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We study the tearing instability of a current sheet in a relativistic pair plasma with a
power-law distribution function. We first estimate the growth rate analytically and then
confirm the analytical results by solving numerically the dispersion equation, taking into
account all exact particle trajectories within the reconnecting layer. We found that the
instability is suppressed when the particle spectrum becomes harder.
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1. Introduction

Collisionless magnetic reconnection plays crucial role in many astrophysical
phenomena, such as solar flares (Innes et al. 2015), pulsar winds and nebulae (Coroniti
1990; Lyubarsky & Kirk 2001), jets from active galactic nuclei (Romanova & Lovelace
1992; Christie et al. 2019), gamma-ray bursts (McKinney & Uzdensky 2012; Lazarian,
Zhang & Xu 2019) and black hole magnetospheres (Bransgrove, Ripperda & Philippov
2021; Ripperda et al. 2022). This process provides efficient conversion of magnetic to
particle energy. Magnetic reconnection could effectively produce non-thermal particle
distributions (Zenitani & Hoshino 2001; Larrabee, Lovelace & Romanova 2003; Drake,
Swisdak & Fermo 2013; Guo et al. 2020; Uzdensky 2022).

In this paper, we consider the linear stage of tearing instability in a relativistic
pair plasma. This instability plays a key role in triggering magnetic reconnection.
Even though non-relativistic tearing instability has been studied intensively, only a few
papers generalise these results to a relativistic plasma. Zelenyi & Krasnoselskikh (1979)
considered the collisionless tearing mode in a relativistic plasma analytically by using
the kinetic approach. Their results were confirmed both analytically and numerically by
Pétri & Kirk (2007), Zenitani & Hoshino (2007) and Hoshino (2020). Relativistic tearing
instability was analytically studied in the fluid approach by Lyutikov (2003), Komissarov,
Barkov & Lyutikov (2007) and Yang (2019).

Fluid models applied to a collisionless pair plasma can take into account kinetic effects
only phenomenologically by including inertial terms and off-diagonal pressure terms
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2 I. Demidov and Y. Lyubarsky

in the generalised Ohm’s law (e.g. Hesse & Zenitani 2007). In the simplest geometry
without a guide field, these additional terms can be reduced to the form that includes
effective or ‘anomalous’ resistivity (Bessho & Bhattacharjee 2012) that arises from kinetic
effects of resonant wave–particle interactions (e.g. Coppi, Laval & Pellat 1966; Galeev
& Zelenyı̌ 1975). Additionally, the collisionless plasma can be considered collisional
due to strong microscopic turbulence that scatters particles similarly to collisions in a
resistive plasma (e.g. Lyutikov 2003; Komissarov et al. 2007; Elenbaas et al. 2016); in
extreme cases the collisional state can be sustained by frequent pair annihilation and
reconversion, e+ + e− ↔ γ (Thompson & Kostenko 2020). Despite the simplicity of the
fluid equations, which do not contain information about complicated particle trajectories
and various microscopic processes, kinetic theory is needed to determine the effective
resistivity, which is usually considered as a free parameter of the problem and, therefore,
makes the fluid approach incomplete.

A thermal plasma with constant temperature was considered in the above-mentioned
kinetic studies of collisionless tearing instability. However, the plasma in relativistic
astrophysical sources could hardly reach the Maxwellian distribution since binary particle
collisions are typically too rare due to low plasma density and high temperatures.
Therefore, one has to consider the class of non-thermal distribution functions with a wide
energy spread, which is relevant for such conditions. We consider the simplest case without
the guide magnetic field, when the distribution function has the power-law form

dN (E) = CE−α exp
(

− E
Emax

)
dE, at E ≥ Emin, (1.1)

where C is a normalisation constant, α is a spectral index and Emax is the cut-off energy.
At energies E < Emin we assume that dN /dE ∼ E2.

Collisionless tearing instability in a relativistic pair plasma with the non-Maxwellian
distribution function of particles was recently studied by Thompson (2022). He
considered specific conditions in the pulsar emission zone, namely weakly sheared
quantising magnetic field and narrow top hat distribution function centred at characteristic
momentum p0 for both electrons and positrons.

Our aim is to study how the presence of the high-energy tail in the particle spectrum
affects the tearing mode. We obtain the growth rate of the tearing instability in the linear
regime and find how it depends on the power-law spectral index, α.

The article is organised as follows. In § 2, we obtain analytical estimates for the growth
rate of the tearing instability. In § 3, a numerical calculation of the growth rate is carried
out to confirm the obtained analytical estimates. In § 4, we summarise our results.

2. Analytical estimates
2.1. Preliminary considerations

Let the unperturbed reconnecting magnetic field be directed along the y axis, B = B0f (x)ŷ,
where f (x) is a magnetic field profile that depends only on the x coordinate (see
figure 1a). In such a geometry, the magnetic field is represented by the vector potential
A = (0, 0,Az(x)). In equilibrium, there is no electric field, and electrons and positrons drift
in the z direction at a velocity ±U (‘+’ for positrons and ‘−’ for electrons, U > 0). The
pair plasma under consideration is ultrarelativistic; therefore, the approximate dispersion
law for plasma particles E ≈ pc is used.

We assume that the current sheet thickness is much greater than the Larmor radius
of the particles; therefore, with the exception of the neutral layer at small x, the
magnetohydrodynamic (MHD) approximation is valid throughout the entire space,
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(a) (b)

FIGURE 1. Magnetic field configuration within the current sheet: (a) unperturbed; (b) with the
tearing mode perturbation.

regardless of the form of the distribution function. Namely, the static equilibrium is
determined by the balance of the magnetic pressure and the effective particle pressure
found as the appropriate moment of the distribution function (Alfven & Falthammar 1963,
pp. 217–218). One can use a prepared magnetic field profile, and it is assumed that the
distribution function of the plasma is adjusted to this field. For simplicity, we consider the
current sheet with magnetic field profile f (x) = tanh(x/L) (Harris 1962). Near the neutral
layer, the MHD approximation is violated, and kinetic effects are important. Thus, one
can find solutions in the inner and outer regions and then match them together, which
ultimately gives us an expression for the growth rate of the tearing instability.

The general picture of collisionless tearing instability has long been known (e.g. Galeev
& Sudan 1984, pp. 309–315; Kadomtsev 1987). Let us consider the equilibrium of the
current sheet as a whole. The plasma pressure near the neutral plane x = 0 is balanced
with the magnetic pressure at infinity, i.e. Ptot(0) = B2

0/8π. The plasma pressure can be
written as Ptot(0) = (2/3)n0〈E〉, where 〈E〉 is the average energy of particles. We also can
consider the same balance but in terms of forces, i.e. ∇Ptot = (1/c)j × B. Roughly, one
can estimate ∇Ptot ∼ Ptot(0)/L, where L is the characteristic thickness of the considered
layer and the total current density can be estimated as jz ∼ 2en0U. As a result, we obtain
the following two equations that describe the current sheet equilibrium:

B2
0 = 16π

3
n0〈E〉, U

c
∼ 〈E〉

eB0L
. (2.1a,b)

The second equation is just a definition of the characteristic diamagnetic drift velocity of
the plasma near the neutral plane (see Appendix A for additional details). It is important
to note that high-energy particles play a significant role only at α < 2 since, in this case,
the average energy is 〈E〉 ∼ Emax, and at α ≥ 2 we have 〈E〉 ∼ Emin (i.e. the high-energy
tail is suppressed).

The current sheet that is described above can be considered as a set of straight filaments
with a current. Since the currents in filaments flow in the same direction, they are attracted
to each other, so such an equilibrium system with a current sheet is unstable to pinching
(Coppi et al. 1966). In fact, this is possible only if the resistivity of the plasma is not zero.
Even small non-zero resistivity allows the currents to move, and any small displacement
of a filament gives rise to a force imbalance. As a result, the individual current filaments
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4 I. Demidov and Y. Lyubarsky

merge, leading to a reconnection of the magnetic field and the formation of magnetic
islands (see figure 1b).

Effective resistivity arises in the collisionless plasma because the particles are not
magnetised near the plane x = 0, so they can gain energy in the electric field. The periodic
electric field, δE, is induced near the neutral plane x = 0 due to the magnetic reconnection.
Indeed, according to Lenz’s law, the electric field is directed in the negative z direction in
the vicinity of X-points, where plasma flows towards the neutral plane, increasing the
magnetic flux, and in the positive z direction between the X-points, where plasma flows
away from the neutral plane. In turn, the particles are not magnetised in the layer with
characteristic thickness (Parker 1957)

l ∼ √
2rg0L, (2.2)

where rg0 = p⊥c/eB0 is the particle Larmor radius in the asymptotic magnetic field. Inside
this layer, particles perform a meandering motion along the current sheet and, therefore,
they are accelerated by the induced electric field. The acceleration time is ∼1/kc, because
at a larger time, when the particle moves along the y axis, it ‘sees’ an oscillating field and
does not gain energy on average.

Thus, one can estimate the effective conductivity within the inner region by using the
Drude formula with the effective collision time τcoll ∼ 1/kc (Artsimovich & Sagdeev 1979,
p. 242), which gives

σ eff ∼ 2n0e2

m
1
kc

〈
mc2

E
〉
. (2.3)

Here, angular brackets denote averaging over particle energies. The factor 〈mc2/E〉 is just
the average inverse Lorentz factor of particles; it reflects the fact that conductivity in a
relativistic plasma is inversely proportional to the average relativistic mass meff = E/c2.
Since the averaged energy of the particles is in the denominator, the non-magnetised
particles with the lowest energy make the largest contribution to the conductivity.
According to this, we can assume that σ eff operates only within the ‘inner’ region of size

lmin ∼
√

2L
eB0〈E−1〉 . (2.4)

Let us emphasise that in our case, the flux-freezing condition is violated because there is
no magnetic field near the neutral layer, and the particles there are not magnetised such
that they decouple from the fluid motion. This is what determines the thickness l of the
inner layer where the particles can be accelerated by the electric field. Here, the effective
resistivity appears simply because the particles have inertia and ‘lazily’ respond to the
electric field when moving within the inner region during the ‘collisional’ time 1/kc.

2.2. The outer region
Before estimating the growth rate of tearing instability, let us consider the outer region
|x| > lmin, where the plasma can be considered as an ideal magnetised fluid with infinite
conductivity σ → ∞. Indeed, since the Larmor radius of the particles here is much
smaller than the characteristic thickness of the current sheet L, one can use the ideal
MHD approximation. Even though local thermodynamic equilibrium is not valid in
the considered problem, and strictly speaking we cannot use MHD equations, tearing
instability develops slowly, so at each moment of time, we can consider the problem as
quasi-static and consider the plasma velocity as a small perturbation. The validity of this
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FIGURE 2. The normalised vector potential perturbation and the total magnetic field for the
Harris current sheet at kL = 0.4 and kL = 1.

statement is also confirmed by the fact that the kinetic theory gives the same equations
(see Appendix A).

Slow plasma motions create the current density perturbation, which, in turn, creates a
disturbance of the magnetic field, such that the total magnetic field can be represented as
B(x, y) = B0f (x)ŷ + δB(x, y). The magnetic field perturbation δB can be expressed via
the vector potential perturbation δA = δAzẑ according to δB = rot δA. Considering the
magnetic field profile f (x) = tanh(x/L), Ampère’s equation is reduced to (e.g. Sturrock
1994; Boldyrev & Loureiro 2018)

d2

dx2
δAz +

[
−k2

y + 2
L2 cosh2(x/L)

]
δAz = 0. (2.5)

Therefore, the even-parity vector potential perturbation in the outer layer is (Sturrock 1994;
Boldyrev & Loureiro 2018)

δAz(x) = δAz(0)
(

1 + 1
kL

tanh
|x|
L

)
exp(−k|x|), (2.6)

where k = |ky|. Odd-parity solutions δAz(−x) = −δAz(x) are responsible for kink modes
and are not of interest to us. It is clearly seen from the solution (2.6) that the vector
potential perturbation is continuous at x = 0 for all kL, but the derivative δA′

z(x) is
discontinuous in the general case. Let us introduce the notation

Δ′(0) = δA′
z(0+)− δA′

z(0−)
δAz(0)

≡ δBy(0+)− δBy(0−)
i(c/ω)δEz(0)

. (2.7)

According to (2.6), we obtain

Δ′(0) = 2(1 − k2L2)

kL2
. (2.8)

Therefore, Δ′(0) = 0 and there is no discontinuity [[δBy]] = 0 if and only if kL = 1
(see figure 2). At kL = 1 the magnetic field perturbation jump occurs. To remove
the discontinuity of the magnetic field, we have to take into account the current of
non-magnetised particles in the region |x| < lmin.
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6 I. Demidov and Y. Lyubarsky

2.3. Tearing instability growth rate
Let us denote the current density of particles undergoing meandering motion near the
neutral plane as δjz. We assume for simplicity that δjz vanishes at |x| > lmin. According to
Ampère’s law, the magnetic field jump [[δBy]] = δBy(0+)− δBy(0−) can be found as

[[δBy]] ≈ 4π

c

∫ lmin

−lmin

δjz dx. (2.9)

Therefore, δjz eliminates discontinuity and provides a smooth transition of the perturbed
magnetic field across the plane x = 0.

According to Ohm’s law, δjz = σ effδEz. Therefore, the current density of non-magnetised
particles is directed along the electric field δEz. On the other hand, the sign of the
magnetic field jump is determined by the outer solution, and according to (2.7), one can
write [[δBy]] = (c/γ )Δ′(0)δEz(0), where γ = −iω is the growth rate of the instability. At
kL > 1, the direction of the current coincides with the sign of the magnetic field jump only
if γ < 0 and the instability is suppressed. Therefore, the tearing mode is arising unstable
only for kL < 1.

Further, it is convenient to express the electromagnetic fields via the vector potential
perturbation δAz:

δEz = iω
c
δAz ≡ −γ

c
δAz, δBy = − d

dx
δAz. (2.10a,b)

Assuming that the electric field is approximately constant within the inner region of size
∼2lmin, we obtain from (2.9) that

γ ≈ c2

8π

Δ′(0)
σ efflmin

. (2.11)

It should be noted that this result can be used for different magnetic field profiles. One has
to calculate Δ′(0) for the given profile and substitute it into the above equation.

Substituting the effective conductivity (2.3) and expression for Δ′(0) into (2.11) and
using relations for the current sheet equilibrium (2.1a,b) we obtain

γ (k) ∼ c
2L
(1 − k2L2)

(
U
c

)3/2

[〈E〉〈E−1〉]−1/2. (2.12)

In the general case, characteristic energies 〈E〉 and 1/〈E−1〉 may not coincide. At large
α ≥ 2, we expect 〈E〉 ∼ 〈E−1〉−1 ∼ Emin and the growth rates are determined by the same
formula as for the ultrarelativistic Maxwellian plasma (Zelenyi & Krasnoselskikh 1979).
On the other hand, in the case of the power-law distribution with α < 2, one can expect
that 〈E〉 ∼ Emax and 〈E−1〉−1 ∼ Emin, i.e. there are two characteristic energy scales. Then,
the growth rate contains a small factor ε1/2, where

ε = Emin

Emax
. (2.13)

According to (2.12), the growth rate reaches a non-zero constant value when k goes to
zero. However, since the conductivity σ eff ∼ 1/k decreases with k, the effective resistance
disappears, and there should be γ → 0 in the limit k → 0. Therefore, (2.12) is invalid at
small k. Indeed, in this case, we cannot assume that the electric field is constant within the
region of size ∼ lmin, such that δEz(lmin) ≈ δEz(0).
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To find the correct asymptotic, one has to solve the Maxwell equations within the inner
region. By using zero divergence of the magnetic field and Faraday’s law,

∂δBx

∂x
+ ikδBy = 0, δBx = ck

ω
δEz, (2.14a,b)

one can rewrite Ampère’s law in terms of the electric field perturbation only:

d2

dx2
δEz − 4πγ

c2
σ effδEz = 0, (2.15)

where the limit k → 0 and the boundary condition d(δEz)/dx = 0 at x = 0 are assumed.
Thus, the electric field perturbation profile within the inner region can be written as

δE(i)z (x) ≈ δE(e)z (l)
cosh ηx
cosh ηl

, (2.16)

where η = √
4πγ σ eff/c2 and l = lmin. Performing integration in (2.9), we obtain the

dispersion equation at k → 0:

Δ′(l) = 2η tanh ηl, (2.17)

where now the tearing parameter is

Δ′(l) = δBy(l)− δBy(−l)
i(c/ω)δEz(l)

. (2.18)

Taking into account the outer solution (2.6), in the limit k → 0 we obtain

δAz(x) ≈ δAz(0)
kL

tanh
|x|
L
, Δ′(l) ≈ 2

L
sech2(l/L)
tanh(l/L)

≈ 2
l
. (2.19a,b)

This leads to the following dispersion equation:

ηl tanh ηl ≈ 1. (2.20)

In order of magnitude, this equality is satisfied when the tangent argument is of the order
of unity; therefore

γ (k) ∼ c2

4π

1
σ eff(lmin)2

∼ 1
3

ck
(

U
c

)
. (2.21)

This expression gives the correct asymptotic behaviour for the growth rate of instability at
k → 0.

Obviously, different magnetic profiles lead to different scalings of the corresponding
tearing instability growth rates. In the context of MHD turbulence, a periodic magnetic
field B(x) ∼ B0 sin(x/L) is more appropriate (Boldyrev & Loureiro 2018). However,
dependence on α and Emin/Emax is unchanged for any magnetic field profile with the same
asymptotic behaviour at x → 0. Therefore, in this work, we focus only on the usual Harris
layer.
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(a) (b)

FIGURE 3. Schematic representation of unperturbed particle orbits: (a) exact orbits;
(b) approximate orbits.

3. Numerical solution

In this section, we numerically solve the equation for the perturbed vector potential and
determine the tearing instability growth rate, comparing the result with our qualitative
estimations. According to the well-known procedure (see Appendix A), the Ampère
equation for the vector potential perturbation can be written in the form

d2

dx2
δAz +

[
−k2

y + 2
L2 cosh2(x/L)

]
δAz

= 4πiω
∑

s

q2
s

c2

∫
∂f0s

∂E vz

∫ t

−∞
vz(t′)δAz(t′) dt′ dp. (3.1)

The main difficulty lies in the right-hand side of the equation, which represents the
current of non-magnetised particles. Here it is necessary to integrate along rather complex
particle orbits, which are shown schematically in figure 3(a). These orbits are solutions
of the unperturbed equations of motion, i.e. only when the stationary magnetic field
B(x) = B0 tanh(x/L) is present.

In early works, the neutral sheet was divided into two regions: inner and outer. Together
with the assumption of constancy of the vector potential perturbation δAz within the
internal region, this allows the integro-differential equation (3.1) to be reduced to the
ordinary ‘Schrödinger-type’ differential equation. In the inner region |x| � l ∼ √

2r0gL,
magnetic field is weak, and this region is dominated by particles whose orbits cross the
resonance plane x = 0. Laval, Pellat & Vuillemin (1966) and Hoh (1966) refer to the
complicated actual particle orbits within the inner region. Coppi et al. (1966) proposed a
simplified model of the particle orbits, which are approximated by straight-line segments
within the inner region and Larmor circles in the outer one (see figure 3b). By using such
an orbit model, Dobrowolny (1968) gave a quantitative calculation of the linear growth rate
of tearing instability. By comparing his results with those of Laval et al. (1966) and Hoh
(1966), he claimed that the complexity of the actual particle trajectories within the current
sheet is not important in the instability mechanism. Therefore, these orbits are often taken
to be straight lines along the neutral plane (e.g. Galeev & Zelenyı̌ 1975). This approach
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gives the same answer as piecewise straight orbits since particles execute rapid oscillations
between magnetic ‘walls’ x = ±l with frequency ∼ vT/l, and the motion averaged over
these oscillations can be considered as free motion along straight lines. The outer region
|x| > l is dominated by ‘non-crossing’ particles, which are assumed to have small Larmor
orbits and these orbits are neglected. Indeed, since in the limit rg → 0 the magnetic field
changes slightly along a Larmor radius of non-crossing particles, therefore orbits are not
strongly distorted and the drift of the guiding centre is slow. Zelenyi & Krasnoselskikh
(1979) solved the considered problem for relativistic Maxwellian electron–positron plasma
in the same way.

We solve the problem numerically, taking into account all unperturbed particle orbits
in the integro-differential equation (3.1) and removing two restrictive simplifications: the
‘constant-δA’ approximation at |x| < l and the use of approximate orbits. Approaches for
the numerical solving of equation (3.1) taking into account all exact unperturbed orbits
were proposed in the works by Holdren (1970) and Chen & Lee (1985). In particular, Chen
& Lee (1985) considered tearing instability with a non-Maxwellian distribution function.
It is also worth noting that particle-in-cell simulations are in good agreement with such
methods (e.g. Daughton 2003). For numerical procedures, the integro-differential equation
is converted into a matrix equation, which is then solved to obtain the dispersion relation
and the eigenfunctions. In this section, we follow the paper by Burkhart & Chen (1989),
generalising their formulas to the relativistic dispersion law and the power-law distribution
function.

Due to the fact that particle motion is periodic along the x axis, we can rewrite the orbit
integral in the form (Chen & Lee 1985)

Sorb =
∫ t

−∞
vz(t′)δAz(t′) dt′ = i

+∞∑
n=0

exp[i(−ωt − nΩt + kyy)]
ω + nΩ − kyvy + i0

× 1
T

∮
dx′ vz(x′)δA1z(x′)

|vx(x′)| exp(inΩt′), (3.2)

where Ω = 2π/T and T = T(E,Pz) is the period of particle motion in the x direction.
The x′ integration is carried out over one cycle of the particle motion. The singularity of
the denominator shows the resonance between a particle and the electric field δEz of the
tearing mode. Further, we are interested only in the fundamental harmonic n = 0. Higher
resonances can be discarded if the frequency of the fields is much less than the frequency
of orbital motion, i.e. ω � Ω for all E and Pz (Burkhart & Chen 1989). Therefore, we
have

Sorb = i exp(−iωt + ikyy)
ω − kyvy + i0

1
T

∮
dx′ vz(x′)δA1z(x′)

|vx(x′)| . (3.3)

One can easily check that approximations vz ≈ const. and δA1z ≈ const. lead to the
well-known expression for the orbit integral with straight orbits (e.g. Zelenyi &
Krasnoselskikh 1979) (see also Appendix B).

Substituting (3.3) into (3.1), we obtain the following integro-differential equation:

d2δA1z

dx2
+

[
−k2

y + 2
L2 cosh2(x/L)

]
δA1z = −4π

c

∑
s

∫
dx′Ks(x, x′)δA1z(x′), (3.4)

where the integral kernel Ks(x, x′) is given by (see Appendix B)

Ks(x, x′) = −2iπ
q2

sω

|ky|c3

∫
dEdPz

T(E,Pz)
E ∂f0s

∂E
pz(x)pz(x′)

|px(x)||px(x′)| , (3.5)
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10 I. Demidov and Y. Lyubarsky

and integration is carried out over the integrals of motion, and Pz = pz + (q/c)Az is the z
component of a canonical momentum of a particle with electrical charge q.

Equation (3.4) for δAz is not ‘local’. The reason is that the amplitude of the meandering
motion is large for high-energy particles, so that they ‘see’ the perturbed field over a large
range of x. All information about these orbits is hidden in the kernel.

The x and z components of kinetic momentum can be expressed in terms of the integrals
of motion:

pz(x) = Pz − qs

c
Az(x),

|px(x)| ≈
√
(E/c)2 − [Pz − (qs/c)Az(x)]2.

⎫⎬
⎭ (3.6)

The limits of integration are determined by the condition p2
x(x) ≥ 0. Due to the fact that

we use the power-law distribution function (1.1) without any coordinate dependence, we
are able to consider the situation rg0 � L only when the size of the non-magnetised region
is small.

3.1. Numerical procedure
Let us expand the potential δA1z in the system of basis functions

δA1z(x) =
∑

n

αnφn(x). (3.7)

The basis functions can be chosen as pyramid functions (Burkhart & Chen 1989; Daughton
2003):

φn(x) =

⎧⎪⎨
⎪⎩
(x − xn−1)/(xn − xn−1), xn−1 ≤ x ≤ xn,

(xn+1 − x)/(xn+1 − xn), xn ≤ x ≤ xn+1,

0, otherwise.
(3.8)

The basis function at the neutral plane is

φ1(x) =
{
(x − x1)/x1, 0 ≤ x ≤ x1,

0, otherwise,
(3.9)

and the last basis function at large xN � L is

φN(x) =
{
(x − xN−1)/(xN − xN−1), xN−1 ≤ x ≤ xN,

0, otherwise.
(3.10)

Another popular choice for basis functions is the Hermite polynomials, Hn(ξx), with the
exponential weight function and ξ = 1/L or ξ = k (Daughton 1999; Pétri & Kirk 2007).
However, these functions are less appropriate for small k. In this case, the vector potential
is practically constant throughout the entire space and varies sharply in a small region near
the neutral plane. Such behaviour could hardly be fitted with the Hermite polynomials.
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One can substitute the expansion of the vector potential perturbation in (3.4) and
multiply on φm(x). Integrating over x, we obtain the matrix equation∑

n

αnGnm = 0, (3.11)

where the matrix elements are

Gnm(ω, ky) = k2
y

∫
φn(x)φm(x) dx −

∫
d2φn

dx2
φm dx

+
∫

Vad(x)φn(x)φm(x) dx + iω
|ky|c

∑
s

Knm (3.12)

and

Knm = 8π2q2
s

c3

∫
dEdPz

T(E,Pz)
E ∂f0s

∂E
∮

dx
pz(x)
|px(x)|φm(x)

∮
dx′ pz(x′)

|px(x′)|φn(x′). (3.13)

We changed the order of integration in Kmn; therefore, integrating pz(x)/|px(x)| at fixed E
and Pz should be performed only along a particle trajectory, where |px| ≥ 0.

Non-trivial solutions, αn, exist if and only if det G(ω, ky) = 0. Following Burkhart &
Chen (1989), we consider only symmetric solutions, i.e. we consider only symmetric
trajectories and perform integration over x and x′ in the first quadrant. This means that
if we consider some trajectory at x > 0, there is the mirrored one, which gives the same
contribution to Knm. However, one should be careful with ‘crossing’ orbits: in such an
approach, we can miss ‘half’ the trajectory (which belongs to x < 0). Therefore, when
integrating ‘crossing’ orbits in the domain x > 0 only, it is necessary to multiply the result
by 2.

One can classify all orbits as ‘crossing’ and ‘non-crossing’ by using integrals of motion
only. In our problem, we have three integrals of motion: y component of the mechanical
momentum py (which is approximately zero for resonance particles), z component of the
canonical momentum Pz and the energy E . If Pz < 0 and E2 < c2P2

z , a particle has a
‘non-crossing’ orbit; at other values of Pz and E a particle has ‘crossing’ orbits. Obviously,
the contribution from electrons and positrons is the same; therefore, one can calculate the
kernel only for positrons and multiply the result by 2.

3.2. Results
The dispersion relation γ (k) is obtained by using the exact equilibrium orbits for the
parameters rg0/L = 0.015, Emin/mec2 = 1.2, L = 1 cm and different α and ε. According
to current sheet equilibrium equations, we always have ωp/ωg0 = √

3/2, where ωp =
(8πn0e2/〈γ 〉me)

1/2 is the average plasma frequency, ωg0 = eB0c/〈γ 〉mc2 is the average
cyclotron frequency and 〈γ 〉 = 〈E〉/mc2 is the average Lorentz factor of particles. We
used N = 300 basis functions in the expansion of the vector potential perturbation.
The maximum size of the computational domain is Lmax = 50L and at |x| > Lmax the
asymptotic solution ∼ exp(−k|x|) is used. The centre points of the pyramid functions are
chosen in the following way: N1 = 10 regularly spaced points within interval x ∈ [0, 3lmin],
N2 = 20 points within interval x ∈ [3lmin,L], N3 = 10 points for x ∈ [L, 3L] and N4 = 260
points within interval x ∈ [3L,Lmax]. Increasing the computational domain to size x ∈
[0, 70L] does not lead to changes in the results. All integrals were calculated in Wolfram
Mathematica using the ‘Local Adaptive’ method. We calculated the growth rate for nine
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12 I. Demidov and Y. Lyubarsky

FIGURE 4. The dependence of the growth rate γ (k)/ωg0 on kL for rg0/L = 0.015, and
(a) α = 1, ε = 10−2, (b) α = 2, ε = 1.5 × 10−2 and (c) α = 3, ε = 5 × 10−3. The solid lines
are the solution of equation (3.4); the dashed lines are the estimations (2.12) and (2.20).

FIGURE 5. Convergence of the results of calculating the growth rate at α = 1 and ε = 10−2.
The horizontal axis indicates the number of nodes within the interval x ∈ [0, 3L].

points in the interval 0.1 ≤ kL ≤ 0.9 and used the quadratic interpolation. One can see
in figure 4 that our estimates provide a good approximation for the growth rate. Figure 5
shows the convergence of our calculations. For this purpose, we took a different number
of basis functions in the interval x ∈ [0, 3L], in which the current of resonant particles is
non-zero.

The wavenumber k∗ at which the maximum growth rate is observed is always the
same, and k∗L ∼ 0.4. The same is true for the non-relativistic plasma, and this result does
not depend on whether exact particle trajectories are considered or the approximation of
straight trajectories.

Figure 6 shows the normalised eigenfunction for kL = 0.1. We chose this eigenfunction
because it has the worst convergence in our calculations since it extends over a large
distance. One can see the deviation from the outer solution near the neutral plane, where
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FIGURE 6. The normalised eigenfunction δAz1(x) at kL = 0.1 and rg0/L = 0.015, α = 1,
ε = 10−2. The grey dashed line is the outer solution (2.6). Shaded areas show inner regions
where particles of different energies perform meandering motion.

particles decouple from the fluid motion. Indeed, the largest deviation is observed at
|x| � lmin as we used in our theoretical considerations.

4. Discussion and conclusions

Let us estimate the dependence of the growth rate on the power-law index of the particle
spectrum, α. It is worth comparing only the maximum growth rates. It should be taken
into account that the maximum growth rate is achieved when the layer thickness is of the
order of the characteristic Larmor radius, rg0 ∼ L. Even though our calculations assumed
rg0 � L, the obtained results could be used as an order-of-magnitude estimate even at
rg0 ∼ L.

For α ≥ 2, there is only one energy scale E ∼ Emin as in the Maxwellian case. Therefore,
γ (α ≥ 2) is of the order of the tearing growth rate for the Maxwellian distribution function
with kBT ∼ Emin. In this case, we could use L ∼ Emin/eB0. At α < 2, the minimal width
of the current sheet is of the order of the Larmor radius of the energetic particles, L ∼
Emax/eB0. Assuming that the magnetic field B0 is a fixed external parameter, we obtain

γ (α < 2)
γ (α > 2)

∼ ε3/2 � 1. (4.1)

Therefore, the growth rate is strongly suppressed if the particle spectrum is shallow, α < 2.
The slow linear stage of the tearing instability in a relativistic pair plasma can be

explained in the same way as in the case of an ion–electron plasma. Only low-energy
particles with a small Larmor radius participate in the tearing instability, while
high-energy particles do not make a significant contribution. One might naively assume
that applying a uniform magnetic field Bn that is perpendicular to the current sheet
and Bn/B0 � 1 would magnetise low-energy particles in the inner region so that only
high-energy particles would be involved in the tearing instability, thus enhancing the
instability. However, as was shown by Coroniti (1980) and Lembege & Pellat (1982), for an
ion–electron plasma, the Hall drift of low-energy magnetised electrons in crossed δE and
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14 I. Demidov and Y. Lyubarsky

Bn fields makes the current sheet inhomogeneous. Moreover, such inhomogeneities create
a large electric field in order to maintain the charge neutrality with ions, which also causes
the ions to drift, so the entire plasma is subject to compression. If the energy required for
such compression exceeds the released free energy due to the pinching of current filaments,
the ion tearing instability is suppressed. However, three-dimensional simulations show
that the collisionless reconnection instability might be possible even in the presence
of the normal magnetic field Bn (Büchner & Kuska 1996; Büchner 1999), contrary to
what is observed in two-dimensional simulations. Also, in the relativistic pair plasma,
non-magnetised high-energy particles that we can think of as ‘ions’ due to large relativistic
mass do not feel any additional electric field because low-energy particles already have
zero net electric charge. Therefore, these high-energy particles move independently from
the magnetised low-energy particles, and this requires further consideration.

Similarly, it is necessary to consider the tearing instability with a guide field parallel to
the current sheet. Firstly, without the guide field, the three-dimensional current sheet in
the pair plasma is unstable with respect to the drift-kink instability (Zenitani & Hoshino
2005), and the growth rate of this instability is several times greater than that of the
tearing mode. Secondly, the tearing instability with the guide field is of significant
interest for the theory of turbulence in the relativistic pair plasma. As was shown for
the non-relativistic case, the MHD turbulent cascade produces small-scale current sheets
that could be destroyed by the reconnection process (e.g. Loureiro & Boldyrev 2017;
Mallet, Schekochihin & Chandran 2017). A similar process may occur in the relativistic
plasma, which can lead to efficient acceleration of particles. Therefore, the case of the
tearing instability with the guide field deserves special attention and will be considered in
subsequent publications.

Let us briefly summarise the results obtained. In this work, we considered the
collisionless tearing instability in a relativistic pair plasma with a power-law distribution
function. An analytical expression is obtained for the instability growth rate. The analytical
results are compared with the numerical solution that takes into account all unperturbed
exact particle trajectories. As a result, we found that the tearing instability is suppressed at
the harder spectrum.
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Appendix A. Derivation of the vector potential equation

In the considered geometry with the given magnetic field profile f (x) = tanh(x/L), the
equilibrium vector potential Az depends only on the x coordinate and has the form

Az(x) = −B0L ln cosh(x/L), (A1)

where boundary conditions dAz/dx = 0 at x = 0 and Az → ±B0x at x → ±∞ are
assumed.
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Therefore, there are three integrals of motion for each charged particle:

py, Pz = pz + q
c

Az, E =
√

p2c2 + m2c4, (A2a–c)

where py is the y component of the mechanical momentum of a particle, Pz is the z
component of a canonical momentum of a particle with electrical charge q and E is its
mechanical energy. Further, particles are assumed to be ultrarelativistic with the dispersion
law E = pc.

The equilibrium distribution function f0s (where s denotes the sort of particles) has to
depend only on these integrals of motion since, in this case, the Vlasov equation is satisfied
identically. There are infinitely many such distribution functions, and all of them satisfy
the current sheet equilibrium equation Ptot(x)+ B2(x)/8π = const, where plasma pressure
is written as

Ptot = 1
3

∑
s

∫
p2c2

E f0s dp. (A3)

Now, we do not determine the explicit form of f0s. We only assume that it depends on the
integrals of motion. Only one condition on the distribution function is imposed: within the
thin layer near x = 0, the dependence on canonical momentum Pz disappears, and it has
the following form in momentum space:{

f0s = Cm, E < Emin,

f0s = CpE−(α+2) exp(−E/Emax), E ≥ Emin,
(A4)

where constants Cm and Cp can be found from the condition of continuity of the
distribution function at E = Emin and from the normalisation condition:

Cm = n0c3

4π(Emin)3
[Eα(ε)+ 1/3]−1, Cp = n0c3

4π
Eα−1

min [Eα(ε)+ 1/3]−1, (A5a,b)

where Eα(ε) is the exponential integral function:

Eα(ε) =
∫ +∞

1

exp(−εx)
xα

dx. (A6)

The macroscopic drift velocity of plasma is not assumed to be constant; it is found from

Us(x) = c
8πqsn(x)

dB
dx
. (A7)

Actually, this drift is caused by both the magnetisation current jm = −c rot(PB/B2) that is
induced by a non-uniform distribution of Larmor circles across the current sheet and the
∇B current jb = cP[B × ∇B]/B3 (e.g. Bellan 2006, pp. 91–93). The total current density
is j = jm + jb = −c[∇P × B]/B2 = (c/4π)(dB/dx)ẑ that leads to expression (A7) for the
drift velocity. The same result can be obtained from the MHD equation (1/c)[j × B] =
∇P.

Since the reversal magnetic field profile satisfies the condition B ∼ B0x/L at x → 0, at
x = 0 we have

U0

c
= 1

8π

B0

en0L
= 2〈E〉

3eB0L
. (A8)

We assume that U0 � c. This means that the average Larmor radius rg0 ∼ 〈E〉/eB0 is
much smaller than the current sheet thickness L. Thus, the theory is developed only for
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16 I. Demidov and Y. Lyubarsky

thick current sheets. When the drift velocity may be close to the speed of light, the tearing
instability is stabilised (Hoshino 2020).

We investigate only low-frequency tearing oscillations when ω � ck. This means that
the phase velocity of perturbations is much less than the speed of light. In this case, we can
neglect the displacement current and perturbations of the scalar potential δφ. Due to the
development of the tearing instability in the system, perturbation of the vector potential
δA appears, for which the Maxwell equation has the form

∇2δA = −4π

c
δj, (A9)

where current perturbation δj is determined by the perturbation of the distribution function
δfs. The solution of the Vlasov equation is sought in the form fs = f0s + δfs, where
f0s = f0s(E,Pz) is the equilibrium distribution function. Therefore, the linearised Vlasov
equation is

dδfs

dt
= −qs

(
δE + 1

c
v × δB

)
· ∂f0s

∂p
. (A10)

Perturbations of electric and magnetic fields can be expressed in terms of vector potential

δE = −1
c
∂δA
∂t
, δB = ∇ × δA. (A11a,b)

Further, it is assumed that the time and coordinate dependence of all perturbed quantities
has the form

δψ = δψ1(x) exp(−iωt + ik · r), (A12)

where k = kŷ (it corresponds to the most unstable oscillations). It also means that kz = 0
and k · U s = 0. According to (A12), one can write δE = i(ω/c)δA and δB = ik × δA −
(∂δAz/∂x)ŷ.

Performing time integration of equation (A10), and assuming that δfs(t = −∞) = 0, we
obtain

δfs = −qs

c

[
−∂f0s

∂Pz
δAz + iω

∂f0s

∂E
∫ t

−∞
(v · δA) dt′

]
. (A13)

It should be noted that the particle’s coordinates and velocities under the integral are
determined by solving the equations of motions for an electron/positron in the unperturbed
electromagnetic field. In this case, quantities E and Pz are still integrals of motion and they
are conserved along any particle trajectory; therefore, we can take ∂f0s/∂E and ∂f0s/∂Pz
out from under the integral. Also, we used the identity (ω − k · v)δψ + ivx∂ψ/∂x =
id(δψ)/dt.

The current perturbation is

δj =
∑

s

qs

∫
vδfs dp. (A14)

In our case, we obtain that only the z component of the current perturbation is
not zero. The current perturbation can be represented as a sum of two terms
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(Galeev & Sudan 1984, p. 312):

δjz = −
∑

s

q2
s

c

[
−δAz

∫
∂f0s

∂Pz
vz dp + iω

∫
∂f0s

∂E vz

∫ t

−∞
vz(t′)δAz(t′) dt′ dp

]
. (A15)

The first one, δjad, is the adiabatic perturbation of the current, which arises due to the slow
change in the magnetic field topology (the magnetised motion of particles resulting from
the slow plasma convection motion). The second one, δjres, is the resonant current density
perturbation due to the resonant interaction of particles with wave perturbations.

Substituting this current perturbation into (A9), we obtain

d2

dx2
δAz + [−k2

y − Vad(x)]δAz = 4πiω
∑

s

q2
s

c2

∫
∂f0s

∂E vz

∫ t

−∞
vz(t′)δAz(t′) dt′ dp. (A16)

Other components of δA vanish in our geometry. The adiabatic potential Vad(x)
characterises the adiabatic perturbation of the current density and is determined as follows:

Vad(x) = 4π
∑

s

q2
s

c2

∫
∂f0s

∂Pz
vz dp. (A17)

Rewriting ∂f0s/∂Pz = (c/qs)∂f0s/∂Az and taking the derivative ∂/∂Az out of the integral,
we obtain Vad(x) = (4π/c)∂jz/∂Az. It also means that δjad = Vad(x)δAz is just the
second term in the Taylor series for the current density jz(Az + δAz). Since ∂jz/∂Az =
(djz/dx)(dAz/dx)−1, one can see that Vad(x) = B′′

y(x)/By(x). Therefore, this potential is
determined by the equilibrium: if we know the profile of the magnetic field, we can easily
find the adiabatic potential. The same result is obtained from the MHD equations (Sturrock
1994). It should be noted that for this conclusion, we used the fact that the distribution
function depends only on integrals of motion.

Assuming B(x) = B0 tanh(x/L), we obtain the well-known formula

Vad(x) = − 2
L2

1
cosh2(x/L)

. (A18)

Appendix B. The integral kernel

The kernel Ks(x, x′) is given by

Ks(x, x′) = q2
sω

c

∫
dp
T

∂f0s/∂E
(ω − kyvy + i0)

vz(x)vz(x′)
|vx(x′)| . (B1)

This integral is symmetric in momentum px; therefore, one can multiply the integral by a
factor of two and integrate over px from 0 to +∞. Next, when we decided on the sign of
px, let us rewrite differential dp in terms of integrals of motion as (E/c2|px|)dEdpydPz.
Also, the main contribution in (B1) is given by the semi-residue ω = kyvy.
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Therefore, we have

Ks(x, x′) = −2iπ
q2

sω

c

∫
dEdpydPz

T(E,Pz)

∂f0s

∂E δ
(
ω − kypyc2

E
)

pz(x)pz(x′)
|px(x)||px(x′)| . (B2)

We are interested in the first order in ω since it is a small quantity (ω � kyc); therefore
one can put py = (E/c)(ω/kyc) ≈ 0 under the integral. As a result, we obtain

Ks(x, x′) = −2iπ
q2

sω

|ky|c3

∫
dEdPz

T(E,Pz)
E ∂f0s

∂E
pz(x)pz(x′)

|px(x)||px(x′)| . (B3)

Now one can also come to the approximation of straight orbits if we assume that pz, px ≈√E2/c2 − P2
z and δAz do not depend on spatial coordinates within the inner region. The

integration over the canonical momentum Pz leads to

4π

c

∑
s

∫
dx′Ks(x, x′)δAz(x′) →

(
8π3iωe2

kc4

∫
∂f0s

∂E E2 dE
)
δAz ≡ VresδAz. (B4)

In this case, equation (A16) is reduced to the ‘Schrödinger-type’ equation

d2

dx2
δAz + [−k2

y − Vad(x)− Vres(x)]δAz = 0. (B5)

For this reason, the function Vres(x) is sometimes called the resonant potential. It represents
a narrow potential barrier with a width ∼ 2lmin, and at larger distances, it vanishes. This
equation is similar to that used by Zelenyi & Krasnoselskikh (1979). Using their procedure,
one can find the growth rate of the tearing instability γ (k). In this case, the same expression
as (2.12) is obtained, but with a numerical coefficient 2

√
2/π ∼ 0.9 instead of 0.5.

There are two more physical reasons to believe that the numerical value of the growth
rate is smaller than these estimates give. The first reason is that the contribution from
trajectories only within the interval |x| � lmin is taken into account; in fact, this interval is
wider (see figure 6). We also did not take into account the contribution from non-crossing
orbits, whose contribution is comparable to that from crossing orbits for |x| ∼ lmin. This
additionally increases the plasma conductivity near the neutral layer and reduces the
growth rate.

Let us return to the matrix equations (3.11) and (3.12), where the quantity Kmn was
introduced:

iω
|ky|c

∑
s

Kmn = −4π

c

∑
s

∫
dx

∫
dx′φm(x)Ks(x, x′)φn(x′). (B6)

For the numerical calculation, it is convenient to use dimensionless variables:

p̂ = Pzc
〈E〉 , Ê = E

〈E〉 , T̂ = ωg0T, x̂ = x
L
, k̂ = kyL, (B7a–e)

where 〈E〉 is the average particle energy which is determined by

〈E〉 = 3[Eα−1(ε)+ 1/4]
3Eα(ε)+ 1

Emin, (B8)

and ωg0 = |qs|B0c/〈E〉 is the average cyclotron frequency in the asymptotic magnetic field.
Taking into account that we consider ultarelativistic particles, for the Harris current sheet
we have
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p̂z = p̂ + L
rg0

ln cosh x̂, |p̂x| ≈
[
Ê2 −

(
p̂ + L

rg0
ln cosh x̂

)2
]1/2

. (B9a,b)

Substituting the distribution function (A4), we obtain

Knm = 9
8L

(
L

rg0

)3
(3Eα(ε)+ 1)α−2

[3Eα−1(ε)+ 3/4]α−1
K̂nm, (B10)

where dimensionless matrix elements are

K̂nm =
∫

dÊ dp̂

T̂(Ê, p̂)
Ê−(α+2) exp

(
− 〈E〉
Emax

Ê
)

×
(
α + 2 + 〈E〉

Emax
Ê
)∮

d x̂
p̂z(x)
|p̂x(x)| φ̂m(x)

∮
d x̂′ p̂z(x′)

|p̂x(x′)| φ̂n(x′). (B11)
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