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Waves and instability at the interface of two flows
of miscible magnetic and non-magnetic fluids

Mikhail S. Krakov†

Belarusian National Technical University, 4 Nezavisimosti Ave., Minsk, 220013, Belarus

(Received 19 April 2023; revised 6 July 2023; accepted 19 July 2023)

This study presents the results of a numerical simulation of two horizontal flows of
miscible magnetic and non-magnetic fluids at low Reynolds numbers in a vertical uniform
magnetic field. The problem is solved by taking into account the dependence of the
viscosity and magnetization of the fluid on the concentration of the magnetic phase, and
the dependence of the magnetic field on the concentration. Four flow modes are found: the
diffusion mixing mode with a flat diffusion front, the wave mode and two different plug
flow modes. In the first of them, the growing wave instability forms the plugs, whereas in
the second, the growing magnetostatic instability does. A combination of dimensionless
criteria is found that determines the transition from one mode to another. The dependences
of the phase velocity of the waves on the diffusion front and the period of the oscillations
of the front near the point of the confluence of the two flows on dimensionless criteria are
found.
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1. Introduction

The problem of flow mixing at low Reynolds numbers is typical for microfluidics
applications. If two flows move in a flat channel, the only mechanism that ensures their
mixing is diffusion. Diffusion is a very slow process, so a huge number of passive and
active ways of destabilizing the flow of miscible fluids have been proposed, and have been
discussed in detail in special reviews (Yang et al. 2016; Cai et al. 2017; Shanko et al. 2019).

One of the active ways to influence the diffusion front is to use the magnetic field and
magnetic fluid as one of the media. The basic idea of such an impact is to make the
diffusion front unstable in the magnetic field. Several papers – a detailed list of which
can be found in Li, Kao & Wen (2018) – present studies of the instability of the boundary
of a drop of magnetic fluid in the Hele-Shaw cell surrounded by a miscible non-magnetic
fluid in fields of various configurations. It was discovered that disturbances at the drop’s
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edge develop, and their wavelength varies with the strength and orientation of the magnetic
field. A microfluidic double T-junction with magnetic fluid droplets in the merging regime
was considered in Maleki et al. (2019). They found that the combination of the induced
magnetoconvection and shear-driven circulating flow within a moving droplet remarkably
improves the mixing efficiency.

The beginning of research on the instability of the flat diffusion front at the interface
of immovable miscible magnetic and non-magnetic fluids was the work of Maiorov
& Tsebers (1983). The magnetic field was normal to the diffusion front. In Krakov,
Zakinyan & Zakinyan (2021), the instability of the flat diffusion front in the perpendicular
magnetic field was studied numerically and experimentally for immobile fluids in the
Hele-Shaw cell. It has been demonstrated that the magnetic field causes the development
of magnetostatic instability of the front, and that, as the magnetic field intensity increases,
the wavelength of the unstable perturbations decreases.

In the works of Cebers & Igonin (2002), Erglis et al. (2013) and Kitenbergs et al. (2015),
the instability of the flat diffusion interface tangential to the front magnetic field was
explored. It was revealed that, in this case, a labyrinth instability develops. The work
of Kitenbergs et al. (2018) has investigated the mixing of two flows of magnetic and
non-magnetic fluids in a vertical Hele-Shaw cell under the influence of a magnetic field
normal to the cell’s plane. The authors identified the critical values of the magnetic
field and the distinctive wavelength of the labyrinth instabilities, and they presented the
magnetic and gravitational Rayleigh numbers to characterize the condition of onset of the
instability and the characteristic wavelength of the labyrinth instabilities.

The problem of mixing flows of magnetic and non-magnetic fluids normal to the flow
boundary magnetic field was studied in the paper of Zhu & Nguen (2012). Experimental
and numerical analyses show that a magnetic field may effectively mix the flow of
magnetic fluid with the flow of non-magnetic fluid in a circular chamber. The work of
Saadat, Ghassemi & Shafii (2020) investigated the efficacy of mixing the flow of magnetic
fluid between two flows of non-magnetic miscible fluid from above and below and showed
high efficiency of mixing. The magnetic field was perpendicular to the diffusion front.
The high effectiveness of the impacts of this orientated magnetic field on fluid mixing
has been demonstrated experimentally and numerically. In the paper of Krakov (2020),
the efficiency of mixing by a rotating magnetic field was studied. The magnetic field’s
optimal frequency of rotation has been identified, ensuring the most effective mixing.

It should be noted that only an unstable diffusion front allows for efficient mixing. Waves
form at the boundary of two fluid flows as a result of the development of instability of the
diffusion front. Their amplitude depends on many factors. The width of the diffusion front
and the concentration, density, viscosity and magnetization gradients in its volume define
the characteristics of propagating waves in the absence of surface tension on the diffusion
front between miscible flows. The issue of wave propagation characteristics and wave
modes is fundamental because the mixing efficiency is a result of wave characteristics. The
above-mentioned studies on the efficacy of mixing under the influence of a magnetic field
are widely recognized. However, to our knowledge, no studies of the wave propagation
velocity and wave modes in a magnetic field perpendicular to the diffusion front have ever
been conducted.

The authors Chen, Yang & Miranda (2009) indicate: ‘Diffusion leads to changes in
the local concentration, and consequently both the local viscosity and magnetization
(or, alternatively, the magnetic force) are also modified since these quantities are all
concentration dependent. On top of these effects, the variations in viscosity and magnetic
force lead to a locally varying convective motion of the fluids. All the physical effects
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Figure 1. Geometry of the problem and calculation domain.

mentioned above certainly interact with each other, however, in a very complex way which
cannot be easily singled out’.

In the current work, an effort is made to adequately describe the phenomena stated
above. This is an attempt to investigate the wave characteristics and stability of the
horizontal diffusion front between two flows of miscible magnetic and non-magnetic
fluids as fully as possible. The properties of the waves formed at the interface, wave
modes and the rivalry of the mechanisms of wave instability are the main subjects being
studied.

2. Formulation of the problem and governing equations

2.1. Geometry of the problem
We consider a flat horizontal channel into which two flows move with equal average
velocities (figure 1). Gravity is oriented vertically down. The flow of heavier magnetic
fluid moves in the lower half of the channel, and the flow of non-magnetic fluid moves in
the upper half. The fluids are miscible. Magnetic particles diffuse from a magnetic fluid
into a non-magnetic one, and a diffusion front is formed along the initial line of their
contact y = 0.5. In microfluidic applications, the channel width and flow rates are so small
that the Reynolds numbers are obviously less than unity. Such a flow is laminar in the
absence of a magnetic field, and the diffusion front is steady.

An external, vertically orientated, uniform magnetic field H0, perpendicular to the
diffusion front, is acting on the channel. The channel entry has a horizontal partition.
It is necessary to ensure that, at the point of flow confluence (x = 0.24, y = 0.5, figure 1),
when the magnetic field is turned on, magnetic field non-uniformities do not arise, which
could cause distortion of the diffusion front. The Poiseuille flow is shown by the velocity
profiles at the inlets to both channels. After the confluence point, the channel’s length
is ten times longer than its width. This length is significantly longer at low Reynolds
numbers than the hydrodynamic entry length, which is l ≈ 0.05ReL (L is the width of the
channel, Re = UL/ν).

2.2. Governing equations
The equation of motion. We consider the movement of two mixing flows of magnetic
and non-magnetic fluids as the motion of one continuous medium with a concentration
that depends on the coordinate. The density, viscosity and magnetization of this medium
depend on the concentration. The equations that describe the motion of such a medium
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have the following form:

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p + η�u + 2(∇η · ∇)u + ∇η × (∇ × u)

+ ρg + μ0M(c,H)∇H, (2.1)

∂c
∂t

+ u · ∇c = div
(

D∇c − D
μ0mp

kT
M(c,H)

MS
c∇H

)
, (2.2)

where c is the hydrodynamic volumetric concentration of magnetic particles (i.e. including
the particle and the surfactant shell), D is the diffusion coefficient, H is the magnetic field
strength, mp is the magnetic moment of a single particle, ρ is the density, u is the velocity,
p is the pressure, t is the time, η is the dynamic viscosity, g is the gravity acceleration,
M is the magnetization of a fluid, MS is the saturation magnetization of a fluid, k =
1.38 · 10−23 J · K−1 is the Boltzmann constant, T is the temperature, μ0 =
4π · 10−7 H m−1 is the magnetic permeability of vacuum.

The saturation magnetization of fluids that can be used in microfluidics should not be
very high, up to 10 kA m−1, so the volume concentration of particles in such liquids is
also not very high, up to 8 %. The Vand formula then effectively captures the relationship
between viscosity and concentration (Vand 1948)

η = η0 f (c) = η0 exp
[

2.5c + 2.7c2

1 − 0.609c

]
. (2.3)

The diffusion coefficient D is related to the mobility of particles b in suspension by
the Einstein relation D = bkT, where b = u/F, u is the velocity of particles, and F is the
force acting on them. For suspensions with a low concentration of spherical particles, one
can use the Stokes formula F = 6πη0ru, where r is the radius of the spherical particles.
At an infinitely small concentration of particles, η0 is the viscosity of the pure fluid.
Let us introduce the designation D0 = kT/6πη0r, which corresponds to the diffusion
coefficient at an infinitesimal concentration (the Stokes–Einstein formula). When the
concentration of magnetic particles changes, the viscosity of the fluid changes. Based on
the Stokes–Einstein formula, it can be assumed that, at not very high concentrations (in
the problem under consideration, the hydrodynamic concentration does not exceed 8 %),
the following relation is fulfilled:

D = D0

f (c)
. (2.4)

The relationship between a fluid’s magnetization and particle concentration is linear. We
use the approximation suggested in Vislovich (1990) for the magnetization’s dependency
on the strength of the magnetic field. The form of the dependence M(c, H) is

M(c,H) = M(H)
c
c0

= MS
χĤ

(1 + χĤ)

c
c0
, Ĥ = H

MS
, (2.5)

where χ is the initial susceptibility of the magnetic fluid. The density of the fluid also
depends on the concentration

ρ = ρpc + ρf (1 − c), (2.6)

where ρp is the density of particles, and ρf is the base fluid density. The average density of
particles covered with the layer of oleic acid in the magnetic fluid ρp ≈ 2.6 · 103 kg m−3

970 A11-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

60
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.608


Waves and instability at the interface

(Krakov et al. 2021), ρf ≈ 0.9 · 103 kg m−3. By analogy with the coefficient of thermal
expansion β = −(1/ρ)∂ρ/∂T , we use the solutal expansion coefficient βc = (1/ρ)∂ρ/∂c
(Eckert, Acker & Shi 2004; Islam, Sharif & Carlson 2013). In this case, at small
concentration c → 0 it is possible to write

βc = ρp − ρf

ρf
, (2.7)

and
ρ = ρf (1 + βcc). (2.8)

We assume that the volume concentration of magnetic particles is not very high (c �
0.1). Then, by analogy with the Boussinesq approximation, we suppose that the density is
constant on the left side of (2.1), and the dependence of density on concentration will be
taken into account only on the right side: ρg = ρf (1 + βcc)g.

As reference values, we will use the width of the channel L, the average velocity of the
flow U, [t] = L/U, [x,y] = L, [u] = U, [ψ] = LU, [ω] = U/L, [H] = H0. Then (2.1) takes
form (by removing the terms corresponding to the hydrostatic equilibrium)

Re
[
∂u
∂t

+ (u · ∇)u
]

= −Re∇p + ηr�u + 2(∇ηr · ∇)u + ∇ηr × (∇ × u)

+ Ngceg + NH

χH
(

H0

MS

)

1 + χH
(

H0

MS

)(c − c0)∇H, (2.9)

where Ng = L2gβc/Uν0, NH = μ0MSH0L/Uη0c0, Re = ρUL/η0, ν0 = η0/ρ, η0 is the
dynamic viscosity of the fluid without impurities, ηr = η/η0 = f (c) and eg is the
unit vector oriented along the vector g. For the reason of brevity, the designation of
dimensionless numbers Ng and NH is used, but if conventional names are used, then it
should be kept in mind that Ng = Grc/Re and NH = Grm/Re, where Grc = gβcL3/ν2

0 is
the Grashof number in natural convection mass transfer and Grm = μ0MSH0L2/c0ρν

2
0 is

the magnetic Grashof number. All variables in equations are dimensionless, both here and
below.

If it is assumed that the change in fluid density caused by a change in concentration is
not too great (c � 0.1), the continuity equation can be expressed as

∇ · u = 0. (2.10)

And it is possible to introduce the streamfunction ψ , so that

ux = ∂ψ

∂y
, uy = −∂ψ

∂y
. (2.11a,b)

A variable vorticity that we introduce is defined as

ω = ∇ × u. (2.12)

Then (2.10) takes the form (for two-dimensional problems)

�ψ = −ω. (2.13)
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Let us act by the curl operator on (2.9) to eliminate pressure. This equation then adopts
the following form:

Re
[
∂ω

∂t
+ (u · ∇)ω

]
= �(ηrω)+ Fω, (2.14)

where

Fω = −2
(
∂2ηr

∂y2
∂2ψ

∂x2 − 2
∂2ηr

∂x∂y
∂2ψ

∂x∂y
+ ∂2ηr

∂x2
∂2ψ

∂y2

)
− Ng

∂c
∂x

+ NH
χH(H0/MS)

1 + χH(H0/MS)

[(
∂H
∂x

)(
∂c
∂y

)
−

(
∂H
∂y

)(
∂c
∂x

)]
. (2.15)

Boundary conditions for the streamfunction and vorticity are:

• Poiseuille flow at x = 0;
• free boundary condition for flow at the outlet of the channel

∂ψ

∂x
= 0,

∂ω

∂x
= 0; (2.16a,b)

• no-slip condition at y = 0 and y = 1. This means that ψ = 0 at y = 0, ψ = 1 at y = 1,
and vorticity is calculated according to the Woods formula.

Mass transfer. The diffusion equation for magnetic particles in a non-uniform magnetic
field has the following form:

∂c
∂t

+ u · ∇c = ∇(D∇c − cbF ), (2.17)

where F = μ0mp∇H · M(H)/MS (Shliomis & Smorodin 2002) is the force acting on a
single particle, mp is the magnetic moment of the particle and c is the volume concentration
of magnetic particles. The dimensionless diffusion equation has the following form after
accounting for relation (2.4) and the relationship between the particle mobility and the
diffusion coefficient b = D/kBT:

Re Sc
(
∂c
∂t

+ v · ∇c
)

= ∇ ·
[

1
f (c)

(
∇c − Nm

M(H)
MS

c∇H
)]
, (2.18)

where Nm = μ0mpH0/kT , Sc = ν0/D0.
The boundary conditions for concentration are:

• the condition of equality to zero of the mass flow on solid walls

∇c − Nm
M(H)

MS
c∇H = 0 at y = 0, y = 1; (2.19)

• given concentration at the confluence of flows x = 0.24 (and the initial condition for
all nodes)

c = c0 at 0 ≤ y < 0.5
c = 0 at 0.5 ≤ y ≤ 1

}
; (2.20)

• at the outlet of the channel, the boundary condition is constructed numerically based
on the law of conservation of mass in the framework of the finite volume method,
taking into account both diffusive and convective mass transfer.
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Magnetic field. The equations used to describe the magnetic field are as follows:

∇ · B = 0, ∇ × H = 0, B = μ0(M + H) = μ0μH , (2.21a–c)

where B is the induction and H is the strength of the magnetic field. We can introduce the
scalar potential H =∇F due to the second of these equations. The first equation results in
the scalar potential equation below when (2.5) is taken into consideration

∇(μ∇F) = 0, μ(x, y) = 1 + χ

1 + χH
(

H0
MS

) c(x, y)
c0

. (2.22a,b)

We assume that the channel is under an external uniform magnetic field of strength H0;
then, at the outer boundaries of the computational domain, the condition for the scalar
potential has the form

F = H0y. (2.23)

Equations (2.13), (2.14), (2.18) and (2.22) thus describe the mixing of flows of magnetic
and non-magnetic fluids taking into account the fluids’ varying properties, which are
defined by dependences (2.3) and (2.5), and the corresponding boundary conditions.

2.3. Numerical method
The problem was solved by the finite volume method on a rectangular grid (Patankar
1980). In accordance with this method, differential equations (2.13)–(2.22) are presented
as

∂ω

∂t
= ∇ · Jω + Fω; ∂c

∂t
= ∇ · J c; ∇ · J F = 0; ∇ · Jψ = −ω, (2.24a–d)

where

Jω = ∇(ηrω)− Reuω; (2.25)

J c = 1
Re Sc ηr

∇c − cFc, Fc = v + 1
Re Sc ηr

Nm∇H, (2.26a,b)

J F = μ∇F; Jψ = ∇ψ, (2.27a,b)

and then replaced by integral equations on a finite volume surrounding each grid node
∫
Ω

∂ω

∂t
dΩ =

∮
l
Jω · n dl +

∫
Ω

Fω dΩ;
∮

l
Jψ · n dl = −

∫
Ω

ω dΩ, (2.28a,b)
∫
Ω

∂c
∂t

dΩ =
∮

l
J c · n dl;

∮
l
J F · n dl = 0. (2.29a,b)

Here, � is the area of the two-dimensional ‘volume’ surrounding the node, and l is the
boundary line of the ‘volume’.

To approximate these integral equations, we must assume some kind of interpolation
functions (shape functions) for the variables ω, ψ , c, F. Following Patankar’s idea
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(Patankar 1980), we use linear functions for ψ and F

ψ = Aψn + Bψ ; F = AFn + BF, (2.30a,b)

and exponential functions for ω and c

ω = Aω exp
[

Reunn
ηr(c)

]
+ Bω, (2.31)

c = Ac exp[Re Scηr(c)unn] + Bc, (2.32)

between the central node of the control volume and the neighbour node, where n is the
coordinate in the direction normal to the boundary of the control volume (x or y), and un
is the velocity in this direction. All coefficients are determined for each boundary line of
the control volume separately through the central node and nearest outside node.

An explicit method is employed for time discretization of the concentration and the
vorticity equations. The convergence criteria for residuals in solving the Laplace equation
for the magnetic potential F and the Poisson equation for the streamfunction ψ are
considered as 10−7.

C++ was used to implement the author’s code. The code’s validation has been done
first for the case of H = 0, u = 0 (see details in Krakov et al. 2021). In this case, a
difference from the exact solution of the diffusion equation of less than 1 % was obtained
on a grid with steps �x = 0.02, �y = 0.02. In the presence of flow and magnetic field,
by consecutive reduction of grid steps, it was confirmed that the solution does not
depend on the grid step in the examined range of parameters at �x = 1/200 = 0.005,
�y = 1/300 = 0,0033 with the length of the channel being 10. The total number of nodes
in the calculation domain was 320 × 2240 = 716 800. The number of nodes inside the
channel, which was 300 × 2000 = 600 000. A non-uniform grid was utilized outside; a
uniform grid was used inside the channel.

The explicit scheme was used for the simulation of the transient equations. Until the
results stopped changing, the time step was decreased. Time-step-independent results were
obtained with �t = 3.33 · 10−8, the total number of steps over time reached 1.2 · 108. This
corresponds to dimensionless time t ∼ 4. The average concentration of magnetic particles
in the channel was checked. Its change in the variants studied ranged from 0.5 % to
1.7 % over 120 000 000 steps. This outcome indicates the good fulfilment of the mass
conservation law, that is, the high accuracy and reliability of the method used. The use of
such small steps in coordinates and in time caused the run time for some variants of the
problem to exceed three months.

2.4. Results
We assume the following characteristics of the base fluid: ρf = 900 kg m−3, D0 =
5 · 10−12 m2 and η0 = 10−3 Pa. Ferrofluid has the following typical properties: MS =
10 kA m−1, χ = 1.6, c0 = 0.08 and ρ= 1077 kg m−3. At velocity values of 1 cm s−1,
0.1 cm s−1 and 0.01 cm s−1, and magnetic field strengths of 1 kA m−1, 2 kA m−1, 3 kA
m−1, 5 kA m−1, 7 kA m−1 and 15 kA m−1, the mixing of two flows and wave propagation
at the diffusion front were investigated. In this case, the value of the gravitational
parameter Ng, depending on the flow velocity, is 10, 100 or 1000. The parameter Nm varied
between 0.1 and 1.5 depending on the magnetic field H0. Table 1 displays the actual values
of the NH parameter for a channel with a width of 100 μm.
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U, cm c–1

H, kA m–1

0.01 0.1 1

Re

0.0108 0.108 1.08

1 157 080 15 708 1571

1.5 235 600 23 560 2356

2 314 200 31 420 3142

3 471 200 47 120 4712

5 785 400 78 540 7854

7 1 099 560 109 956 10 996

15 2 360 000 236 000 23 600

Table 1. NH parameter values and flow modes (different colours, see text).

0 2 4 6 8 10

1
C: 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075

Figure 2. Diffusion front after t = 5.56 (dimensional time is 2000 second). Here, NH = 3142, Re = 1.08.

For flows of miscible magnetic and non-magnetic fluids, four flow modes were
discovered. Two flows move together in the first mode, and the diffusion front is not
distorted (figure 2). Table 1 shows related cells with yellow backgrounds. With high flow
rates and relatively low magnetic fields, this mode can be realized. This means that the
flow velocity has an unexpected but understandable stabilizing effect on the diffusion
front between the magnetic and non-magnetic fluids. The instability of the diffusion front
is caused by the magnetic field rather than the hydrodynamics. These disturbances are
smeared by the flow, which prevents them from growing and stabilizes the diffusion
front. It is important to remember that, as shown in table 1, NH = Grm/Re decreases
with increasing velocity. That is, when velocity rises, the magnetic field’s destabilizing
influence decreases. This result is qualitatively consistent with the experimental data of
the papers by Kitenbergs & Cēbers (2019) and Kitenbergs et al. (2018), which studied the
stability of the boundary of two flows in a tangential magnetic field.

Waves form at the point where the two flows converge (coordinate x = 0.24), and
they propagate along the diffusion front as the magnetic field strength increases. This
is comparable to how waves travel over a stretched rope with a sinusoidal oscillation at
the left end (figure 3). This second mode is implemented at the values of the parameters
marked in table 1 with a green background. The waves’ shape changes as they travel; the
middle part moves more quickly while the peripheral one lags behind. The flow velocity
profile is the cause of this. At a distance of more than 0.8 from the point of confluence of
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Figure 3. The diffusion front’s wave propagation pattern. Here, NH = 15 708, Re = 0.108, and panels show
(a) t = 1.05, (b) t = 2.67, (c) t = 3.98. The position of the maximum that occurred first is shown by the arrow.
The waves’ group velocity is significantly lower than their phase velocity. The onset and propagation of waves
in this mode is demonstrated by supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.608.

0 2 4 6 8 10

C: 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075

Figure 4. The case NH = 10996, Re = 1.08, t = 4.07. The waves’ crests reached the channel walls, the mixing
intensity grew and the frequency of oscillations of the diffusion front near the point of confluence of the flows
increased. The onset and propagation of waves in this mode is demonstrated by supplementary movie 2.

the flows, x = 0.24, it is quite close to the Poiseuille flow profile. It should be noted that
the front of the wave packet’s propagation along the channel has a much higher velocity
than the maximum that first appeared. In other words, the group velocity of the waves
is smaller than the phase velocity, just as it is in the case of gravity waves propagating
on the surface of water. The wave mode is realized for Reynolds numbers Re = 0.108 for
all analysed values of the magnetic number NH ≤ 31 420 and for Re = 1.08 in the range
4712 ≤ NH ≤ 10 996, as can be shown from table 1. As can be observed, the ranges of the
NH number in which the wave mode is achieved vary significantly for different values of
the Reynolds number.

The waves’ amplitude rises with an increase in the magnetic field and reaches the
channel walls at the maximum values of the parameter NH for this mode. In this
situation, the wave propagation velocity is accelerated, the frequency of the diffusion front
oscillations at the entrance increases and there is intense fluid mixing (figure 4).

The third mode is implemented using the values of the parameters marked in table 1 with
a cyan colour background. The magnetic fluid layer breaks into separate vertical plugs that
block the channel in this mode, where the waves’ amplitude grows so quickly that they
reach the channel walls very close to the point of flow confluence (figure 5).
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Figure 5. The case NH = 1.57 · 105, Re = 0.0108 for (a) t = 0.233, (b) t = 0.5, (c) t = 0.617. The layer of
magnetic fluid is broken into separate plugs. The onset and propagation of waves in this mode is demonstrated
by supplementary movie 3.

The resulting plugs move collectively from left to right while remaining almost vertical
under the influence of the flow. As can be observed, waves are created not only at the
channel’s left-side point of flow confluence but also at its right-side outflow. This is due
to the magnetic field’s non-uniformity, which develops since there is not a channel section
that equalizes the magnetic field as there is at the inlet. The magnetic field at the channel’s
outlet corners becomes non-uniform, which results in the channel’s diffusion front being
deformed. As can be observed from the data shown below, plugs induce a noticeable
increase in the period of oscillations of the diffusion front at the area of flow confluence.

Magnetostatic instability can develop at the interface where immobile magnetic
and non-magnetic fluids contact, as demonstrated in Krakov et al. (2021). With the
above-described mechanisms of instability, perturbations developed at the point where
the flows converge, and the waves travelled along the diffusion front. As magnetostatic
instability occurs, disturbances start to appear and grow along the entire interface. These
two mechanisms concurrently disrupt the diffusion front (figure 6) at sufficiently high
magnetic field values, which triggers the rapid production of plugs. In this instance, the
magnetostatic instability has a small wavelength at first (figure 6b) (the smaller, the greater
the magnetic field strength; Krakov et al. 2021). But the peaks that occur develop quickly,
combine to form larger structures and eventually cause plugs to appear all the way along
the channel. The cells in table 1 that match this fourth mode are indicated by a pink colour.

The analysis of table 1 shows that the NH parameter is not the single factor that
affects the flow regime. In fact, wave instability of the diffusion front is seen at
NH = 157 080 (H = 1 kA m−1, U = 10−4 m s−1), and magnetostatic instability appears
at NH = 109 956 (H = 7 kA m−1, U = 10−3 m c−1; see cells with solid red borders in
table 1, and the same situation with the cells with dashed red borders). If the NH parameter
were the only factor, this could not be the case. This problem was solved by analysing the
change in the phase velocity of the waves that arise at the point of confluence of the flows
and propagate along the diffusion front. The leading-edge velocity of the wave packet
travelling along the diffusion front was used to calculate the phase velocity (figure 3).
A function of the form up = f (Nm

HRen)was used to fit the data collection. The least squares
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Figure 6. The case NH = 7.85 · 105, Re = 0.0108 and panels show (a) t = 0.033, (b) t = 0.05, (c) t = 0.67,
(d) t = 0.78. Wave and magnetostatic instabilities of the diffusion front emerge concurrently. The onset and
propagation of waves in this mode is demonstrated by supplementary movie 4.

method of analysis revealed that the optimal values are m = 1 and n = 1/2. The function f
in this instance takes the form (figure 7)

up = 5.522 · 10−4NH
√

Re − 0.2854. (2.33)

The square of the linear correlation coefficient for this function is R2 = 0.9728, indicating
a high probability that the only parameter affecting how waves move along the diffusion
front is the product NH

√
Re.

An interesting issue is the passage to the limit with a decrease in the flow velocity
to the instability parameters of immobile fluids. Instability of an immobile fluid was
studied earlier in Erglis et al. (2013) and Krakov et al. (2021). This question was asked
by Professor A. Cebers during the presentation of this work at the 16th International
Conference on Magnetic Fluids in Granada, June 2023. Quantitative comparison of the
results is very difficult due to the reasons given in Krakov et al. (2021). The fact that
the results correspond qualitatively is shown in figure 6(b), which shows the development
of an instability similar to that studied in these works. In addition, it follows from the
above expression for the phase velocity that, as the flow velocity decreases (Re → 0),
NH

√
Re = Grm/

√
Re → ∞, i.e. the phase velocity must tend to infinity. This can be

interpreted as the instability of the diffusion front must occur simultaneously along the
entire diffusion front. This happens both in the case of immobile fluids and in the case of
flows at high values of the parameter NH

√
Re (figure 6b).

Table 2, which displays the values of this parameter and the flow modes similarly to
table 1, supports the hypothesis that the parameter determining the properties of the waves
and the instability of the diffusion front at the interface of two flows is the product NH

√
Re.
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Figure 7. Dependence of phase velocity on the parameter NH
√

Re.

U, cm c–1

H, kA m–1

0.01 0.1 1

Re

0.0108 0.108 1.08

1 16 316 5160 1632

1.5 24 484 7743 2448

2 32 653 10 326 3265

3 48 969 15 485 4897

5 81 621 25 811 8162

7 114 270 36 135 11 427

15 245 258 77 558 24 526

Table 2. NH
√

Re parameter values and flow modes.

Table 2 demonstrates that, as the parameter NH
√

Re increases, wave modes change
consecutively. The data that are now accessible are incomplete, which prevents us defining
the precise essential values for the transition from one flow mode to another. This is due to
the extraordinarily long run times of individual variants. Nevertheless, the following can
be roughly determined for these critical values:

• NH
√

Re � 4000 – there are no waves, the mixing of flows occurs only due to
diffusion;

• 4000 � NH
√

Re � 12 000 – there is a wave mode, the amplitude of the waves does
not reach the boundaries of the channel;

• 12 000 � NH
√

Re � 25 000 – there is a plug mode, the source of waves is the point
of confluence of the flows;
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Figure 8. Dependence of oscillation period on parameter NH
√

Re
0.175

. • – wave mode, � – plug mode.

• NH
√

Re � 25 000 – there is a plug mode, and the developing magnetostatic
instability as well as the point of confluence of the flows are the sources of
waves.

Since NH
√

Re = Grm/
√

Re, it should be noted that, for a fixed value of NH
√

Re,
an increase in the flow velocity (Reynolds number) leads to an increase in the critical
magnetic field, which controls the transition from one mode to another.

Near the point of confluence of the two flows, the diffusion front oscillates periodically,
as is evident from figure 4. The parameter NH

√
Re affects the oscillation period’s

value (figure 8). Between the plug mode and the wave mode, this dependence is very
different. The diffusion front’s oscillation period rapidly rises upon transition to the plug
mode. Perhaps this is a result of the pressure buildup that is required to push the plugs
through with the flow.

3. Conclusion

The two-dimensional flow of miscible magnetic and non-magnetic fluids at equal flow
rates has been investigated. Fluids flow in a flat, horizontal channel with a width of
less than 100 microns, which means low Reynolds numbers. An external magnetic
field is uniform and vertically directed. On the diffusion front between magnetic and
non-magnetic fluids, four flow and wave generation modes are identified. The parameter
NH

√
Re controls the transition between one mode and another. At NH

√
Re <∼ 4000,

the diffusion front remains flat, as in the absence of a magnetic field; in the range
4000 <∼ NH

√
Re <∼ 12 000, waves propagate on the diffusion front, the wave crests do not

reach the channel walls. At NH
√

Re >∼ 12 000, the wave crests reach the channel walls
and the magnetic fluid layer breaks into separate plugs. At the same time, in the range of
values 12 000 <∼ NH

√
Re <∼ 25 000, waves arise at the point of confluence of the flows of

magnetic and non-magnetic fluids, and at NH
√

Re >∼ 25 000, the magnetostatic instability
of the diffusion front develops, previously studied in Krakov et al. (2021). The transition
from the wave to the plug flow mode is accompanied by a sharp increase in the oscillation
period of the diffusion front near the point of flow confluence.

Supplemental movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.608.
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