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Abstract
The assist-as-needed (AAN) controller is effective in robot-assisted rehabilitation. However, variations of the
engagement of subjects with fixed controller often lead to unsatisfying results. Therefore, adaptive AAN that
adjusts control parameters based on individualized engagement is essential to enhance the training effect further.
Nevertheless, current approaches mainly focus on the within-trial real-time engagement estimation, and the presence
of measurement noise may cause improper evaluation of engagement. In addition, most studies on human-in-loop
optimization strategies modulate the controller by greedy strategies, which are prone to fall into local optima.
These shortcomings in previous studies could significantly limit the efficacy of AAN. This paper proposes an
adaptive AAN to promote engagement by providing subjects with a subject-adaptive assistance level based on
trial-wise engagement estimation and performance. Firstly, the engagement is estimated from energy information,
which assesses the work done by the subject during a full trial to reduce the influence of measurement outliers.
Secondly, the AAN controller is adapted by Bayesian optimization (BO) to maximize the subject’s performance
according to historical trial-wise performance. The BO algorithm is good at dealing with noisy signals within lim-
ited steps. Experiments with ten healthy subjects resulted in a decrease of 34.59% in their average trajectory error,
accompanied by a reduction of 9.71% in their energy consumption, thus verifying the superiority of the proposed
method to prior work. These results suggest that the proposed method could potentially improve the effect of upper
limb rehabilitation.

1. Introduction
Stroke is a significant disease that seriously affects people’s physical and mental health globally [1].
Robot-aided rehabilitation is a novel solution to the increasing demand for stroke survivors with motor
dysfunction [2–6]. However, continuous passive motion-based therapy does not generate significant
improvement for post-stroke patients [7], and active movement is considered to be one of the most
effective approaches to upper limb function restoration [8]. The patients’ engagement is a critical factor
contributing to motor recovery [9]. Therefore, assist-as-needed (AAN) controllers have been devel-
oped to regulate assistive forces or task difficulty in recent years [10]. The AAN strategy emphasizes
that robots exert minimum intervention to promote engagement. However, the training task, which is
extremely easy or difficult, would lead the subject to get boring or frustrated [11]. Temporal variabil-
ity in the subject’s engagement during the training is a challenge to the subject-adaptive controller
to improve the training effect further [12]. A subject-adaptive controller is necessary to provide a
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subject-adaptive assistance level to improve performance and encourage engagement. Therefore, two
key issues are essential to design a subject-adaptive AAN controller. The first is to estimate the sub-
ject’s engagement with the current assistance level in a task. The second is to develop the adaptation
law for optimizing the AAN controller to provide subject-adaptive assistance.

The user’s engagement can be framed as a complex structure driven by motivation and exe-
cuted through active participation. Many engagement estimation methods have been proposed [13].
Some approaches evaluate the user’s engagement with electromyography (EMG) but require addi-
tional EMG sensors [14–16]. On the other hand, some approaches fundamentally assume that the
engagement is related to the interaction force, which is position dependent, and estimate the force
from the Gaussian radial basis functions distribution across the workspace [17–19]. In ref. [20], a
combination of the Kalman filter and Lyapunov stability analysis was proposed for subjects’ interac-
tion force estimation. More recently, the estimation scheme was replaced by a nonlinear disturbance
observer [21]. In these methods mentioned above, estimating subjects’ engagement is crucial for the
controller adjustment. However, these approaches highly rely on the accurate modeling of the complex
dynamics of a coupled human–robot interaction system, which is extremely difficult, and are prone
to lead to noisy engagement estimations with measurement outliers especially during occasional poor
movements.

Recent studies have employed human-in-loop optimization to adjust the controller’s parameter
[22–26]. In refs. [27–29], subject’s task performance of recent 1–2 training trials was used to customize
the difficulty level of movement task in the next training. Furthermore, the parameters of training tasks
were iteratively optimized depending on the subjects’ current physiological state and task performance
[30–32]. However, the controller parameter was defined and updated discretely, which may restrict the
flexibility of the robotic system. In addition, these mentioned strategies try to adjust the parameter with
greedy strategy. However, the greedy strategies could only obtain a locally optimal parameter of the
controller [33].

To this end, we proposed an adaptive AAN controller for upper limb robotic training based on energy
information (EI) to offer a subject-adaptive assistance level. Firstly, the subject’s engagement is esti-
mated according to the subject’s energy contribution to the training task within a trial, which could be
obtained by calculating the integral of the force contributed by the subject to the position, indicating the
work done by the subject during the training trial [34]. Evaluating trial-wise engagement according to
EI does not require complex modeling of the system and may be able to reduce the influence of measure-
ment outliers. Moreover, the EI-based approach focuses more on the interactive forces of the training
process and is barely affected by individual physiological differences. Secondly, the assistive force field
was optimized trial by trial based on the subject’s performance and estimation of engagement to provide
subject-adaptive assistance. In specific, the hyperparameter of the assistive force field is obtained with
Bayesian optimization (BO), an efficient global optimization strategy that is well suited to find the max-
ima/minima of objective functions that are noisy and expensive to evaluate [35, 36]. By optimizing the
AAN controller in a trial-by-trial and global way, it is expected to keep subjects engaged and improve
the training effect.

All in all, the contributions of this study can be summarized as follows:

1. In contrast to methods that rely on within-trial engagement estimation, the trail-wise estimation
based on EI may be more robust to measurement outliers.

2. Unlike the greedy strategy-based controller, the AAN controller optimized by BO can obtain the
global optima with better adaptability and tolerance to objective function value noise.

The rest of this article is organized as follows: the architecture of the adaptive AAN controller is
given in Section 2, followed by the experiment protocol provided in Section 3, experiment results in
Section 4, discussions in Section 5, and finally, the conclusion is given in Section 6.
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Figure 1. Schematic diagram of the adaptive AAN controller. Bayesian optimization is used to modulate
the assisted robot’s hyperparameter (λ) to maximize engagement and minimize the tracking error. The
engagement is assessed with the EI-based approach. Based on the posterior at the current iteration,
the parameter with the maximum probability of improvement is chosen and applied to the robot. This
process repeats until it reaches a predetermined number of runs.

2. Method
2.1. System overview
The ArmMotusTM M2 robot (Fourier Intelligence Co., Ltd., Shanghai, China) was utilized in our work.
It is an end-effector robot with two servo motors driving the handle in the horizontal plane. The handle
connects to a force sensor to measure the two-dimensional force imposed by the subject, and it has a
motion space in the horizontal plane of 0.55∗0.5 m2.

The schematic diagram of the proposed method is shown in Fig. 1, which is composed of several
components. The roles of the main components are briefly listed below:

1. AAN controller: it assists subjects in the trial by constructing a force field around a predefined
trajectory.

2. Friction compensation: it compensates for friction to ensure the robot’s back-drive capability so
that the subject can better sense the assistive forces by the force field.

3. Performance evaluation: it assesses the subject’s performance after each training trial in terms
of trajectory tracking error (TE) and EI-based estimation of engagement (EG).

4. BO: it suggests the optimal controller parameter for the next trial according to the subject’s
performance in historical trials.

The subjects were asked to hold the handle to move according to the desired trajectory in every
training trial. He/She made movement corrections in response to visual feedback and force feedback
[37, 38]. After each trial, the posterior distribution of the subject’s performance to the hyperparameter
was generated by the Gaussian process based on historical hyperparameters and performances. The
hyperparameter for the next trial was obtained by maximizing the probability improvement (PI) function,
which is designed to balance exploration and exploitation [39].

2.2. AAN controller
In order to activate the muscles of the upper limb, we adopted a commonly used reference trajectory
composed of two semicircles of a 0.1 m radius [40]. The desired trajectory starts from P1 and gradually
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Figure 2. Desired trajectory (from P1 to P5 flowing the arc), assistive force field (indicated by black
arrow), and assistive force decomposition of example points on the handle (in the experiment, the arrows
of a force field would not show to subjects) in the workspace.

passes through P2–P5. Once the handle moves beyond P5 along the x-axis, the current training trial
ends. The AAN controller is featured by a force field to better achieve coordinated motion and keep the
subject’s safety when the motion is instantaneously impeded [41, 42]. The assistive force field around
the desired trajectory is given below and visualized in Fig. 2.

f a = f max

[
1 − exp

(
−
(

10 ∗ |�d|
λ

)2
))]

(1)

where f a and f max denote the assistive force vector and the boundary vector of the force field, respectively,
both pointing from the current position to the desired trajectory along the radial direction, �d indicates
the trajectory deviation to the designed trajectory, and λ is the hyperparameter that regulates the stiffness
of force field. When the actual position deviates from the desired trajectory, the force field generates a
force to push or pull the handle back to the desired trajectory. Moreover, the stiffness hyperparameter
determines the profile of the resulting assistive force, as shown in Fig. 1.

As can be seen in Fig. 1, a higher value of λ means the assistive force field is less rigid, and the
operation is more compliant, which is helpful for subjects with stronger motor abilities. A lower value
of λ results in a stiffer assistive force field, which is good for people with limited motor skills.

The assistive force by the AAN controller is decomposed into two force vectors along the horizontal
and vertical directions, respectively (as shown in Fig. 2). Then, such two force vectors are applied by
actuators of the Fourier M2 robot.

2.3. Friction compensation
To deliver the AAN property by incorporating a force-free area along the reference trajectory/point, it
is desired to realize a back-drivable robot system, so that it can be compliantly moved without resistive
forces [43–45]. Therefore, it is necessary to incorporate feedforward control terms for compensating the
robot’s dynamics.

Applying the dynamics of robot to the experimental robot system, the dynamics is interpreted as:

M(p)p̈ + C(p, ṗ)ṗ + G(p) + Ff = Fr + Fh (2)
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Figure 3. Fitting model of the relationship between dynamic friction and velocity.

where p = (x, y)T , ṗ, p̈ are the position vector, velocity vector, and acceleration vector, respectively. M(p)
is the inertial matrix, C(p, ṗ) denotes the centrifugal and Coriolis matrix, G(p) is the gravity vector,
Ff = (Ffx, Ffy)T indicates the force induced by the robot’s friction, Fr = (Frx, Fry)T is the force vector
applied by actuators in the robot in the x and y axis, consisting of the force vector for compensating the
friction and the assistive force vector f a = (fax, fay)T , and Fh = (fhx, fhy)T is the force vector that subject
applies to the end-effector.

There is a neglectable effect on the gravity caused by the end-effector movement since the robot
platform is a planar robot, and a brace supports the subject’s forearm. The handle was required to be
controlled at a low speed and low acceleration to allow the subject to feel the feedback force (||ṗ||2 ≤
0.025 m/s and ||p̈||2 ≤ 0.02 m/s2), which made the influence of M(p)p̈ and C(p, ṗ)ṗ negligible. The
current dynamic equation of the robot is simplified as follows:

Ff = Fr + Fh (3)

Although the handle was required to move slowly during the trial, there was still a high resistance to
controlling the grip at speeds lower than the set speed. Therefore, the friction must be dynamically
compensated to make the force field unaffected by friction. Based on the study of frictional models in
[46], the frictional model of the robot in the x or y direction is given by:

Ff =

⎧⎪⎨
⎪⎩

F(v), if v �= 0

Fe, if v = 0 and |Fe| < FS

FSsgn(Fe), otherwise
(4)

where Ff is the friction in x or y direction, Fe is the stiction related to the external force when v = 0, FS

is the maximum of stiction proportional to the normal load, and F(v) is the dynamic friction, which is
described by:

F(v) = FC + (FS − FC)exp
(−(|v/vs|)δs

)
(5)

where FC is the Coulomb friction, FS is the stiction, vs denotes Stribeck velocity whose value is 0.1 m/s,
and δs is a constant which ranges from 0.5 to 1. In order to measure the static friction, we gradually
increased the force exerted by the motor on the end-effector until it started to move and took its crit-
ical value as stiction. In addition, to mearsure the dynamic friction, the speed of the end-effector was
controlled, ranging from 0.001 to 0.2 m/s automatically, and recorded the average output forces of the
motors have maintained this speed. Finally, these data were fitted to the friction model F(v), and the
fitting result is shown in Fig. 3.
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2.4. Performance metrics
Each training trial is assessed quantitatively by two metrics. The engagement demonstrates the subject’s
contribution to the movement, and the trajectory error indicates the accuracy of the trajectory-tracking
trial intuitively.

Based on the AAN-assisted control framework, we propose a new approach to estimate the subject’s
engagement. The current working situation is that the position error caused by the subject’s operation
will be corrected with the help of the assistive force, and the work done by the subject on the handle will
be used exclusively to support the handle movement along the reference trajectory in the back-drivable
system. Specifically, based on the deviation between the reference trajectory and the actual trajectory,
the stiffness of the force field will determine the reduction of the energy consumed by the person in the
case of the same error. In particular, we can estimate the trial-wise engagement from the EI and further
improve the subject’s engagement in training by adjusting the hyperparameter of AAN [47].

As a sequence, the trial-wise energy contributed by the subject in each training trial is calculated as:

EG =
∫ finish_point

start_point
FhdL (6)

where L is the displacement vector from the current sample point to the next sample point. With reference
to the coordinates of the guide points of the desired trajectory (P1(0.1, 0.2), P2(0.2, 0.3), P3(0.3, 0.2),
P4(0.4, 0.1), P5(0.5, 0.2)), Eq. (7) is calculated as:

EG =
∫ 0.5

0.1

|f̂hx|dx +
∫ 0.3

0.2

|f̂hy|dy +
∫ 0.3

0.1

|f̂hy|dy +
∫ 0.2

0.1

|f̂hy|dy (7)

where f̂hx and f̂hy are the smoothed force to reduce the impact of outliers on the estimation during the
training trial [48].

The mean absolute error is calculated to assess the trajectory error, which is the most intuitive to
reflect the degree of deviation of the actual trajectory from the reference trajectory in each trial, which
is described as:

TE = 1

2πr

∫ finish_point

start_point
|ys − yd|dx (8)

where ys and yd are the subject’s trajectory and the desired trajectory along the y-axis, respectively. r is
the radius of the desired trajectory, and its value is 0.1 m.

2.5. Adaptive AAN based on BO
As mentioned in Section 2.2, the assistive level relies on the hyperparameter. However, engagement
and trajectory error varies with subjects, which makes the fixed hyperparameter formation the fixed
assistive level, which cannot pair the subject’s performance, leading the training effect hard to effective
improve. Therefore, we should optimize the hyperparameter of the controller adaptively according to the
performance. Dealing with such an issue is formulated as solving the following optimization problem:

λ∗ = argmax
min≤λ≤max

J(λ) (9)

where J(λ) denotes the relationship between the subject’s performance and the AAN controller’s hyper-
parameter. The hyperparameter ranges from 0.1 (min value) to 1.0 (max value). The minimum and
maximum values are determined through preliminary experiments. Specifically, a value less than the
lower limit will cause the force field to be unstable, making the task impossible to complete. A value
above the upper limit will result in a force field in the workspace that is too weak for the subject to
perceive the assistive force.
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To optimize the robot actuation, we define a cost function to be maximized that weighs a metric of
accuracy (the trajectory error) and a metric of engagement (the EI-based engagement), which can be
described as:

J = EG − β ∗ TE (10)

where β is the weight coefficient that expresses the tradeoff between the subject’s engagement and
average trajectory error.

There are two characteristics for such an optimization problem. First, the objective function is expen-
sive to evaluate since it can be assessed only after the subject finishes a training trial. Second, the
subject’s performance could not be analytically expressed as a function of the hyperparameter of the
AAN controller, and thus it also cannot be optimized by the gradient descent method. Employing greedy
strategies is easily influenced by performance noise and can only acquire a locally optimal solution. To
this end, we have adopted an effective method, that is, BO, to solve the problem in Eq. (9). BO is an
efficient global optimization method that is particularly well suited to optimizing unknown objective
functions that are expensive to evaluate [49]. It makes use of all the available historical information
from the evaluation to compute a posterior distribution of cost as a function of the optimization variables
and then uses acquisition functions computed on this posterior to select the next observation points to
evaluate. In particular, it naturally balances exploitation with uncertainty reduction to guide exploration
[50]; hence, global optimum could be reached with limited data.

In order to initial the Bayesian Optimization, some tests for stiffness parameter are necessary. In our
study, six trials with different pseudo-randomly selected stiffness values from the pre-specified range to
initialize the optimization, which was designed to avoid biased sampling that could lead to premature
convergence [51]. The current hyperparameter and the corresponding objective function value were
collected into the dataset D = (λi, Ji) after ith trial of training. Assuming that the cost function had an
additive identically distributed and independent noise, the samples is expressed as:

Ji = J(λ) + ε, ε ∼ N
(
0, σ 2

noise

)
(11)

where σ 2
noise is the variance of the noise. We take the approach of folding the noise into k(λ, λ′), which is

expressed as:

k(λ, λ′) = σ 2
J exp

[
− (λ − λ′)2

2l2

]
+ σ 2

noiseδ(λ, λ′) (12)

where l is the hyperparameter of the characteristic length scale, and δ(λ, λ′) is the Kronecker delta
function. In order to capture the uncertainty in the surrogate reconstruction of the objective function,
and since the Gaussian process (GP) has become a standard surrogate for modeling objective function
in BO [52], we construct the posterior distribution of J(λ) with GP on D as:

J(λ) = GP (J;μ(λ), KJ|D
)

(13)

where μ(λ) denotes the mean of the distribution, KJ|D represents the covariance, and they are expressed
as:

μ(λ) = k∗(λ)
(
K + σ 2

noiseI
)

K−1J J = [J1, J2 · · · Jn] (14)

KJ|D = k(λ∗, λ∗) − k∗(λ)
(
K + σ 2

noiseI
)−1 k∗(λ)T (15)

where K and k∗(λ) are expressed by:

K =

⎡
⎢⎢⎢⎣

k(λ1, λ1) k(λ1, λ2) · · · k(λ1, λn)
k(λ2, λ1) k(λ2, λ2) · · · k(λ2, λn)

...
...

. . .
...

k(λn, λ1) k(λn, λ2) · · · k(λn, λn)

⎤
⎥⎥⎥⎦ (16)

k∗(λ) = [k(λ∗, λ1) k(λ∗, λ2) · · · k(λ∗, λn)] (17)
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where (∗) is the predicted value of Bayesian linear regression. Collected data and Gaussian process prior
induce a posterior distribution of objective function, and the acquisition function decides which point
of λ to observe in the next trial. The acquisition function of PI represents the maximum probability of
improving over the best current value, which would take the form as:

λn+1 = argmax
min≤λ≤max

αPI(λ) (18)

By evaluating λ in the given range, the value which makes the PI function αPI(λ) the maximum will
be selected as the next observation point. The αPI(λ) is expressed as:

αPI(λ) = 
(μ(λ), σJ(λ)) = 


(
μ(λ) − Jmax|D − ξ

σJ(λ)

)
(19)

where μ(λ) denotes the expectation obtained from the posterior distribution, 
 is the cumulative distri-
bution function of the standard normal distribution, and Jmax|D is the max value of the cost function on
D. The ξ is an adjustable parameter regulated to balance exploration and exploitation, which is set to 0
in our study.

This process was repeated for 15 trials. In total, there were 21 trials in the optimization process
including 6 trials of initialization.

3. Experiments
Two experiments were conducted to evaluate the proposed methods. The first experiment aimed to
validate the feasibility of the proposed engagement estimation method. In the second experiment, the
proposed BO-based AAN training was compared to a greedy strategy-based training to demonstrate its
advantages.

3.1. Subjects
In our study, we recruited 20 healthy adults, 10 males and 10 females, to participate in a comparison
experiment. The age range of the subjects was 23–31 years, with an average age of 25.5. Ten partic-
ipants, labeled as C1–C10, were assigned to the control group (CG) and were trained using a greedy
strategy. The other 10 subjects, marked as E1–E10, were assigned to the experimental group (EXG) and
were trained using the BO-based method. All experiments were approved by the Ethics Committee of
Southeast University (2022ZDSYLL038-P01). Prior to the experiment, all subjects provided informed
consent and received training to ensure safe operation.

3.2. Feasibility validation experiment of engagement estimation based on EI
An experiment was conducted to verify the feasibility of the proposed engagement estimation by eval-
uating the correlation between the proposed and the sEMG-based engagement estimation. Ten healthy
adults (five males and five females, with an average age of 24.8) were recruited for the experiment con-
sisting of 10 trials of trajectory tracking in the back-drivable system. The subjects were requested to
control the robot’s handle along the reference trajectory in the absence of assistive force. Based on the
characteristic of the movement, three Delsys sensors were placed on the brachioradialis, triceps brachii
long and lateral head, and biceps brachii of the subject’s arm to record sEMG signals at 1000 Hz. In addi-
tion, the force sensor connected to the handle detected the interaction force at 300 Hz. The sEMG-based
engagement estimation of each trial was described as follows:

EGsEMG = 1

4

4∑
n=1

||Sn||2/
√

Nn, n = 1, 2, 3, 4 (20)
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Figure 4. The results of the experiments on engagement estimation.

Figure 5. Experimental setup of Fourier M2 robot for upper-limb training.

where Sn is the amplitude vector of the collected nth channel signals with length Nn after rectification
[53, 54]. The group’s average engagements in each trial were normalized first, and Pearson’s correla-
tion coefficient was used to measure the correlation between the proposed and sEMG-based estimation
method. The experiment results (as shown in Fig. 4) demonstrated a significant correlation between
the two methods, with a Pearson’s coefficient of r = 0.841 and p = 0.002. These findings support the
feasibility of the proposed engagement estimation method.

3.3. Comparison experiment between BO-based and greedy strategy-based training
3.3.1. Experimental setup
The experimental setup is illustrated in Fig. 5, where the subject’s forearm was comfortably attached to
the support frame, and the hand was gripping the handle. In each training trial, subjects were instructed
to operate the handle and follow the desired trajectory until the grip reached 0.5 m along the x-axis. The
desired and actual trajectories were displayed to the subjects during the training process. Additionally,
the AAN controller generated force feedback based on the control law and provided feedback to the
subject through the grip if the handle deviated from the preset trajectory. Although the desired trajectory
for each trial remained constant, the stiffness of the assisted force field was regulated according to the
subject’s performance.

https://doi.org/10.1017/S0263574723000899 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000899


3110 Jianxi Zhang et al.

Figure 6. Experimental procedure of AAN optimized by greedy strategy and BO, respectively.

3.3.2. Experimental procedure
Experimental procedures for two groups were designed as shown in Fig. 6, which included the familiar-
ization session (FR), the transparent session before training (TR1), the greedy strategy training session
(GS)/BO training session, the transparent session after training (TR2), and the breaks therein. The FR
aimed to familiarize subjects with the operation and trial. During the TR1 and TR2 sessions, subjects
were instructed to complete the trial in the absence of the force field.

In the GS session for the CG, the hyperparameters of the force field were regulated using the greedy
strategy. Specifically, the regulation approach was expressed as follows:

λn+2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λn+1 + 0.1, if Jn+1 > Jn and Jn+1 > Jn

λn+1 − 0.1, if Jn+1 > Jn and Jn+1 ≤ Jn

λn+1 − 0.1, if Jn+1 ≤ Jn and Jn+1 > Jn

λn+1 + 0.1, if Jn+1 ≤ Jn and Jn+1 ≤ Jn

n ∈ [1, 19] (21)

where n denotes the serial number of training in the GS session. The current hyperparameter of the
force field was regulated on the performance of the previous two trials in the GS session. To balance
the tradeoff between the convergence speed and accuracy, we set the step size of the greedy algorithm
to 0.1. A step size that is too small may result in a slower convergence, while a step size that is too large
may hinder convergence.

In the BO session of the experimental group, the AAN controller initially selected random parameters
within the given range for the first six trials. The subsequent 15 trials then optimized the hyperparameters
based on the previous training results.

Each subject completed the training in approximately 40 min. Neither of the training methods
imposed additional operational burden on the subjects as resting breaks were given between sessions.

3.3.3. Metrics
Since more engagement during training tends to lead to better training outcomes, the BO-based training
aims to encourage more participant engagement by adjusting the assistance during training. Regulating
the assistance in the training may increase the risk that subject will decrease engagement, as the
human motor system tends to optimize engagement [55]. Therefore, monitoring the EG is beneficial
for adjusting the assistance to encourage subject’s engagement in the training.

After the training, two metrics, TE and EG, were used to compare the subjects’ abilities. Smaller TE
and EG in the absence of assistance suggested that subjects had better movement control capability with
less energy consumption and error. The TE was calculated by Eq. (8), indicating the average trajectory
error in the trajectory tracking trial. The EG was computed by Eq. (7), demonstrating the work done by
the human on the handle during a training trial.

The pre- and post-training metrics were analyzed separately for each group to evaluate the impact of
the training. Wilcoxon signed-rank tests were employed to determine the statistical significance of the
observed differences.
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Figure 7. (a) Comparison of trajectory error between two groups before and after training. (b)
Comparison of engagement between two groups before training and after training. The (ns) denotes
p ≥ 0.05, (∗) p < 0.05, (∗∗) p < 0.01, (∗∗∗) p < 0.001.

4. Results
The comparison result for the TE and EG was shown in Fig. 7. The significance comparison analysis of
the two metrics was as follows:

1. Pre-training in CG vs. post-training in CG: The TE of the CG pre-training (5.85 ± 0.56 mm) and
post-training (4.87 ± 0.46 mm) was significantly different (p = 0.005). The EG of the CG before
(3.86 ± 0.17 J) and after training (3.67 ± 0.16 J) was not significantly different (p = 0.088),
indicating that the training of the CG was able to the reduce trajectory error.

2. Pre-training in EXG vs. post-training in EXG: There was a significant difference between pre-
training (5.81 ± 0.45 mm) and post-training (3.80 ± 0.67 mm) in TE (p = 0.005). There was a
significant difference between pre-training (3.71 ± 0.14 J) and post-training (3.34 ± 0.13 J) in
EG (p = 0.000). It indicated that subjects’ energy expenditure decreased after optimized training.

Taken together, the results of 1 and 2 suggest that after training, participants were able to improve
the accuracy of their movements without assistance and also reduce energy expenditure to complete the
task.

The average TE and EG of the CG decreased by 16.65% and 4.56% after training, respectively. In
comparison, the average TE and EG of the EXG decreased by 34.59% and 9.71% severally.

The significant differences in the metrics between the groups were compared as follows:

1. TE of pre-training in CG (5.85 ± 0.56 mm) vs. pre-training in EXG (5.81 ± 0.45 mm): There
was no significant difference between the errors of the two groups before training (p = 0.959),
indicating that there was no difference in the control of movement between the two groups.

2. EG of pre-training in CG (3.86 ± 0.17 J) vs. pre-training in EXG (3.71 ± 0.14 J): There was
no significant difference in EG between the two groups before training (p = 0.376). The result
suggested no difference in energy expenditure between the two groups performing the same trial
under the same conditions.

3. TE of post-training in CG (4.87 ± 0.46 mm) vs. post-training in EXG (3.80 ± 0.67 mm): The
TE of the two groups possessed significant differences after training (p = 0.005), demonstrating
that BO-based training improved motor control more than GS-based training.

4. EG of post-training in CG (3.67 ± 0.16 J) vs. post-training in EXG (3.34 ± 0.13 J): The EG
of the two groups possesses significant differences after training (p = 0.048), suggesting that the
EXG was able to exhibit less energy expenditure in the same task.
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Figure 8. (a) Variation of trajectory error and fitted curves in optimization training. (b) Variation
of engagement and fitted curves in optimization training (the 1th–6th training trials of control group
were used for optimization, while the 1th–6th training trials of experimental group were used for
initialization).

Combining the results mentioned above, it was found that the BO-trained group exhibited greater
accuracy and lower energy expenditure in completing the task under the same unassisted conditions
compared to the CG.

In addition to comparing the pre- and post-training metrics of the two groups, we also analyzed
the metrics during the training process. As the first six trials of the CG were used for optimization, we
focused on the variation in performance from the 7th to the 21th training trails and compared the average
TE and EG of the two groups per trial, as shown in Fig. 8. By fitting a linear regression to the TE and
EG of 7th–21th trials, we found that the slope of TE in CG is −0.016, while the slope of TE in EXG is
−0.002, the slope of EG in CG is −0.0076, and the slope of EG in EXG is 0.0019. These results suggest
that the TE gradually decreased during the training based on the greedy strategy, but the reduction of
TE was smaller in the EXG. Moreover, the EG of CG decreased while the EG of EXG increased.

We further compared the TE and EG of the two groups during the training process using paired t-test
and found a significant difference between the two groups in two metrics (p < 0.001). The comparison
results indicate that the BO-based training method encourages subjects to engage in the training, even
though they make more trajectory errors. Our experimental results demonstrate that the proposed method
can maintain a high level of engagement and even strengthen it over time.

In addition, a random subject from the EXG was selected to access the processed data and investigate
the evolution of hyperparameter during the optimization process. This evaluation included the process
of GP and the acquisition function used to select the optimal hyperparameters for the next trial.

Figure 9 displays the posterior distribution of the objective function with respect to the hyperparam-
eter of AAN estimated by GP during the OP session. The PI function was then utilized to determine
the minimum value that would maximize the likelihood of performance improvement within the given
range, based on the posterior distribution. Despite subjects occasionally performing poorly near the
optima, most of the sampled points were concentrated around λ = 0.58 after 14 optimization training
trials. This optimization process demonstrated that the global optimal point had been identified and that
the noise of the objective function had minimal impact on adjusting the optima.

5. Discussion
With BO-based optimization training, the average TE was reduced by 17.94%, and the average EG was
reduced by 5.15% compared to the training based on the greedy algorithm. The study’s results have
suggested a potential improvement in motor control of the upper limb through BO-based training. In
line with optimization-assisted training based on greedy strategies [22–33], training based on BO not
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Figure 9. (a–c) denote the posterior distribution of the Gaussian process of the target function based
on observations from 1th–6th trials, 1th–13th trials, and 1th–20th trials in the OP session, respec-
tively. (d–f) denote the probability of improvement that the value chosen by λ for the next trial within a
given range based on the historical performances respectively, and triangles denote the location of the
participant-specific optimal hyperparameter.

only optimized the parameters continuously but also did not fall in local optima, which highlights the
importance of continuous and global optimization. In addition, BO-based training was more efficient
than greedy strategy-based training, as demonstrated by the need for fewer trials to obtain the global
optima in a high-performance noise environment.

It should be mentioned that while we have demonstrated in our investigations that short-term exercise
training promotes subjects’ performance, the proposed controller has yet to be tested in clinical trials.

Future research will adaptively adjust the subject-specific search region by improving the optimiza-
tion method to reduce the likelihood that the optimal value is on the boundary. In addition, more research
will focus on the decay pattern of the subject’s improved performance after training. Moreover, applying
the adaptive AAN to the patient’s recovery will be necessary.

6. Conclusion
This paper proposes an AAN training method based on EI for upper limb training. EI is validated to be a
reliable metric of the subject’s level of engagement. Based on this, the hyperparameter of the controller
is gradually optimized using BO. Through training in this way, the engagement in the training could be
promoted with a subject-specific force field, thus leading to improved training effect. In a comparative
experiment, the BO-based training method is found to reduce TE and energy consumption after training.

Future work will focus on carrying out the proposed method in the three-dimensional space,
specifically for the purpose of upper limb rehabilitation in stroke patients. Additionally, the training
experiments will include patients to validate the proposed training methods.
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