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On Quantizing Nilpotent and
Solvable Basic Algebras
Mark J. Gotay and Janusz Grabowski

Abstract. We prove an algebraic “no-go theorem” to the effect that a nontrivial Poisson algebra cannot
be realized as an associative algebra with the commutator bracket. Using it, we show that there is an
obstruction to quantizing the Poisson algebra of polynomials generated by a nilpotent basic algebra
on a symplectic manifold. This result generalizes Groenewold’s famous theorem on the impossibility
of quantizing the Poisson algebra of polynomials on R2n. Finally, we explicitly construct a polyno-
mial quantization of a symplectic manifold with a solvable basic algebra, thereby showing that the
obstruction in the nilpotent case does not extend to the solvable case.

1 Introduction

We continue our study of Groenewold-Van Hove obstructions to quantization. Let
M be a symplectic manifold, and suppose that b is a finite-dimensional “basic alge-
bra” of observables on M. Given a Lie subalgebra O of the Poisson algebra C∞(M)
containing b, we are interested in determining whether the pair (O, b) can be “quan-
tized”. (See Section 2 for the precise definitions.) Already we know that such ob-
structions exist in many circumstances: In [8] we showed that there are no nontrivial
quantizations of the pair

(
P(b), b

)
on a compact symplectic manifold, where P(b) is

the Poisson algebra of polynomials on M generated by b. Furthermore, in [10] we
proved that there are no nontrivial finite-dimensional quantizations of (O, b) on a
noncompact symplectic manifold, for any such subalgebra O.

It remains to understand the case when M is noncompact and the quantizations
are infinite-dimensional, which is naturally the most interesting and difficult one.
Here one has little control over either the types of basic algebras that can appear (in
examples they range from nilpotent to simple), their representations, or the structure
of the polynomial algebras they generate [7].

In this paper we consider the problem of quantizing
(

P(b), b
)

when the basic
algebra is nilpotent. Our main result is (Section 5):

Theorem 1 Let b be a nilpotent basic algebra on a connected symplectic manifold.
Then there is no quantization of

(
P(b), b

)
.

This in turn is a consequence of an algebraic “no-go theorem” to the effect that
a nontrivial Poisson algebra cannot be realized as an associative algebra with the
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Quantizing Basic Algebras 141

commutator bracket. The latter result, which is of independent general interest, is
presented in Section 3.

When M = R2n and b is the Heisenberg algebra h(2n), Theorem 1 provides an
entirely new proof of the classical theorem of Groenewold [13], [6]:

Corollary 2 There is no quantization of the pair
(

P
(

h(2n)
)
, h(2n)

)
.

We remark that this version of the no-go theorem for R2n does not use the Stone-
Von Neumann theorem.

A natural question is whether this obstruction to quantization when b is nilpotent
extends to the case when b is solvable. We show that it does not; in Section 6 we
explicitly construct a polynomial quantization of T∗R+ with the “affine” basic algebra
a(1).

2 Background

Let M be a connected symplectic manifold. A key ingredient in the quantization
process is the choice of a basic algebra of observables in the Poisson algebra C∞(M).
This is a Lie subalgebra b of C∞(M) such that:

(B1) b is finitely generated,
(B2) the Hamiltonian vector fields Xb, b ∈ b, are complete,
(B3) b is transitive and separating, and
(B4) b is a minimal Lie algebra satisfying these requirements.

A subset b ⊂ C∞(M) is “transitive” if {Xb(m) | b ∈ b} spans TmM at every point. It
is “separating” provided its elements globally separate points of M.

Now fix a basic algebra b, and let O be any Lie subalgebra of C∞(M) containing 1
and b. Then by a quantization of the pair (O, b) we mean a linear map Q from O to
the linear space Op(D) of symmetric operators which preserve a fixed dense domain
D in some separable Hilbert space H, such that for all f , g ∈ O,

(Q1) Q({ f , g}) = i
�

[Q( f ),Q(g)],
(Q2) Q(1) = I,
(Q3) if the Hamiltonian vector field X f of f is complete, then Q( f ) is essentially

self-adjoint on D,
(Q4) Q(b) is irreducible,
(Q5) D contains a dense set of separately analytic vectors for some set of Lie gener-

ators of Q(b), and
(Q6) Q represents b faithfully.

Here {·, ·} is the Poisson bracket and � is Planck’s reduced constant.
In this paper we are interested in “polynomial quantizations”, i.e., quantizations

of
(

P(b), b
)

.
We refer the reader to [7] for an extensive discussion of these definitions. However,

we wish to elaborate on (Q4). There we mean irreducible in the analytic sense, viz.
the only bounded operators which strongly commute with all Q(b) ∈ Q(b) are scalar
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multiples of the identity. There is another notion of irreducibility which is useful for
our purposes: We say that Q(b) is algebraically irreducible provided the only operators
in Op(D) which (weakly) commute with all Q(b) ∈ Q(b) are scalar multiples of the
identity. It turns out that a quantization is automatically algebraically irreducible.

Proposition 3 Let Q be a representation of a finite-dimensional Lie algebra b by sym-
metric operators on an invariant dense domain D in a separable Hilbert space H. If Q

satisfies (Q4) and (Q5), then Q(b) is algebraically irreducible.

Proof We need the following two technical results, which are proven in [6]. Denote
the closure of an operator R by R̄.

Lemma 1 Let R be an essentially self-adjoint operator and S a closable operator which
have a common dense invariant domain D. Suppose that D consists of analytic vectors
for R, and that R (weakly) commutes with S. Then exp(iR̄) (weakly) commutes with S̄
on D.

Lemma 2 Let S be a closable operator. If a bounded operator (weakly) commutes with
S̄ on D(S), then they also commute on D(S̄).

By virtue of (Q5) and Corollary 1 and Theorem 3 of [4], we may assume that
there is a dense space Dω ⊆ D of separately analytic vectors for some basis B =
{B1, . . . ,BK} of Q(b). Suppose T ∈ Op(D) (weakly) commutes with every Bk. Ac-
cording to [4, Prop. 1], T leaves Dω invariant. Now by [18, Section X.6, Cor. 2]
each Bk � Dω is essentially self-adjoint; moreover, Tω := T � Dω is symmetric and
hence closable. Upon taking R = Bk � Dω and S = Tω in Lemma 1, it follows
that exp(iBk � Dω) = exp(iBk) and Tω commute on Dω . Lemma 2 then shows that
exp(iBk) and Tω commute on D(Tω) for all Bk ∈ B.

By (Q5) the representation Q of b can be integrated to a unitary representation Q

of the corresponding connected, simply connected group G on H [4, Cor. 1] which,
according to (Q4), is irreducible. From the construction of coordinates of the second
kind on Q(G), the map RK → Q(G) given by

(t1, . . . , tK ) 	→ exp(it1B1) · · · exp(itK BK )

is a diffeomorphism of an open neighborhood of 0 ∈ RK onto an open neighbor-
hood of I ∈ Q(G). Since Q(G) is connected, the subgroup generated by such a
neighborhood is all of Q(G). It follows that as Tω commutes with each exp(itkBk),
it commutes with every element of Q(G). The unbounded version of Schur’s lemma
[19, (15.12)] then implies that Tω = λI for some constant λ on D(Tω) = H. Since
Tω is the smallest closed extension of Tω and Tω ⊂ T ⊂ T̄, we see that T̄ = λI,
whence T itself is a constant multiple of the identity.

3 An Algebraic No-Go Theorem

We first derive an algebraic obstruction to quantization. The idea is to compare the
algebraic structures of Poisson algebras on the one hand with associative algebras of
operators with the commutator bracket on the other.
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Theorem 4 Let P be a unital Poisson subalgebra of C∞(M) or C∞(M)C. If as a Lie
algebra P is not commutative, it cannot be realized as an associative algebra with the
commutator bracket.

Proof To the contrary, let us assume that there is a Lie algebra isomorphism Q : P →
A onto an associative algebra A with the commutator bracket. Let us take m ∈ M
and f , g ∈ P such that { f , g}(m) 
= 0. In particular, then, Xg(m) 
= 0. Replacing
g by g − g(m)1, we can assume that g(m) = 0. The Lie subalgebra Pm =
{h ∈ P | Xh(m) = 0} is clearly of finite codimension in P. Let us put L =
ad−1(Pm) =

{
h ∈ P | {P, h} ⊂ Pm

}
. Since Q(Pm) is a finite-codimensional

Lie subalgebra of A, the Lie subalgebra ad−1(Q(Pm)
)

= Q(L) is simultaneously
an associative subalgebra and hence there is a finite-codimensional two-sided asso-
ciative ideal J contained in Q(L) [11, Prop. 2.1]. But associative ideals are Lie ideals
with respect to the commutator bracket! Hence Q−1( J) is a finite-codimensional (say
(l − 2)-codimensional) Lie ideal of P contained in L. In particular, some linear com-

bination of g2, g3, . . . , gl, say ĝ = gk +
∑l

i=k+1 aigi , k ≥ 2, belongs to Q−1( J). Then

adk−2
f ĝ ∈ Q−1( J) ⊂ L, where ad f ĝ := { f , ĝ}, and thus adk−1

f ĝ = ad f (adk−2
f ĝ) ∈

Pm. But, as g(m) = 0, an easy calculation gives

Xadk−1
f ĝ(m) = k! { f , g}k−1(m)Xg(m) 
= 0,

a contradiction.

See [15] for complementary results regarding P
(

h(2n)
)

vis-à-vis the Weyl algebra.
In Section 5 we will use this result to prove the nonexistence of polynomial quan-

tizations of
(

P(b), b
)

when b is nilpotent.

4 Nilpotent Basic Algebras

Let b be a nilpotent basic algebra on a 2n-dimensional connected symplectic mani-
fold M. Since by (B1) b is finitely generated and as every finitely generated nilpotent
Lie algebra is finite-dimensional, [7, Prop. 2] shows that M must be a coadjoint or-
bit in b∗. Now we have the “bundlization” results of Arnal et al. [1], Pedersen [17],
Vergne [20], and Wildberger [21], which assert:

Theorem 5 Let b be a finite-dimensional nilpotent Lie algebra. For each 2n-dimen-
sional coadjoint orbit O ⊂ b∗, there exists a symplectomorphism (“bundlization”)
ϕO : T∗Rn → O. We may consider b ∈ b as a (linear) function on b∗, and form
ΦO(b) = b|O ◦ ϕO. Then cotangent coordinates (q1, . . . , qn, p1, . . . , pn) on T∗Rn may
be chosen in such a way that ΦO(b) has the form

(1) φ0 p1 + φ1(q1)p2 + · · · + φn−1(q1, . . . , qn−1)pn + φn(q1, . . . , qn),

where the φα are polynomials.
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Thus we may assume that M = T∗Rn and that b consists of elements of the form
(1). See [12] for an analogous characterization of transitive nilpotent Lie algebras of
vector fields.

The canonical example of a nilpotent basic algebra on T∗Rn is the Heisenberg
algebra h(2n) = spanR{1, qα, pα | α = 1, . . . , n}. It is not difficult to see from (1)
that, up to isomorphism, h(2) is the only nilpotent basic algebra on T∗R. This is not
true in higher dimensions, however:

b = spanR{1, q1, p2, q1 p2 + q2, p1}
is a nilpotent basic algebra on T∗R2 which is not isomorphic to h(4). Regardless,
all nilpotent basic algebras on T∗Rn enjoy the following property. We write q =
(q1, . . . , qn), etc.

Proposition 6 If b is a nilpotent basic algebra on T∗Rn, then as Poisson algebras
P(b) = R[q, p].

Proof That P(b) ⊆ R[q, p] is evident from Theorem 5. The opposite inclusion
follows from an algorithm, developed in [17, Section 5.4], which constructs the
{qα, pα | α = 1, . . . , n} as polynomial functions of elements of a basis of b. That
P(b) and R[q, p] coincide as Lie algebras is due to the fact that the bundlization ϕO

is a symplectomorphism or, equivalently, that the coordinates qα, pα are canonical.

We will establish a quantum analogue of this result in the next section.
Recall that the central ascending series for b is

{0} = b0 ⊂ b1 ⊂ · · · ⊂ b� = b

for some positive integer �, where bs+1 = ad−1(bs). Then {b, bs} ⊆ bs−1. Also note
that b1 is the center of b which, according to the transitivity condition in (B3), con-
sists of constants. Choose a Jordan-Hölder basis {b1, . . . , bK} of b. Then {bi , b j} =∑K

k=1 ck
i jbk, where the structure constants ck

i j = 0 whenever k ≥ min{i, j}. We

take b1 = 1. We call the smallest integer N such that b ∈ bN+1 the “nildegree” of
b ∈ b. Then nildeg(bi) ≤ nildeg(b j) whenever i < j. The nildegree of a polynomial
f ∈ P(b) is then the smallest integer N such that

(
ad(bi1 ) ◦ · · · ◦ ad(biN+1 )

)
f = 0

for all i1, . . . , iN+1 ∈ {1, . . . ,K}.

5 Proof of Theorem 1 and Related Results

Before proving Theorem 1 we establish several results which are useful in their own
right.

Let the basic algebra b be nilpotent. Fix a Lie subalgebra O of P(b) containing b.
Suppose that Q : O → Op(D) is a quantization of (O, b) on some invariant dense
domain D in a Hilbert space.
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Proposition 7 Q is injective.

Proof Let L = ker Q; then given g ∈ L, there is a k such that g ∈ Ok, where Ok is the
subspace of O consisting of polynomials of nildegree at most k in the elements of b.
Consider the adjoint representation of b on Ok ∩ L. (This makes sense as L is a Lie
ideal.) This is a nilrepresentation, so by Engel’s theorem [16, Section X.2] there exists
a nonzero element f ∈ Ok ∩L such that { f , b} = 0 for all b ∈ b. But then transitivity
implies that f is a constant, which contradicts (Q2). Thus L = {0}.

Thus condition (Q6) is actually redundant in the case of nilpotent basic algebras.
Let A be the associative algebra generated over C by {Q(b) | b ∈ b}. The next

result generalizes Proposition 6 to the quantum context.

Proposition 8 A is isomorphic to a Weyl algebra.1

Proof First we claim that the center of A is just CI. Indeed, suppose [A,Q(b)] = 0
for all b ∈ b. Since by construction every A ∈ A has an adjoint, we may decompose A
into its symmetric As and skew-symmetric Aa components. Algebraic irreducibility
then implies that the symmetric operators As and iAa are both scalar multiples of the
identity.

Next let ψ be the homomorphism of the universal enveloping algebra U
(
Q(bC)

)
into A determined by the inclusion Q(bC) ↪→ A. Then J = kerψ is a two-sided ideal
in U

(
Q(bC)

)
. Clearly, ψ is an epimorphism and thus U

(
Q(bC)

)
/ J ≈ A.

Since furthermore Q(bC) is nilpotent, the desired result follows from [3, Theo-
rem 4.7.9].

By requiring Q to be complex linear, we may view it as a quantization of the com-
plexification OC. We next prove that Q maps OC into A. That “polynomials quantize
to polynomials” can be regarded as a generalized “Von Neumann rule,” cf. [7].

Proposition 9 Q(OC) ⊆ A.

Proof We argue inductively on the nildegree of f ∈ O that Q( f ) ∈ A. In nildegree 0
this follows immediately from transitivity and (Q2). Now suppose it is also true for
polynomials in O of nildegree J ≤ N , and let f ∈ O have nildegree N + 1. Then for
each b ∈ b,

[Q( f ),Q(b)] = −i�Q({ f , b}) ∈ A

by (Q1) and the inductive hypothesis, since nildeg({ f , b}) < nildeg( f ). Thus the
map

W 	→ [Q( f ),W ]

defines a derivation of the associative algebra A. As it is well known that every deriva-
tion of a Weyl algebra is inner [3, Section 4.6.8], by Proposition 8 there is thus an
A ∈ A such that [Q( f ),W ] = [A,W ] for all W ∈ A. Algebraic irreducibility then

1Recall that the Weyl algebra W (2k) is the associative algebra over C generated by {zα,wβ | α, β =
1, . . . , k} and the relations [zα,wβ] = −iδαβ , [zα, zβ] = 0 = [wα,wβ].
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implies that the symmetric operator Q( f ) and the symmetric component As of A dif-
fer by a constant multiple of I. Thus the inductive step is proved and so Q(O), and
hence Q(OC), are contained in A.

We are finally ready to show that there is no quantization of
(

P(b), b
)

. Set Bi =
Q(bi). As Q(bC) is nilpotent, we may likewise define the nildegree of the Bi etc.2 Since
Q is faithful we have that nildeg(Bi) = nildeg(bi).

Proof of Theorem 1 Suppose that Q : P(b) → Op(D) were a quantization of(
P(b), b

)
. Let P = P(b)C. From Proposition 9 we know that Q(P) ⊆ A, and from

Proposition 7 we have that Q is injective. Thus if we can show that Q is surjective, then
Q will be a Lie algebra isomorphism of P onto A, thereby contradicting Theorem 4.

To this end, we shall prove inductively that

(∗N ) If the monomial br1
1 · · · brK

K ∈ P(b) is of nildegree J, J ≤ N, then

Q(br1
1 · · · brK

K ) = S(Br1
1 · · ·BrK

K ) + polynomials of nildegree < J,

where S denotes symmetrization over all factors.
We have already seen that condition (∗0) holds. Now assume that br1

1 · · · brK
K has

nildegree N + 1. By (Q1),

[Q(br1
1 · · · brK

K ),B j] = −i�Q({br1
1 · · · brK

K , b j})

= −i�Q
( K∑

l=1

rlb
r1
1 · · · brl−1

l {bl, b j} · · · brK
K

)

= −i�
K∑

l,m=1

rlc
m
l j Q(br1

1 · · · brm+1
m · · · brl−1

l · · · brK
K )

= −i�
K∑

l,m=1

rlc
m
l j S(Br1

1 · · ·Brm+1
m · · ·Brl−1

l · · ·BrK
K )

+ polynomials of nildegree < N

where the last equality follows from (∗N ), since

nildeg(cm
l j br1

1 · · · brm+1
m · · · brl−1

l · · · brK
K ) ≤ nildeg({br1

1 · · · brK
K , b j})

< nildeg(br1
1 · · · brK

K ).

Furthermore, direct computation yields

[S(Br1
1 · · ·BrK

K ),B j] = −i�
K∑

l,m=1

rlc
m
l j S(Br1

1 · · ·Brm+1
m · · ·Brl−1

l · · ·BrK
K ).

2This is so even thoughQ need not be a nilrepresentation.
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Consequently for each j = 1, . . . ,K,

[Q(br1
1 · · · brK

K ) − S(Br1
1 · · ·BrK

K ),B j] = polynomials of nildegree < N.

This implies that the polynomial Q(br1
1 · · · brK

K ) − S(Br1
1 · · ·BrK

K ) ∈ A has nildegree at
most N , and (∗N+1) follows.

Applying (∗N ) recursively, we see that as the S(Br1
1 · · ·BrK

K ) form a basis for A, Q

maps onto A.

Even though one cannot quantize all of P(b), it is possible to quantize ‘sufficiently
small’ Lie subalgebras thereof (see, e.g. [6]). We emphasize that Propositions 7–9 are
valid in this context. It is an open problem to determine the maximal quantizable Lie
subalgebras of P(b).

6 Solvable Basic Algebras

We have shown that there is an obstruction to quantizing symplectic manifolds with
nilpotent basic algebras. It is also known that there is an obstruction to quantizing
T∗S1 with the Euclidean basic algebra e(2), which is solvable [9]. Thus it is natural to
wonder if the nilpotent no-go theorem extends to the solvable case. It turn out that it
does not: We now show that there is a polynomial quantization of T∗R+ = {(q, p) ∈
R2 | q > 0} with the “affine” basic algebra

a(1) = spanR{pq, q2}.

Upon writing x = pq, y = q2, the bracket relation becomes {x, y} = 2y. Thus
a(1) is the simplest example of a solvable algebra which is not nilpotent. The corre-
sponding polynomial algebra P = R[x, y] is free, and has the crucial feature that for
each k ≥ 0, the subspaces Pk are ad-invariant, i.e.,

(2) {P1, Pk} ⊂ Pk.

(Here Pk denotes the subspace of homogeneous polynomials of degree k in x and y,

and Pk =
⊕k

l=0 Pl. Note that P1 = a(1)). Because of this {Pk, Pl} ⊂ Pk+l−1, whence
each P(k) =

⊕
l≥k Pl is a Lie ideal. We thus have the semidirect sum decomposition

(3) P = P1
� P(2).

Now on to quantization. In view of (3), we can obtain a quantization Q of P simply
by finding an appropriate representation of P1 = R ⊕ P1 and setting Q(P(2)) = {0}!

The connected, simply connected covering group of a(1) is A(1)+ = R � R+ with
the composition law

(ν, λ)(β, δ) = (ν + λ2β, λδ).

(A(1)+ is isomorphic to the group of orientation-preserving affine transformations
of the line, whence the terminology.) Since A(1)+ is a semidirect product we can
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generate its unitary representations by induction. Following the recipe in [2, Sec-
tion 17.1] we obtain two one-parameter families of unitary representations U± of
A(1)+ on L2(R+, dq/q) given by

(
U±(ν, λ)ψ

)
(q) = e±iµνq2

ψ(λq)

with µ > 0. We identify the parameter µ with �
−1. According to Theorems 4 and 5

in [2, Section 17.1] the remaining two representations (one for each choice of sign)
are irreducible and inequivalent; moreover, up to equivalence these are the only non-
trivial irreducible ones.

Let D ⊂ L2(R+, dq/q) be the linear span of the functions
√

q hk(q), where the hk

are the Hermite functions. Writing π± = −i�dU± we get the representation(s) of
a(1) on the dense subspace D:

π±(pq) = −i�q
d

dq
, π±(q2) = ±q2.

Extend these to P1 by taking π±(1) = I, and set Q± = π±⊕0 (cf. (3)). Clearly (Q1)–
(Q3) hold, by construction (Q4) is satisfied, and Q± � a(1) = π± is faithful. Finally,
it is straightforward to verify that D consists of analytic vectors for both π±(pq) and
π±(q2). Thus Q± are the required quantization(s) of (P, P1).

Remarks.

1. The + quantization of a(1) is exactly what one obtains by geometrically quantizing
T∗R+ in the vertical polarization. Carrying this out, we get H = L2(R+, dq) and

pq 	→ −i�
(

q
d

dq
+

1

2

)
, q2 	→ q2.

The + quantization is unitarily equivalent to this via the transformation
L2(R+, dq/q) → L2(R+, dq) which takes f (q) 	→ f (q)/

√
q.

2. Note that a(1) ⊂ sp(2,R). In fact, the + quantization is equivalent to the restric-
tions to a(1) of the metaplectic representations of sp(2,R) on both L2

even(R, dq)
and L2

odd(R, dq) [7, Section 5.1].
3. Since Q(P(2)) = 0, the quantization is somewhat ‘trivial’. However, there are

quantizations which are nonzero on P(2): for instance, set Q(xk) = kQ(x) for
k > 0, Q(xl y) = Q(y), and Q(xl ym) = 0 for m > 1.

4. Our quantization of T∗R+ should be contrasted with that given in [14, Sec-
tion 4.5]. Also, we observe that this example is symplectomorphic to R2 with
the basic algebra spanR{p, e2q}.

5. This is not the first example of a polynomial quantization; in [5] a quantization
of the entire Poisson algebra of the torus was constructed. However, the basic
algebra in that example was infinite-dimensional.

What makes this example work? After comparing it with other examples, it is evi-
dent that this polynomial quantization exists because we cannot decrease degree in P
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by taking Poisson brackets. (That is, we have (2) as opposed to merely {P1, Pk} ⊂ Pk.)
Based on this observation, it seems reasonable to suspect that there is an obstruction
to quantizing

(
P(b), b

)
only if it is possible to lower degree in P(b) by taking Poisson

brackets. We shall pursue this line of investigation elsewhere (cf. also [7]).
We thank M. Gerstenhaber, B. Kaneshige, and N. Wildberger for providing us with

helpful comments and references.
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