Corrigenda

Volume 37 (1941), 199-228

'The fractional dimension theory of continued fractions'
By I. J. GOOD
Department of Statistics, Virginia Polytechnic Institute and State University, U.S.A.
The following corrections to the above-mentioned article were obtained jointly with Werner Fritsch in correspondence in 1953 and 1954. These corrections seem worth publishing because of the current interest in Hausdorff-Besicovitch fractional dimensions.

	For \quad Read
p. 201, line 1	$0.583 \quad 0.585$
line 4	$0.417 \quad 0 \cdot 415$
p. 205, Theorem 11, above the summation sign	$\alpha_{n} \quad \alpha_{k}$
p. 206, one line below (3.3)	(3.2) (3.3)
p. 210	The outline of the proof of Lemma 5 (i) seems to be incorrect. A correct proof is available from the author.
p. 215	In the second half of the page the application of Lemma 2 is suspect, so Theorem 8 is unproven. But the proof of Theorem 5 is valid because (12.2) does not require the conditions $a_{r} \leqslant \Phi(r) \quad(r=1,2, \ldots$, $n_{0}-1$).
pp. 216-217	There is a gap in the proof of Theorem 6 . It was filled by Fritsch and details are available from the author.
p. 223, top	Details are available from the author.
p. 223, equation (19.12)	The power of $1-2 x-y$ should read $1-2 x$.
p. 228, line 4	The second equation obviously follows from the first one and I cannot recall exactly what I had in mind. I must have intended that x_{0}, σ and the function ψ should be found simultaneously, but I failed to outline an approach.

