Corrigenda

Volume 37 (1941), 199-228

'The fractional dimension theory of continued fractions'

By I. J. GOOD

Department of Statistics, Virginia Polytechnic Institute and State University, U.S.A.

The following corrections to the above-mentioned article were obtained jointly with Werner Fritsch in correspondence in 1953 and 1954. These corrections seem worth publishing because of the current interest in Hausdorff-Besicovitch fractional dimensions.

	For	Read
p. 201, line 1	0.583	0.585
line 4	0.417	0.415
p. 205, THEOREM 11, above the summation sign	α_n	α_k
p. 206, one line below (3·3)	(3.2)	(3·3)
p. 210	The outline of the proof of LEMMA 5(i) seems to be incorrect. A correct proof is available from the author.	
p. 215	In the second half of the page the application of LEMMA 2 is suspect, so THEOREM 8 is unproven. But the proof of THEOREM 5 is valid because $(12\cdot2)$ does not require the conditions $a_r \leq \Phi(r)$ $(r = 1, 2,, n_0-1)$.	
pp. 216–217	There is a ga	ap in the proof of THEOREM 6. It was filled and details are available from the
p. 223, top		available from the author.
p. 223, equation (19·12)	-	of $1-2x-y$ should read $1-2x$.
p. 228, line 4	one and I ca I must have	equation obviously follows from the first annot recall exactly what I had in mind. e intended that x_0 , σ and the function ψ found simultaneously, but I failed to approach.