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Carmichael Meets Chebotarev

William D. Banks, Ahmet M. Giiloglu, and Aaron M. Yeager

Abstract. For any finite Galois extension K of QQ and any conjugacy class C in Gal(K/Q), we show that
there exist infinitely many Carmichael numbers composed solely of primes for which the associated
class of Frobenius automorphisms is C. This result implies that for every natural number # there are
infinitely many Carmichael numbers of the form a? + nb* with a, b € Z.

1 Introduction

For every prime number N, Fermat’s little theorem asserts that
(1.1) a¥ =a(modN) foralla € Z.

Around 1910, Carmichael began an in-depth study of composite numbers N with
this property, which are now known as Carmichael numbers. In 1994 the existence
of infinitely many Carmichael numbers was established by Alford, Granville, and
Pomerance [1]. The aim of this work is to prove the following extension of their
result.

Theorem 1.1 Let K/Q be a finite Galois extension, and let C be a fixed conjugacy class
in Gal(K/Q). Then there are infinitely many Carmichael numbers that are composed
solely of primes for which the associated class of Frobenius automorphisms is the class C.

Let K/Q be an arbitrary number field and Kj its Galois closure. Taking the con-
jugacy class of the identity automorphism of Ky in Theorem 1.1, it follows that there
exist infinitely many Carmichael numbers composed solely of primes that split com-
pletely in K. Since such primes must also split completely in K, we deduce the fol-
lowing statement, recovering a recent result of Grantham [8, Theorem 2.1] on the
existence of infinitely many Carmichael-Frobenius numbers with respect to K.

Corollary 1.2 For any fixed algebraic number field K, there are infinitely many Car-
michael numbers that are composed solely of primes that split completely in K.

As prime numbers and Carmichael numbers are linked by the common prop-
erty (1.1), it is natural to ask whether certain questions about primes can also be
settled for Carmichael numbers; see [2, 3, 6]. For example, it is well known that for
every natural number 7, there are infinitely many primes of the form a* + nb* with
a,b € Z (see the book [4] by Cox), and thus it is natural to ask whether the same
result holds for the set of Carmichael numbers. In view of Corollary 1.2, we give an
affirmative answer to this question.
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Corollary 1.3 For any fixed integer n > 1, there are infinitely many Carmichael
numbers of the form a* + nb* with a, b € Z.

To see why, let S, = {a® + nb* : a,b € Z}, and let K,, be the ring class field asso-
ciated with the order Z[+/—n] in the imaginary quadratic field Q(v/—n). According
to [4, Theorem 9.4], if p is an odd prime not dividing #, then p splits completely in
K, ifand only if p € S,. Applying Corollary 1.2 with K = K,,, we see that there are
infinitely many Carmichael numbers N composed solely of primes p € §,,. Since S,
is closed under multiplication, every such N also lies in S,;, and the corollary follows.

In a different direction, taking K = Q(u,), where p; is a primitive d-th root of
unity, we recover the following result.

Corollary 1.4 For any coprime integers a and d > 1, there are infinitely many Car-
michael numbers composed solely of primes p = a (mod d).

Matoméki [11] has recently shown that whenever ged(a, m) = 1 and a is a quadra-
tic residue mod m, there are infinitely many Carmichael numbers in the progression
a mod m. Assuming the necessary compability between the numbers a, m and the
conjugacy class C in Gal(K/Q), it should be possible to combine the methods of [11]
with those in our proof of Theorem 1.1 to show that there are infinitely many Car-
michael numbers in the arithmetic progression a mod m that are composed solely of
primes for which C is the associated class of Frobenius automorphisms. We thank
the referee for posing this question and leave it as an open problem for the interested
reader.

2 Preliminaries

Let K/Q be a finite Galois extension of degree ngy = [K:Q] and absolute discrimi-
nant Zx. We put

(2.1) Ng = {dEN:gcd(d,.@K): 1}.
For any Galois extension M/N and any unramified prime ideal p of N, we denote
by (p, M|N) the conjugacy class of Frobenius automorphisms of Gal(M/N) corre-

sponding to the prime ideals of M above p.
Given a conjugacy class C in Gal(K/Q), let

Pc = {p € Ng : p prime, (p,K|Q) =C}.

For d € N and M a number field, put M; = M(114), where 14 is a primitive d-th
root of unity. According to [15, Proposition 2.7], the discriminant of Q; is

4o

@ T
(2.2) D, = (1) I, 7@/

where ¢( - ) is the Euler function.
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Lemma 2.1 Foreach d € Nk, Ky is a Galois extension of Q of degree ng¢(d) with
discriminant

ng _ ‘@K¢(d)‘@([£’dK'

Furthermore, Gal(K;/Q) ~ Gal(K/Q) x Gal(Q,/Q), where the isomorphism is given
by the restriction map o — (0|x, 0|qQ,)-

Proof In view of (2.1) and (2.2), the discriminants Zx and %y, are coprime for
every d € Ng. Put L = K N Qq. By [13, Ch. 3, Corollary 2.10], the absolute discrim-
inant Z;, of L divides both Zx and Zgy,; thus, 2, = land KN Q4 = L = Q. The
result now follows from [13, Ch.1, Proposition 2.11] and [5, 14.4, Proposition 21 and
Corollary 22]. ]

The constants ¢, c1, ¢z, - . . , that appear in our proofs are assumed to be positive
and depend only on the field K. All constants implied by the symbols O, <, and >
are absolute; we write O, <k, and > to indicate that the implied constant depends
on K.

3 Zeros of Dedekind Zeta Functions

For each d € N, let (4(s) be the Dedekind zeta function (k,(s) associated with the
field K; considered in Section 2.

Lemma 3.1 There are constants c;,c; > 0 depending only on K with the property
that forall T > 1 and U > 2 there exists a proper integral ideal f = f(K,U, T) of K
such that for any d € Ng withd < U, we have f | dOg, where O is the ring of integers
of K, whenever (4(s) has a zero § + i~y in the region

1

(3.1) Q(T,U)={5+i735>1_m’

vl < T}~
Proof We use the notation of [16, §1]. For each d € Ng with d < U, and any
Dirichlet character x modulo (d) = dOx of conductor f,, we see that

dX = |-@K|NK/QGX) <I§ d’™® g U™,

Hence, it follows that d, < (c;U)" for some constant ¢c; = ¢;(K). Applying [16,
Theorem 1.9] with Q = (U)™ and .Z = log(QT"*) = nk log(c,TU ), we see that
for some constant ¢; = ¢;(K), any Hecke L-function L(s, x) with d,, < Q has at most
one zero in the region (T, U). Moreover, the remark following [16, Theorem 1.9]
asserts that there is at most one function L(s, x.) vanishing in (T, U) among all
L(s, x) associated with primitive characters x with d,, < Q. If such a zero exists, then
it is a real number S, (which can be bounded in terms of Q). For such a zero we have

a1 (51

>l — > .
B log(c, TU) logc,

Replacing ¢; by a smaller constant (which also depends only on K), we can assume
that (x(B«) # 0, i.e., X« is not the trivial character.
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By [13, Ch.7, Corollary 10.5],

Ca(s) = Ck(s) T] LG, x, KalK)
X#1

is the product of Artin L-functions, where x runs over the irreducible characters of
Gal(K;/K). Let K, be the fixed field of the kernel of x. Then y is injective as a
character of Gal(K, /K). Hence, by [13, Ch.7, Theorem 10.6] there exists a primitive
Dirichlet character ¥ modulo the conductor f, of the extension K, /K such that

L(57 X5 KdlK) = L(S; %)

Furthermore, since K C K, C Ky, we see by [9, 5.1.5] and the last paragraph of
[9, §6] that the conductor §, divides (d); thus, dy < Q.

Using the remarks above we conclude that (;(s) vanishes in Q(T, U) if and only if
L(s, x«) is a factor of (4(s) and L(fBs, x«) = 0. In this case, we know that f,, | (d)
and f,, # 1; thus, we can take f = f,,. ]

Lemma 3.2 There are constants cs, cs, ¢s > 0 depending only on K with the property
that foralld € Nk, T > c3d, and o > 1 — 1/cs, the number Ny(o, T) of zeros  + i~y
of Ca(s) with 8 = o and |y| < T satisfies the bound

Na(o, T) < ey(Td)" =7

Proof We continue to use notation of [16, §1]. As in the proof of Lemma 3.1, for
each d € Ng let H denote the trivial subgroup of the ideal class group I((d))/P)
modulo (d), and note that the quantities hy and d(H) defined by [16, Equa-
tion (1.1b)] satisfy the bound

max{hy,d(H)} < (cd)™

for some constant ¢ = ¢(K) in view of [16, Lemma 1.16]. The result now follows
by applying [16, Corollary 4.4] with Q = (c¢d)"™ and T > c3d, where ¢; = ¢3(K) is
any constant that is large enough so that the conditions T > land T > n%h}i/"’( of
[16, Corollary 4.4] are met (for the latter condition, any number c; > cn% suffices by
the inequality above). ]

4 Chebotarev Density Theorem

Our goal in this section is to provide a lower bound for the counting function of the
set

ﬂcd:{peycz pEl(modd)}

using an effective version of the Chebotarev density theorem given in [10].

By [13, Ch.1, Corollary 10.4] we see that p = 1 (mod d) if and only if p splits
completely in Qg if and only if (p, Q4|Q) = {14} for p € N, where 1; denotes
the identity element of Gal(Q,4|Q). It follows by the isomorphism in Lemma 2.1 that
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there exists a conjugacy class C; in Gal(K,;/Q) (one that corresponds to C x {14})
with the property that

PE P, = (pKIQ=Ci (p€Nk).
Accordingly, we study the function
me(xd, 1) =#{p <x : p € Nk, (p,Ks|Q) =Cy}

and its weighted version

Yelsd, )= Y logp,
pymip” <x
(p" Ka|Q)=Cq

where the sum is taken over primes in Nx. Our main result is the following:

Theorem 4.1 There are constants x;, B > 0 depending only on K with the property
that for all x > x; and every d € Ng withd < xB,

IC| y

x4/5< <x
() logy  * SYSY

(4.1) we(y;d, 1) >

whenever (4(s) has no zeros in the region

(5]

(4.2) QM@={6+W:5>1—5§;@y

|ﬂ<fﬂ-

Proof Let B = B(K) be a constant in the interval (0, ﬁ) to be further determined
below. For convenience, we set

c1logy
4.3 0 =27
(4.3) 5(y) Tog(cy )
For x*/° < y < x, we have
95(y) >1 a and y3B < x3B7

B logy ~ B log(c;x48)

hence the region

~ 0
S = {B+iv:B>1- 27) <"}

is contained in 25(x); therefore, (;(s) has no zeros in Q 5(y) whenever it has no zeros
in QB(X).

Let g be a fixed element of C; with d € Ny and d < x5, H = (g) the cyclic
subgroup of G generated by g, E the fixed field of H, and H the dual of H, i.e., the set
of irreducible characters x: H — C*.
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Applying [10, Theorem 7.1] with the choices G = GalK; | Q and T = y°2, and
taking into account the bounds

|Gl = n, = ¢(d)ng < d <y

log | Zx,| < ¢(d)(log|Zk| + nx logd) < y*logy,

which hold by Lemma 2.1 for all d < x® < y°%/4, we derive that

il ., [Cl Cl 15

(4.4) Yolysd, 1) — =y + 7= Zs(y) < 1=y logy,
[CIC K |G|

where we have used |C4| = |C|, and

o
zB<y>:zx<g>< DAy 1>.
o o P o P
lyI<T lpl<}3

Here, the inner sums are taken over the nontrivial zeros p = [ + iy of the Artin
L-functions L(s, x, K4|E) that satisfy

Gil9) =TT L(s, x. Kdl ).
XE€EH

Assuming that (4(s) has no zeros in the region 5(x), it follows by the func-
tional equation of (;(s) that every zero p = [ + iy of (4(s), and thus also of each
L(s, x, K4|E), lies outside of the region

0s(y)
log y

{Beiv:0<s< 2L pi<yr},

and thus |p| > 0p(y)/logy > 1/log y for every such zero. We conclude that

y? 1 1
> LT Lt o sy
P p

poet P
i<t <t hist

where n, (t) is the number of zeros /5 + iy of L(s, x, K4|E) such that 0 < 5 < 1 and
|y — t| < 1. By [10, Lemma 5.4],

nx¢(d)

(4.5) n,(t) < logd, +
X 8 X |H|

log(|t] +2),
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where d,, = |Z5|Ng/q(f,). Summing over all characters x € H and using (4.5) we
see that

(4.6) Zx(g)( 2 3 ;)

Xeﬁ p:ﬁ< .
i<t ‘p‘ 2

d
<y logy Y (logd, + ﬁ) =" logy (log |Zk,| + y**)
XEH

y1/2+23 10g2 5,

where the equaliy |Z,| = ][], d, follows from [13, Ch. 3, Corollary 2.10] and the
Conductor-Discriminant formula [13, Ch.7, Proposition 11.9]. Moreover,

SBJ

Y Ly oo S > 0

pr f<} P j=1
, i< <+1
1< <y " 1<y IAS Iv\ j

thus, summing over the characters we obtain

3BJ

@7 > ox@ Y, y 1/22 Z( ﬁf;(d)log(jﬂ))
j=

x€H p: B<}
1<|yI<y”

<1§ )/1/2+ZB logz 5.
In view of (4.6) and (4.7) we have

(4.8) Zp(y) = _ X(g) Z —+o (¥ 1og’ y).

XEH
\ |<y3B

To estimate the sum in (4.8), we use ideas (and notation) from the proof of [1,
Theorem 2.1]. For each zero p = f3 + iy in the sum, we have |y”| = y” and
pl =3+ >1+ |7| Fix x € H and write Y% for any sum over all zeros 3 + i~y
of L(s, X,Kd/E) witho < 5 < avand || < ysB Put 7 =1 — 63(y)/log y, and note
that ZT = = 0, since (4(s) has no zeros in QB( ¥). Hence, using the upper bound

¥ < y'=1/% when B < 1 — 1/cs and the identity y® = y!'=1/% + logyflﬂ_l/c5 y° do
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when [ lies in the range 1 — 1/¢s < 8 < 7, it follows that

(4.9)
1—1/cs T 1—1/cs 8 T 3
Y’ Y’ Y’ y Y
. — _+ z + -
P S S S R D
p 1/2 1—1/cs 1/2 1—1/cs
B=1, v<y?
< ylfl/“i ! +log y i o ’ y7 do
7 L+ |v] =y L+ 1y Jiz/e
1 T i 1
1=1/es +1 N> —— ) do.
DR P e °gy/1_l/c/ (;Hw) 0
[vI1<y™®

Summing over all characters and using (4.5), the first term above can be bounded as

before:
1 U’SBJ 1
4100 D x@ > WSZZ > 1+
vel \ngyw xef J=0 j<\”/|p<j+1
L7 dlogd + dlog(1 + j) 2B1002
< ; 1 <L y~log’y.

Let Ny (o, T) be the number of zeros 8 + iy of L(s, x, K4|E) with 8 > o and || < T.
Then, it follows by partial summation that foro > 1 — 1/cs,

o Ny(o,y®) 7" Ny(o,t
S Ny ey + DD [T N
1+ |’7| ' y cd t

a

Summing over all characters x once again we obtain

3B
o= 1 Ny(o,y*®) [V Na(o,1)
ZX(g)ZW < Nd(0'7C3d)+ T+ t2 dt

- d
yed o o

By Lemma 3.2, we have forallo > 1 — 1/cs and d < x% < y?B,

T ) Y ) Gl
Y c3d t

1
Z X(g) Z W < C4(C3d2)65(1—0‘

el g

y** tes(1—0)

dt.

4csB(1—0) 2¢csB(1—0)
< yieB1=0) 4
§< Y y /1 12
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Using the bound

/fB 0= flogy if1-1/es <o <1-1/(0s),
1 12 K |1 ifo >1—1/(2c),

and assuming that B < 1/(4cs), we derive that

T . - T 1
(B«
xeH o

—1/cs

T 1—1/(2¢s)
<I§ / ya . y4C5B(170') do +/ ya . y2csB(170) lOg)/dO'
1 1

—1/cs —1/cs
7 1-1/(265)
sB —4¢sB 26-B .
= y4c / ya(l 4sB) g5 + s logy/ ya(l B) dor
1—1/cs —1/cs
(1 —4csB)log y (1—26B)

_ rep(=(1 — 4sB)03(y)) yiB=1/e)
a (1 —4c¢sB)logy (1 —2¢sB)’

where we have used the definition of 7 in the last step. Combining this bound with
(4.8), (4.9), and (4.10) and assuming further that B < 1/(5¢s), we find that

Zy(y) < yexp(=305()) -

Finally, using (4.4) we see that

i IC] | —B o2
411 id, 1) — < _1g 1
(@1 | elsd ) = 5y | < g o (ep(—400)) + " log )

for some sufficiently large constant ¢ = ¢(K).
To finish the proof, we now put

. 1 1 [5]
B= rmn{ —, —,7}.
100° 5¢5° 301og(6¢)
Note that B depends only on K, the bound (4.11) holds, and we have

( c ) < 1
C €X] _ —.
P\7308) 56

On the other hand, from the definition (4.3) one sees that f5(y) > ¢;/(6B) holds for
any y > yi, where y; = exp((logc,)/B). Therefore,

(y = »).

A=

(4.12) cexp(—305()) <
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Increasing the value of y; if necessary, we also have

(4.13) cy Blog® y < (y = y1)-

=

Put x; = yf/ 4, so that the condition y > y, is satisfied whenever < y < xand
x 2 x;. Combining the bounds (4.11), (4.12), and (4.13) we obtain

2|1C
Yelysd, 1) = 3:G|y (x*° <y <x)

for all x > x;. Partial summation yields

2[C| y 4\ﬁ> Cl (/5 <

;d, 1) > —— — > —
me(ysd. 1) 3|G|logy logy = 2|G|logy

where the last inequality holds when ,/y > 24|G|/|C|, which is guaranteed by our
choice of B and d with d < x®. We finish the proof by noting that |G| = ng¢(d). =

5 Construction of Carmichael Numbers

In view of Theorem 4.1, our construction of Carmichael numbers with the property
stated in Theorem 1.1 follows closely that given in [1]. We shall be brief, since most
of the details are the same. Our principal tool is the following variant of [1, Theo-
rem 3.1].

Lemma 5.1 Let the constants x,, B have the property stated in Theorem 4.1, and sup-
pose that x > x;. If L is any squarefree number in Ny that is not divisible by any prime
exceeding x'5/2 and

prime q|L

1
<
= 60ng

= | =

then there is a positive number k < x' =8 with gcd(k, L) = 1 such that

1

#{d|L: 1 1<x} >——
{d|L:dk+1e P, dk+ x} 6nrTogx

#{d|L:d<x"}.

Proof We use ideas (and notation) from the proof of [1, Theorem 3.1].

Observe that the region Q5(x) defined by (4.2) is the same as the region Q(T,U)
defined by (3.1) when we put T = x°8 and U = 5.

Fix a prime po with the property that py | Ng/q(f), where f = f(K,x%, x*) is
given by Lemma 3.1. If L is divisible by po let L’ = L/ py; otherwise, let L’ = L. Note
that

(5.1) #{d|L :d<y}>--#{d|L:d<y} (y=1)

N —
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(see [1, p. 716]). Since py 1 L, for every divisor d of L’ with d < x®, Lemma 3.1
shows that (;(s) has no zeros in Q5(x); therefore, using the lower bound (4.1) from
Theorem 4.1 we have

C| dx'8
By s Gl
meld T ) > o S Togx

On the other hand, since any prime divisor g of L does not exceed x"!~5/2, we have
from [12, Theorem 2],

10 dx'—8
7o (dx'"B; d , 1 < w(dx'"B;d A< ——
e g, 1) < m( q,1) 4 o(d)Togx

Therefore, the number of primes p € P, with p < dx! P and ged((p—1)/d,L) = 1
is at least

meldx' F5d, 1) — > we(dx' P dg, 1)

prime gq|L

1 1 dx'—B x!~B
(-0 y ! > 2
2ng q ] ¢(d)logx = 3nglogx

prime gq|L

Using this bound together with (5.1) (instead of [1, Equation (3.1)]), the proof can
be concluded in the same manner as that of [1, Theorem 3.1]; the remaining details
are omitted. |

We are now in a position to establish a quantitative version of Theorem 1.1.

Theorem 5.2 There are constants x, ¢y > 0 depending only on K such that for all
X 2= Xo, there are at least x° Carmichael numbers up to x that are composed solely of
primes that split completely in K.

Proof To prove this, we only need to modify the proof of [1, Theorem 4.1] slightly,
as follows.

Let € be the set of numbers E € (0, 1) for which there exists a constant x, > 0
depending only on E such that

(5.2) (e, x'7F) >nl) (x> x)

where 7(x, y) denotes the number of primes p < x such that p — 1 is free of prime
factors exceeding y.

Fix E = 3/5, which lies in the set € (see, e.g., [7]), and let x, be a number for which
the bound (5.2) holds. Let x;, B be numbers with the property stated in Theorem 4.1,
and put x3 = max{x;, x, }. Note that our choice of x; depends only on K.

Let y > 2 be a parameter and Q the set of primes g € Ng with

y*?/logy < q < y*?
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for which g — 1 is free of prime factors exceeding y. By (5.2)

(5.3) Q= 7(y*?2, y) = 7(y**/logy) = Y 1> y*?/logy
9| Zx

for all sufficiently large y. Let L be the product of primes in Q; then

logL = Zlogq < Z logg = 9(y°/%) < 1.1y°2
9€Q a<y*

for all y > 0, where we have used [14] for the last inequality. Furthermore,

og 5/2
ML) = II p*<TI pL%J < ySW(y)/2 <,
PIAE) Py

where the last inequality follows again by [14]. We also have
(5.4) n(Gp) < AML)(1+1logL) < €7(1+1.1y°%) < €7,

where G; = (Z/LZ)*.
Letx = ¢’ ', where § = 5¢/(8B). Since

>

prime gq|L

APV EL A
) n
Ty ogyqeyn 1 8/ K
for sufficiently large y, it follows from Lemma 5.1 that there exists an integer k co-
prime to L, for which the set P of primes p < x with p € ¢ and p = dk + 1 for

some divisor d of L, satisfies

(5.5) |P| > #{d|L:1<d<A.

6ng logx

The product of any
. log(x®)
v [ 10gy5/2]

distinct prime factors of L, is a divisor d of L with d < x®. We deduce from (5.3) that

sreas 2 (07) = (90)" (i)

Thus, by (5.5) and the identity (5/2 — 1 — 6)2B/5 = 3B/5 — /4,

2B ]nng

|fP| = #(i 5/27175) Sy
~ 6nglogx \ 2B

> x3B/5—¢/3
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for all sufficiently large values of y. Now take P’ = P\ Q. Since |Q| < /4, it follows

by the above inequality that
(56) |9)/| > x3B/5—5/2

for all sufficiently large values of y.

We may view P’ as a subset of the group (Z/LZ)* by considering the residue class
of each p € P’ modulo L. If S is a subset of P’ that contains more than one element
and if

I(S):= [[ p=1(mod L),
PES

then TI(S) is a Carmichael number. Indeed, every member of P’ is 1 mod k so that
II(S) = 1 (mod k), and thus II(S) = 1 (mod kL), since (k,L) = 1. However, if
p € P’, then p € P so that p — 1 divides kL. Thus I1(S) satisfies Korselt’s criterion.

Lett = ¢, Then, by [1, Proposition 1.2], we see that the number of Carmi-
chael numbers of the form TI(S), where S C P’ and |S| < ¢, is at least

|P] |P] - <ITP’|> . 11—n(Gr) ~ H(3B/5—¢)
(LtJ)(n(GL)) >\ g) P

for all sufficiently large values of y, using (5.4) and (5.6). But each such Carmichael
number II(S) so formed is such that II(S) < x’. Thus for X = x* we have C(X) >
X38/5¢ for all sufficiently large y. But X = exp(y'*? exp(y'*%/?)), so that C(X) >
X3B/5=¢ for all sufficiently large values of X. Since y can be uniquely determined from
X, we complete the proof by taking ¢ = EB/2. ]
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