remark. The meaning of a quasi-diagonal C*-algebra is equivalent to that of
a quasi-triangular C*-algebra. On the other hand, by the spectral characteriza-
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tion theorem for quasi-triangular operators [3], we can deduce that every
operator in C*(u, v) is quasi-triangular. Hence, C* (i, v) serves as an example
for another peculiar feature: a (C*-algebra such that every element is quasi-
triangular, but globally the C*-algebra, as a whole, is not quasi-triangular.

We proceed to establish that C*(u, v) fails to have certain approximation
properties. For this purpose, we will estimate how far a general unital com-
pletely positive linear map is away from being multiplicative.

We note that each unital completely positive linear map ¢ on a unital
C*-algebra A has the property:

e(a*a) = o(a*)p(a) =2 0forall a € 4.

In case ¢ (ag*uy) = ¢(a*)e(ay), we have then ¢ (aay) = ¢(a)e(ay) foralla € 4
(see e.g., [7, Theorem 3.1]). Hence the value of |¢(a¢*as) — ¢(ae*)e(as)l]
can be regarded as the “amount of non-multiplicativity” of ¢ at «(. This
notion can be further justified in the following proposition and its corollary.

ProrosiTioN 3.1. Let A be « unital C*-algebra and ¢ be a unital completely
positive linear map: A — B(H). If

leata) — o(a®)ela)]| <82 G = 0,1), then

H(,O((ll*(ln) — (p((lol*)<p((l4))H § 516().

Proof. From Stinespring’s decomposition theorem [20], there exist a *-rep-
resentation = of 4 on a Hilbert space K, and an into isometry s: H — K such
that ¢(¢) = s*r(a)sforalla € A. Lettingx; = (1 — ss*)7(ay)s, we get

x*x; = s*n (0 *)(1 — ss®)w(ay)s = s¥r(aFa;)s — s*n(a*)ss*r(a;)s

= p(a*a;) — e(a®)e(ay).
Therefore,

||s0((11*(lo) - @((11*)¢((1¢))!] = U'xl*xo[E = Hxl*le”?IIxo*on‘“
= [le(ar*ar) — e(ar*)¢(ar) M2 e (ac*an) — ¢(ao*)e(a)||'* £ 8180

as desired.

COROLLARY 3.2, Let A be a unital C*-algebra and ¢ be « unital completely
positive linewr map: A — B(H). If

”‘P((lu*(lo) - 99(110*)99((10)” = 52,
then

le(aar) — ¢(a)e(an)l] = dllal for alla € A.
Proof. Note that
0 < o(aa*) — (@) < olua®) < [laa*] = [la]?
So Proposition 3.1 applies.

We say that a unital C*-algebra A4 is nuclear if and only if it satisfies one of
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the following four equivalent conditions (see [9, Theorem 3.1] [10, Corollary
3.2] [11, Theorem 3]):

(I) There exist finite-rank unital completely positive linear maps ¢,: 4 — A4
such that ¢, converge to the identity map in point-norm topology.

(II) There exist unital completely positive linear maps

A2, 4

(certainly, n, changes with ») such that 8,0 o, converge to the identity map in
point-norm topology.

(II1) For each C*-algebra B, the algebraic tensor product 4 ® B has a
unique C*-norm.

(IV) The second dual of 4 is injective.

It is well known that there exist (non-nuclear) C*-algebras failing to enjoy
the condition (III) or (IV) (see e.g., [21, pp. 119-121] [23, Prop. 7.4] [17,
p. 175] [8, pp. 172-173] [24, Corollary 1.9]). By virtue of abstract theorems,
these C*-algebras do not satisfy the condition (I) or (II) either. However,

the abstract proofs involve deep IW*-algebra theory, throwing not much light on
explicit examples. Thus, it might be desirable to see directly (without using
any W*algebra theory) that C*(u, v) fails to have completely positive metric
approximation property. In fact, C*(u, v) serves as

Example C. A singly generated non-nuclear C*-algebra.

Demonstration. Since v is a finite-order unitary, there exists a hermitian
operator a such that C*(v) = (C*(«). Therefore, from u and « being hermitian,
C*(u,v) = C*(u,a) = C*(u + v/—1a) is a singly generated C*-algebra.

Now suppose C*(u, v) is nuclear; then from condition (I/7), given § > 0,

o [V}
there exist unital completely positive linear maps C*(u, v) — M, — C*(u, v)
such that

10(o()) — ul < %82 and [|6(a(v)) — v|| < 362
Extending o to a completely positive linear map o,: C*(e, u, v) — M, and
letting
¢ =00 a1: C*¥(e, u,v) — C*(u, v),
we still have [J¢(») — || £ 6% and
le@*v) — e(@)e@) || = 1 — e@*)e@)] = [[v*[v — ¢@)]]]
+ [llv — e@I*e@)| = 38* + 30* = 5%
From Corollary 3.2, we get
le@*er) — e (@)e()e®@)| = [le(*er) — o(v*e)e (@) ||
+ llle(ev) — e(e)e@)]*e@)] < 26.
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Hence,

lo@*er) — v*o(e)] £ [lo@*a) — ¢(@¥)e(e)e ()]
+ lle@)e(e)le@®) — 9] + [le@) — o]*e(e)o] = 26 4 $3° + 36
= 20 + 0% = ¢ say.
Applying the trace 7, we derive

(0 @) (v*ev — e)| = |7 (e (w¥ev) — v¥p(e)v)]
< llo*e) — t*o ()] < e
and similarly,

[(7O @) (u*eu — e)| < ¢, (1O @) (ver* — €)| < e
Thus the equations e + u*eu = 1, ¢ + v*ev 4 ver* = 1lead to
27(p(e)) =2 1 — ¢ 3r(e(e)) = 1 4 2¢,

which are impossible for a sufficiently small e. Therefore, C*(u«, v) is non-
nuclear as asserted.

Finally, we conclude with an example that gives a negative answer to a
widely held conjecture.

Example D. A non-nuclear (non-amenable) C*-subalgebra of a nuclear
(amenable) C*-algebra.

Demonstration. From the demonstrations of Examples 4 and C, we know
that C*(u, v) is neither nuclear nor amenable. From [14] and [19], we know
that @, is nuclear and even amenable. As established in §2, C*(u,v) C
C*(e, 1,v) ~ O,. Thus we are done.
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