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Abstract

The Spineless Tagless G-machine is an abstract machine designed to support non-strict
higher-order functional languages. This presentation of the machine falls into three parts.
Firstly, we give a general discussion of the design issues involved in implementing non-strict
functional languages. Next, we present the STG language, an austere but recognizably-
functional language, which as well as a denotational meaning has a well-defined operational
semantics. The STG language is the 'abstract machine code' for the Spineless Tagless G-
machine. Lastly, we discuss the mapping of the STG language onto stock hardware. The
success of an abstract machine model depends largely on how efficient this mapping can
be made, though this topic is often relegated to a short section. Instead, we give a detailed
discussion of the design issues and the choices we have made. Our principal target is the C
language, treating the C compiler as a portable assembler.

Capsule Review

The G-machine has served as a foundation for the compilation of non-strict higher-order
functional languages. In this paper, the basic G-machine technology is enhanced for the
purpose of improving performance on conventional uniprocessors, resulting in the 'Spineless
Tagless G-machine'. The paper contains a comprehensive treatment of most of the practical
problems involved in compiling lazy functional languages, including data representation,
garbage collection, exploitation of strictness analysis, efficient use of machine-level resources,
performance issues, and portability.

Overall, the research has an important goal: overcoming the performance gap between
strict languages such as C and ML, and non-strict languages such as Haskell and Miranda.1

While the actual size of this gap is presently unknown, and the author has not yet gathered
significant experimental results with the system described, this work is clearly a significant
step forward in addressing many important performance issues related to compiling non-strict
functional languages.
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1 Introduction

The challenges of compiling non-strict functional languages have given rise to a
whole stream of research work. Generally the discussion of this work has been
focussed around the design of a so-called 'abstract machine', which distils the key
aspects of the compilation technique without becoming swamped in the details of
source language or code generation. Quite a few such abstract-machine designs have
been presented in recent years; examples include the G-machine (Augustsson, 1987;
Johnsson, 1987), TIM (Fairbairn and Wray, 1987), the Spineless G-machine (Burn,
Peyton Jones and Robson, 1988), the Oregon G-machine chip (Kieburtz, 1987), the
CASE machine (Davie and McNally, 1989), the HDG machine (Kingdon, Lester
and Burn, 1991), the (v,G) machine (Augustsson and Johnsson, 1989), and the ABC
machine (Koopman, 1990).

Early implementations, especially those based on graph reduction, were radically
different from conventional compiler technology: the difference between an SK com-
binator implementation (Turner, 1979) and, say, a Lisp compiler is substantial. So
great was this divergence that new hardware architectures were developed specifi-
cally to support the execution model (Scheevel, 1986; Stoye, Clarke and Norman,
1984). As understanding has developed, though, it has been possible to recognise
features of more conventional systems emerging from the mist, and to generate
efficient code for stock architectures.

In this paper we present a new abstract machine for non-strict functional lan-
guages, the Spineless Tagless G-machine, set it in the context of conventional com-
piler technology, and give a detailed discussion of its mapping onto stock hardware.
Our design exhibits a number of unusual features:
• In all other the abstract machines mentioned above, the abstract machine code

for a program consists of a sequence of abstract machine instructions. Each
instruction is given a precise operational semantics using a state transition system.

We take a different approach: the abstract machine language is itself a very small
5-2
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functional language, which has the usual denotational semantics. In addition,
though, each language construct has a direct operational interpretation, and we
give an operational semantics for the same language using a state transition
system.

• Objects in the heap, both unevaluated suspensions and head normal forms,
have a uniform representation with a code pointer in their first field. Many
implementations examine tag fields on heap objects to decide how to treat them.
With our representation we never do this; instead, a jump is made to the code
pointed to by the object. This is why we call the machine 'tagless'.

• A pervasive feature of functional programs is the construction of data structures,
and their traversal using pattern-matching. Many abstract machine designs say
very little about how to do this efficiently, but we pay a lot of attention to it.

• The machine manipulates unboxed values directly, based on the ideas in a compan-
ion paper (Peyton Jones and Launchbury, 1991). This is essential for an efficient
implementation of arithmetic, but it is usually hidden in the code generator.

• There is scope for exploiting the fruits of both strictness analysis and sharing
analysis to improve execution speed.

• Lambda lifting, a common feature of almost all functional-language implemen-
tations, is not carried out. Instead, the free variables of lambda abstractions are
identified, but the abstraction is left in place.

• The machine is particularly well-suited for parallel implementations, although
space prevents this aspect being discussed in this paper (Peyton Jones, Clack and
Salkild, 1989).
Almost all the individual ideas we describe are present in other implementations,

but their combination produces a particularly fast implementation of lazy functional
languages.

An earlier version of this paper (Peyton Jones and Salkild, 1989), had a similar
title and introduction to this one. The underlying machine being described is mostly
unchanged, but the presentation has been completely rewritten.

2 Overview

The paper divides into three parts. Part I explores the design space to show how the
STG machine fits into a wider context. Part II introduces the abstract machine and
gives its operational semantics, and Part III discusses how the abstract machine is
mapped onto stock hardware.

2.1 Part I: the design space

The implementation of non-strict functional languages has tended to be done in a
separate world to that of 'real compilers'. One goal of this paper is to help bridge
the gap between these two cultures. To this end we identify several key aspects of a
compiler (its representation of data structures, its treatment of function application,
and its compilation of case-analysis on data structures), and compare the approach
we take with that of others.

We hope that this exercise may be useful in its own right, as well as setting the
context for the rest of the paper.
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2.2 Part II: the abstract machine

The usual way of presenting an evaluation model for a functional language is to de-
fine an abstract machine, which executes an instruction stream. The abstract machine
is given an operational semantics using a state transition system, and compilation
rules are given for converting a functional program into abstract machine code. The
application of these compilation rules is usually preceded by lambda lifting (Johns-
son, 1985), which eliminates lambda abstractions in favour of supercombinators,
functions with no free variables. A good example of this approach is the G-machine
(Johnsson, 1987; Peyton Jones, 1987), whose abstract machine code is called G-code.

This approach suffers an annoying disadvantage: the abstract machine is generally
not abstract enough. For example, the abstract G-machine uses the stack to hold
many intermediate values. When G-code is to be compiled into native machine
code, many stack operations can be eliminated by holding the intermediate values
in registers. The code generator has to simulate the operation of the abstract stack,
which is used, in effect, mainly to name intermediate values. Not only does this
process complicate the code generator, but it makes G-code harder to manipulate
and optimize.

To avoid this problem, one is driven to introduce explicitly-named values in
the abstract machine, which is how the T-code of our earlier paper was derived
(Peyton Jones and Salkild, 1989). Unfortunately, the simplicity of the abstract
machine is now lost.

We take a slightly different approach here. Instead of defining a new abstract
machine, we use a very small functional language, the STG language, as the abstract
machine code. It has the usual denotational semantics, so it is in principle possible
to check the transformation of the original program into the STG language is
correct. But we also give it a direct operational semantics using a state transition
system, which explains how we intend it to be executed. The problem of proving
the entire system correct is thereby made easier than, for example, the G-machine2,
because only the equivalence of the denotational and operational semantics of a
single language is involved. Even so, it is a substantial task, and we do not attempt
it here.

2.3 Part III: mapping the abstract machine onto real hardware

Typically, much is written about the compilation of a functional program into
abstract machine code, and rather little about how to map the abstract machine
onto the underlying hardware. Yet the abstract machine can only be considered a
success if this mapping works well; that is, the resulting code is efficient.

We believe that the Spineless Tagless G-machine comes out well in this regard,
and devote considerable space to discussing the mapping process. One of the nice
aspects is that a variety of mappings are possible, of increasing complexity and
efficiency.

2The task of proving a simple G-machine correct is carried out by Lester (1989) in his
thesis.
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Our target machine code is the C language. This has become common of late,
conferring, as it does, wide portability. We may pay some performance penalty for
not generating native machine code, and plan to build other code generators which
do so.

2.4 Source language and compilation route

We are interested in compiling strongly-typed, higher-order, non-strict, purely func-
tional languages such as LML, or Haskell. We expect heavy use of both higher-order
functions and the non-strict semantics (Hughes, 1989).

This paper is only about the back end of a compiler. Our complete compilation
route involves the following steps:

1. The primary source language is Haskell (Hudak et al., 1992), a strongly-typed,
non-strict, purely-functional language. Haskell's main innovative feature is its
support for systematic overloading.

2. Haskell is compiled to a small Core language. All Haskell's syntactic sugar is
translated out, type checking is performed, and overloading is resolved. Pattern-
matching is translated into simple case expressions, each of which performs
only a single level of matching.

3. Program analyses and a variety of transformations are applied to the Core
language.

4. The Core language is translated to the STG language, which we introduce in
section 4. This transformation is rather simple.

5. The code generator translates the STG language into Abstract C. The latter is
just an internal data type which can simply be printed out as C code, but which
can also serve as an input to a native-code generator.

Strictness analysis plays an important role in compilers for non-strict languages,
enabling the compiler to determine cases where function arguments can be passed
in evaluated form, which is often more efficient. Using this technology compilers for
lazy languages can generate code which is sometimes as fast as or faster than C
(Smetsers et al., 1991).

Usually the results of strictness analysis are passed to the code generator, which
is thereby made significantly more complicated. We take a different approach.
We extend the Core and STG languages with full-fledged unboxed values, which
makes them expressive enough to incorporate the results of strictness analysis by
simple program transformations. We give a brief introduction to unboxed values
in section 4.7, but the full details, including the transformations required to exploit
strictness analysis, are given in a separate paper (Peyton Jones and Launchbury,
1991).

The code generator, which is the subject of this paper, is therefore not directly
involved in strictness analysis or its exploitation, so we do not discuss it further.
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Part I: Exploring the design space

3 Exploring the design space

Before introducing the STG machine in detail we pause to explore the design space a
little. The STG machine has its roots in lazy graph reduction. It is now folklore that,
while graph reduction looks very different to conventional compiler technology, the
best compilers based on graph reduction generate quite similar code to those for,
say, Lisp. In this section we attempt to compare some aspects of the STG machine
with more conventional compilers.

Any implementation is the result of a raft of inter-related design decisions, each
of which is partly justified by the presence of the others. That makes it hard to find a
place to start our description. We proceed by asking three key questions, which help
to locate the implementation techniques for any non-strict higher-order language:
• How are function values, data values and unevaluated expressions represented

(section 3.1)?
• How is function application performed (section 3.2)?
• How is case analysis performed on data structures (section 3.3)?
This section gives the context and motivation for many of the implementation
techniques described in Parts II and III, and suitable forward references are given.

3.1 The representation of closures

The heap contains two kinds of objects: head normal forms (or values), and as-yet
unevaluated suspensions (or thunks). Head normal forms can be further classified
into two kinds: function values and data values. A value may contain thunks inside
it; for example, a list Cons cell might have an unevaluated head and/or tail. A
value which contains no thunks inside it is called a normal form.

It is worth noting that in a polymorphic language it is not always possible to
distinguish thunks whose value will turn out to be a function from thunks whose
value is a data value. For example, consider the composition function:

compose f g x = f (g x)

Is (g x) a function or not? It depends, of course, on the type of g and, since
compose is polymorphic, this is not statically determined.

For reasons which will become apparent we use the term closure to refer to both
values and thunks. In the remainder of this section we consider various ways in
which closures can be represented, contrasting the STG machine with other designs.

3.1.1 Representing functions

Any implementation of a higher-order language must provide a way to represent a
function value. Such a value behaves like a suspended computation: when the value
is applied to its arguments, the computation is performed.

The most compact way to represent a function value is as a block of static code
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Code

Free variables

Fig. 1. A closure.

(shared by all dynamic instances of the value), together with the values of its free
variables. (Such a value is commonly called a closure, though we use the term in a
wider sense in this paper.) The most direct physical representation of such a closure
is a pointer to a contiguous block of heap-allocated storage, consisting of a code
pointer which points to the static code, followed by (pointers to) the values of the
free variables (see Fig. 1). This is the representation adopted by many compiled
Lisp systems, by SML of New Jersey, and by the Spineless Tagless G-machine. To
perform the computation, a distinguished register, the environment pointer, is made
to point to the closure, and the code is executed. We call this operation entering
a closure. The code can access its free variables by offsets from the environment
pointer, and its arguments by some standard argument-passing convention (e.g. in
registers, on the stack, or in an activation record).

Instead of storing the values of the free variables themselves in the closure, it is
possible to store a pointer to a block of free variables, or even to a chain of such
blocks. These representations attempt to save storage, at the cost of slowing down
access. The Orbit compiler, for example, works hard to choose the best representation
for closures, including allocating them on the stack rather than in the heap whenever
possible, and sharing one block of free variables between several closures (Kranz,
1988). Apart from the compiler complexity involved, considerable extra care has
to be taken in the garbage collector to avoid the space leakage which can occur
when a closure captures a larger set of free variables than the closure itself requires.
Indeed, Appel's measurements for SML of New Jersey suggest that clever closure-
representation techniques gain little, and potentially lose a lot (in space complexity),
so he recommends a simple flat representation (Appel, 1992, Chapter 12).

The Three Instruction Machine (TIM) takes another interesting position. Instead
of representing a closure by a single pointer, it represents a closure by a pair of a
code pointer and a pointer to a heap-allocated frame (Fairbairn and Wray, 1987).
The frame, which is a vector of code-pointer/frame-pointer pairs, gives the values of
the free variables of the closure, and may be shared between many closures. These
code-pointer/frame-pointer pairs need to be handled very carefully in a lazy system,
because they cannot be duplicated without the risk of duplicating work. Proper
sharing can still be ensured, but it results in a system remarkably similar to the
more conventional one mentioned above (Peyton Jones and Lester, 1992, Chapter
4).
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3.1.2 Representing thunks

In a non-strict language, values are passed to functions or stored in data structures
in unevaluated form, and only evaluated when their value is actually required. Like
function values, these unevaluated forms capture a suspended computation, and can
be represented by a closure in the same way as a function value. Following the
terminology of Bloss, Hudak and Young, 1988, we call this particular sort of closure
a thunk, a term which goes back to the early Algol implementations of call-by-name
(Ingerman, 1961). When the value of the thunk is required, the thunk is forced.

A thunk can (in principle) be represented simply by a parameter-less function
value, but it is inefficient to do so because it might be evaluated repeatedly. This
duplicated work is avoided by so-called lazy implementations as follows: when a
thunk is forced for the first time, it is physically updated with its value.

There are three main strategies for dealing with updates in lazy implementations:

The naive reduction model updates the graph after each reduction (Peyton Jones,
1987). (By 'reduction' we mean the replacement of an instance of the left-hand
side of a function definition by the corresponding instance of its right-hand side.)
Apart from a few optimizations, this is the update strategy used by the G-machine
(Johnsson, 1984). Its main disadvantage is that a thunk may be updated with
another thunk, so the same object may be updated repeatedly, and we do not
consider this model further.

The cell model. In the cell model, each closure is provided with a status flag to
indicate whether it is evaluated or not. The code to force (that is, get the value
of) a closure checks the status flag. If the closure is already evaluated, its value
is extracted; otherwise the suspended computation is performed (by entering the
closure), the value is written into the cell, and the status flag is flipped (Bloss,
Hudak and Young, 1988).

The self-updating model, which is used by the STG machine. The cell model places
the responsibility for performing the update on the code which evaluates the
thunk. The self-updating model instead places this responsibility on the code
inside the thunk itself. The code to force a closure simply pushes a continuation
on the stack and enters the closure; if the closure is a thunk, it arranges for an
update to be performed when evaluation is complete, otherwise it just returns its
value. No tests need be performed.

The update overwrites the thunk with a value, which therefore must also have a
code pointer, because subsequent forces will re-enter the thunk-turned-value. This
representation is natural for function values, as we have already discussed, but is
something of a surprise for data values. A list cell, for example, is represented by
a code pointer together with the two pointers comprising the head and tail of the
list. The code pointed to from the list cell simply returns immediately3. In effect,
the code pointer plays the role of the flag in cell model.

Bloss, Hudak and Young, 1988 call this model 'closure mode', but the imple-

3In section 3.3 we explore variants of this scheme, in which the code for a list cell does
rather more than simply return.
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mentation they suggest is very much less efficient (in both time and space) than
that outlined above, because it is based on a translation into Lisp.

The latter two models each offer scope for optimization. Consider the cell model,
for example. Forcing can be optimized if the compiler can prove that the thunk
is certainly already evaluated (or the reverse), because the test on the flag can be
omitted (Bloss, Hudak and Young, 1988). Furthermore, if the compiler can prove
that there can be no subsequent code forces on the thunk, then it can omit the code
which performs the update.

A similar situation holds for the self-updating model. If the compiler can prove
that a particular thunk can only be evaluated at most once (which we expect to
be quite common), it can create code for the thunk which doesn't perform the
update. Unlike the cell model, the self-updating model cannot take advantage of
order-of-evaluation analyses.

3.1.3 A uniform representation for closures

As indicated above, the self-updating model strongly suggests that every heap-
allocated object (whether a head normal form or a thunk) is represented uniformly,
by a code pointer together with zero or more fields which give the values of the free
variables of the code. The STG machine adopts this uniform representation, as can be
seen in the operational semantics (section 5), where all heap values are represented
uniformly by some code together with a sequence of values. Indeed this is why the
machine is called 'tagless'; since all objects have the same form there is no need for
a tag to distinguish one kind of object from another (contrast the presentation in
Peyton Jones, 1987, Chapter 10). We use the term 'closure' to refer to both values
and thunks because of their uniform representation.

The decision to use a uniform representation for all closures has other interesting
ramifications, which we explore in this section.

Firstly, when a thunk is updated with its value, it is possible that the value will
take more space than the thunk. In this case, the thunk must be updated with an
indirection to the value (see Fig. 2). This causes no difficulty for the self-updating
model, because indirections can be represented by a closure whose code simply
enters the target closure. Such indirections can readily be removed during garbage
collection (section 7.3).

In the cell model, either a second test must be made to check for indirections, or
alternatively every updated thunk must be an indirection. (Fig. 3 shows the latter
case.) Both methods impose extra overhead.

Secondly, the self-updating model also allows other exceptional cases to be taken
care of without extra tests. For example:
• When a thunk is entered, its code pointer can be overwritten with a 'black-hole'

code pointer. If the thunk is ever re-entered before it is updated, then its value
must depend on itself. It follows that the program has entered an infinite loop,
and a suitable error message can be displayed. Without this mechanism stack
overflow occurs, which is less helpful to the programmer.

• In a system which supports concurrent threads of execution, exactly the same
method can be used to synchronize threads. When a thunk is entered, its code

https://doi.org/10.1017/S0956796800000319 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000319


Implementing lazy functional languages on stock hardware 137

Before

After updating (big value)

—*- (

*• Value

'—*~ Indirection code

updating

I i
1 1
Free vars

:ode
After updating

1

1
Head

_»_Cons

(small value)

1

1
Tail

code

Fig. 2. Updating in the self-updating model.
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Fig. 3. Updating in the cell model.

pointer is overwritten with a 'queue-me' code pointer. If another thread tries to
evaluate the thunk before the first thread has completed, the former is suspended
and added to a queue of threads attached to the thunk. When the thunk is
updated, the queued threads are re-enabled.

In a system with distributed memory, pointers to remote memory units often have
to be treated differently to local pointers. However, it would be very expensive to
test for remote-ness whenever dereferencing a pointer! In the self-updating model
a remote pointer can be represented as a special kind of indirection, and no tests
for remote pointers need be performed.
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3.2 Function application and the evaluation stack

Higher-order languages, which allow functions as 'first-class citizens', present in-
teresting challenges for the compiler-writer. An illuminating way of comparing
compilation strategies is to ask how function application is performed.

3.2.1 Currying

The languages in which we are interested make heavy use of curried functions. For
example, consider the following Haskell function definition:

f x y = x

f is attributed the type a —> (b -» a ) . That is, f may be thought of as a function
of one argument, which returns a function which takes the second argument. An
application of f, say (f 1 2) , is short for (( f 1) 2). An application of f to
one argument is perfectly acceptable; for example (map (f 1) x s ) .

In strict languages like Lisp, Hope and SML, the definition of f would usually
be of the form

f ( x , y ) = x

where f is attributed the type ( a ,b ) —> a. (We use (a, b) to denote the type of
pairs of elements of type a and b.) The function f can only be applied to a suitable
pair, and cannot be applied to just one argument.

In all of these languages it is possible (and, in SML, easy) to define curried
functions (otherwise they would hardly deserve the title 'higher-order'), but compilers
usually implement the uncurried form much more efficiently, and programmers
respond accordingly. There is the inverse cultural tradition in non-strict functional
languages, where the additional flexibility allowed by the curried form means that it is
usually preferred by programmers, and compilers typically treat curried application
as fundamental.

3.2.2 Compiling function application

Compilers from the Lisp tradition usually compile function application as follows:
evaluate the function, evaluate the argument, and apply the function value to the
argument. When a known function is being applied (as is often the case, especially
in Lisp), the 'evaluate the function' part becomes trivial. This model for function
application, which we call the eval-apply model, is invariably used by compilers for
strict languages (e.g. Lisp, Hope, SML and the SECD machine (Henderson, 1980;
Landin, 1965)). It is also used in some implementations of non-strict languages,
except that of course only the function is evaluated before the application (e.g. the
ABC machine (Koopman, 1990), and the (v, G)-machine (Augustsson and Johnsson,
1989)).

In contrast, compilers based on lazy graph reduction treat function application
as follows: push the argument on an evaluation stack, and tail-call (or enter) the
function. There is no 'return' when the evaluation of the function is complete. We
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call this the push-enter model; it is used by the G-machine, TIM, and the STG
machine.

The difference between the two models seems rather slight, but it has a pervasive
effect. It is difficult to say in general which of the two is 'better'. In essentially
first-order programs they generate much the same code. For programs which make
extensive use of curried functions the push-enter model looks better. For example,
consider the (curried) function definition

apply3 f x y z = f x y z

A Lisp-like compiler would be compelled to evaluate (f x), then evaluate that
function applied to y, and finally apply the result to z. A graph-reduction compiler
would just push x, y and z onto the evaluation stack before jumping to the closure
for f.

3.2.3 The evaluation stack

The main cost of the push-enter model of function application is that the link
between a function body and an activation frame is broken. For example, consider
apply3 again. In the eval-apply model the compiler can allocate an activation
frame for apply3 which is deallocated when the value of (f x y z) has been
computed. In the push-enter model, all that happens is that three more arguments
are pushed on the evaluation stack before jumping to f. To put it another way, there
are no identifiable moments at which a new activation frame should be allocated or
reclaimed.

This pushes the push-enter evaluation model in the direction of having a contigu-
ous evaluation stack, rather than a linked list of heap-allocated activation frames,
as exemplified by the New Jersey SML compiler (Appel and Jim, 1989). The idea
of heap-allocated activation frames is very appealing, because it makes it easy to
implement c a l l / c c (Appel and Jim, 1989), parallel threads (Cooper and Morrisett,
1990) and certain debugging mechanisms (Tolmach and Appel, 1990). But all these
things can be done by allocating a contiguous stack in medium-sized chunks in the
heap, at the price of a little extra complication (Hieb, Dybvig and Bruggeman, 1990;
Peyton Jones and Salkild, 1989).

Indeed, performance may well be better using a contiguous stack because of
the improved spatial locality, which reduces paging and cache misses. Contiguous
allocation of fresh activation records is pessimal for caches, since they have to both
fetch useless data (since they are not clever enough to know that it is free space
which is about to be allocated) and then write back an activation frame to main
memory which is quite likely to be garbage already. Unless one uses generational
garbage collection, and the youngest generation fits entirely within the cache, using
a contiguous stack is likely to have far better cache performance (Appel, 1992,
Chapter 15; Wilson, Lam and Moher, 1992). Current cache sizes are still too small
to contain a complete generation, but that may change. It would be very interesting
to quantify these effects.

The (v, G)-machine is another interesting design compromise (Augustsson and
Johnsson, 1989). Here again, there is no contiguous evaluation stack. Instead, work-
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ing space is allocated in every closure (which the (v,G)-machine calls a frame), and
the closures under evaluation are linked together much as heap-allocated activation
frames are. The penalties are: space usage is worse, because all closures contain the
extra space regardless of whether they are being evaluated or not (and most are
not); when a function is evaluated to a partial application, the arguments must be
copied from the function's frame to the application's frame; and it is not always
possible statically to bound the amount of working space required (unless separate
compilation is abandoned), so an exception-checking mechanism is required to deal
with the cases where too little has been allocated.

3.3 Data structures

Strongly-typed functional languages such as Haskell encourage the programmer to
define many algebraic data types. Even the built-in data types of the language, such
as lists, booleans, tuples and (as we will see in section 4.7) integers, may be regarded
as algebraic data types. Here, for example, are representative type declarations for
some of them:

data Boolean = False | True
data List a = Nil | Cons a (List a)
data Tuple3 a b c = MkTuple3 a t> c
data Int = Mklnt Int#
data Tree a = Leaf a | Branch (Tree a) (Tree a)

(Special syntax for lists and tuples is provided by most high-level languages, but
not by the STG language.) Data values are built using constructors, such as False ,
Cons, MkTuple3, Branch, and taken apart using case expressions. For example:

case t of
Leaf n
Branch tl

—>

t2 ->

el
e2

(In a high-level programming language, data values are usually taken apart using
various pattern-matching constructs, but it is well known how to translate such
constructs into case expressions with simple single-level patterns (Wadler, 1987).
We here assume that this translation has been performed.)

These operations of construction and pattern matching are so pervasive in func-
tional programs that they deserve particular attention. Compilers sometimes im-
plement the built-in types (list, tuples, numbers) in special 'magic' ways, and the
programmer pays a performance penalty for user-defined types. We take the view
that the general mechanisms used for user-defined types should be made efficient
enough to use for built-in types too. (Lisp, of course, has no user-defined types, so
this question does not arise.)

We have already discussed the representation of data values, as a code pointer
together with zero or more contents fields. We now turn our attention to the
compilation of case expressions. Notice that a case expression really does two
things: it evaluates the expression whose value it scrutinizes, and then it selects the
appropriate alternative.
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If the cell model is used, the case expression must first force the value to be
scrutinized. Then it must inspect the value to discover which constructor it is built
with, and hence which alternative of the case expression should be executed. It
follows that each data value must contain a tag (usually a natural number) which
distinguishes from each other the constructors of the relevant data type. So the
sequence of events is:
• Force the value.
• Extract its tag.
• Take a multi-way jump based on the tag4

• Bind the names in the pattern of the alternative to the components of the data
value.

• Execute the code for the alternative.
In the case of the self-updating model, though, there are more possibilities. Recall
that in this model a closure is forced by entering it, regardless of whether it has
been forced before. So far we have assumed that the code for a constructor always
returns immediately. But other variants are possible. It could, for example, load the
tag into a register before returning, so that the tag does not need to be represented
explicitly at all (section 9.4.3). Better still, instead of returning to a multi-way jump,
the constructor code could return to the appropriate member of a vector of return
addresses - we call this a vectored return (section 9.4.3). These return conventions can
be chosen on independently for each data type.

In effect, the self-updating model used by the STG machine takes advantage of
the fact that a data value is only ever forced by a case expression. This property is
unique to the STG machine. Other lazy implementations treat numeric data types
as a special case, which are implicitly forced by the built-in arithmetic operations.
In the STG machine, numeric data types are implemented as algebraic data types,
and only forced using case (section 4.7).

The idea can be taken one step further. Consider the expression

case (f x) of
Ni l -> e l
Cons a as —» e2

and suppose that (f x) evaluates to a Cons. The cell model would evaluate ( f x ) ,
resulting in a heap-allocated Cons cell, the components of which would be used in
e2. But suppose that we use the self-updating model, and that the code for Cons
puts the head and tail of the Cons cell in registers before returning (as well as
loading the tag into a register, if the return is not vectored). Then the Cons cell
need never be allocated in the heap at all! Since many functions return data values
this optimization seems quite valuable.

In summary, the cell model separates the forcing of a thunk from the case analysis
and unpacking performed by a case expression. The self-updating model allows

4Ireland (1992) cleverly avoids the forcing step when it is not necessary, by using the
same field to encode the evaluation status flag and constructor tag. The case expression's
multi-way jump has an extra branch for the case where an unevaluated thunk or indirection
is encountered: it forces the thunk and then re-executes the multi-way jump.
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these operations to be woven together, which seems to offer interesting opportunities
for optimizations. To be fair, these optimizations do complicate updating, as we will
see when we roll up our sleeves in Part III, so the benefit is not entirely without cost
(section 10).

3.4 Summary

The single most pervasive design decision in the STG machine is that each closure
(including data values) is represented uniformly, and scrutinized only by entering it.
The benefits include
• Cheap indirections are available (and are useful when performing updates). They

cost nothing when they are not present, and can be eliminated easily during
garbage collection.

• Other exceptional conditions (black holes, concurrency, etc.) can be handled in
the same way.

• A variety of return conventions for constructors are possible, including vectored
returns, and returning the components of the constructor in registers. The latter
means that data values may not be allocated in the heap at all.

What are the costs? The main one seems to be this: in the common case when a
possible thunk turns out to be already evaluated, the self-updating model takes two
jumps, one to enter the closure and one to return, while the cell model takes only
one (conditional) jump. (As we have seen, though, a jump can often be saved again
by using a vectored return.)

Worse, the first jump is to an unknown destination, which means that the code
generator cannot keep things in registers. The cell model only incurs these context-
switching costs if the thunk is unevaluated. Even so, the cell model may not always
win. If there are two or more forces in a row there is the nasty possibility of saving
the context, evaluating one thunk, restoring the context, discovering the second
thunk is unevaluated, and saving the context for a second time. In this sort of
situation it may well be just as good to save the context once and for all at the start
of a string of forces, as the self-updating model must do.

There are also some underlying architectural issues. Firstly, indirect jumps are
more likely to cause cache misses than (not-taken) conditional jumps. Secondly,
modern RISCs are well optimised for taking conditional jumps (employed by the
cell model), but not for taking indirect jumps (which are needed by the self-updating
model). In principle, if the jump target address is fetched a few instructions before
the jump itself, and the instruction fetch logic interprets the indirect jump directly,
no pipeline bubbles need be caused. Most RISCs are not (yet) optimized for this
sequence, but the Tera architecture is: it allows a branch target to be prefetched into
a register, and thereby supports zero-delay indirect branches (Alverson et al, 1990).

In short, by always entering a closure when we need its value, we pay a single,
fairly modest, up-front cost but get a wide variety of other benefits at no further
cost. Whether the benefits outweigh the costs is at present an open question.
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Program

Bindings

Lambda-forms

Update flag

Expression

Alternatives

Algebraic alt
Primitive alt
Default alt

Literals

Primitive ops

Variable lists

Atom lists

prog

binds

If

n

expr

alts

aalt
palt

default

literal

prim

vars

atoms
atom

—> binds

-> van - lf\\ •••; varn = lfn

—» varsf \n varsa —> expr

—» u
1 n

—» l e t binds i n expr
| l e t rec binds in expr
| case expr of alts
| war atoms
| constr atoms
| prim atoms
| literal

-* aalti; . . . ; aaltn; default
| pa/ti; . . . ; paltn; default

—* constr vars —> expr
—> /itera/ —» expr
—> uar —> expr
| d e f a u l t —» expr

-> 0# | 1# | ...

1 •••

- • +# | - # | ## | / #

1 •••

-> {van, . . . , uarn}

—• {atomi, . . . , atomn}
—• uar | /iiera/

n > 1

Updatable
Not updatable

Local definition
Local recursion
Case expression
Application
Saturated constructor
Saturated built-in op

n ^ O (Algebraic)
n 5: 0 (Primitive)

Primitive integers

Primitive integer ops

n > 0

n ^ 0

Fig. 4. Syntax of the STG language.

Part II: The abstract machine

4 The STG language

The abstract machine code for the Spineless Tagless G-machine is a very austere
purely-functional language, called the STG language, whose syntax is given in Fig. 4.
Virtually every functional-language compiler uses a small purely-functional language
as an intermediate code (e.g. the 'enriched lambda calculus' (Peyton Jones, 1987),
FLIC (Peyton Jones, 1988), FC (Field and Harrison, 1988), Kid (Ariola and Arvind,
1991)).

The distinguishing feature of the STG language is that it has a formal operational
semantics, expressed as a state transition system, as well as the usual denotational
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semantics. Indeed it is exactly this property which justifies the title 'abstract machine
code'. In particular, the following correspondence between the STG language and
operational matters is maintained:

Construct Operational reading

Function application Tail call
Let expression Heap allocation
Case expression Evaluation
Constructor application Return to continuation

The salient characteristics of STG code are as follows:
All function and constructor arguments are simple variables or constants. This con-
straint corresponds to the operational reality that function arguments are prepared
(either by constructing a closure or by evaluating them) prior to the call.
It is easy to satisfy this condition when translating into the STG language, simply

by adding new l e t bindings for non-trivial arguments.
All constructors and built-in operations are saturated. This constraint simplifies the
operational semantics of STG code. It is easily arranged by adding extra lambdas
around an unsaturated constructor or built-in application, thus performing the
opposite of //-reduction.
Notice that in a higher-order language we cannot ensure that every function

application is saturated (that is, gives to the function exactly the number of
arguments it expects).
Pattern matching is performed only by case expressions, and the patterns in
case expressions are simple one-level patterns. More complex forms of pattern-
matching can easily be translated into this form (Wadler, 1987).
The value scrutinized by a case expression can be an arbitrary expression, and

is not restricted to be a simple variable or constant. Nothing would be gained by
such a restriction, and some performance would be lost because a closure for the
expression would be unnecessarily built and then immediately evaluated.
There is a special form of binding. The STG language has a special form of binding,
whose general form is

/ = {vu...,[)„} \n {xu...,xm} ->• e

It has two readings. From a denotational point of view, the free variables vi,...,vn

and update flag n are ignored, and the definition binds / to the function {kx\...
xm.e).

From an operational point of view, / is bound to a heap-allocated closure,
containing a code pointer and (pointers to) the free variables v\,...,vn. This
closure represents the function (Xx\ ...xm.e); when its code is executed, a special
register will point to the closure thereby giving access to its free variables.
The right-hand side of a binding is called a lambda-form, and is the only site for

a lambda abstraction. Notice, though, that the abstraction can have free variables,
so no lambda lifting need be performed (section 4.5).
The update flag on a lambda-form indicates whether its closure should be

updated when it reaches its normal form (section 4.2). We say a lambda-form
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(or a closure built from it) is updatable if its update flag is u, and non-updatable
otherwise.

• The STG language supports unboxed values. This aspect is discussed in section 4.7.
A STG program is just a collection of bindings. The variables defined by this
top-level set of bindings are called globals, while all other variables bound in the
program are called locals. The value of an STG program is the value of the global
main.

The concrete syntax we use is conventional: parentheses are used to disambiguate;
application associates to the left and binds more tightly than any other operator;
the body of a lambda abstraction extends as far to the right as possible; and, where
the layout makes the meaning clear, we allow ourselves to omit semicolons between
bindings and case alternatives.

The STG language is similar in some ways to 'continuation-passing style' (CPS),
a point we return to in section 4.8.

4-1 Translating into the STG language

In this section we outline how to translate a functional program into the STG
language. We begin with an example, the well-known function map. Its definition,
in conventional notation (e.g. Haskell), is as follows:

map f [] = [ ]
map f (y :ys) = (f y) : (map f ys)

The corresponding STG binding is this:

map = {} \ n {f, xs} -»
case xs of

Nil {} -> Ni l {}
Cons {y,ys} ->• l e t fy = {f,y} \ u {} -»• f {y}

mfy = {f,ys} \ u {} —> map {f, ys}
in Cons {fy,mfy}

Notice the flattened structure, the explicit argument lists for every call, and the
free-variable lists and update flags on each lambda-form. Since map itself is a global
constant it is not considered to be a free variable of the lambda-form for mfy.

In this example, every lambda-form has either no arguments or no free variables.
To illustrate the two in combination, consider the following alternative definition
for map:

mapl f = mf where mf [] = []
mf (y :ys ) = (f y) : (mf ys)

Here the recursion is over mf, which has free variable f. The corresponding STG
binding is:

mapl = {} \n {f} -»
l e t r e c

mf = {f, mf} \ n {xs} -»•
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case xs of
Ni l {} -> Nil {}
Cons {y,ys} -» l e t fy = {f,y} \ u {} -» f {}

mfy = {mf,ys} \ u {} -> mf {ys}
in Cons {fy,my}

Here, mf is an example of a lambda-form with both free variables and arguments.
Notice that mf is a free variable of its own right-hand side (see section 4.5).

4.1.1 The general transformation

In general, translation into the STG language involves the following transformations:
• Replace binary application by multiple application.

(...(if e i ) e2) . . . ) en = > f { e x , e 2 , . . . , e n }

The semantics is still that of curried application, of course, but the STG machine
applies a function to all the available arguments at once, rather than doing so
one by one.

• Saturate all constructors and built-in operations, by ^-expansion if necessary. That
is

c{eu..-,en) ==> ky\...ym.c{eu...,en,yi,...,ym}

where c is a built-in or constructor with arity n + m).
• Name every non-atomic function argument, and every lambda abstraction, by

introducing a l e t expression:
• Convert the right-hand side of each l e t binding into a lambda-form, by adding

free-variable and update-flag information.

4.1.2 Identifying the free variables

The transformation to STG code requires the free variables of each lambda-form to
be identified. The rule is as follows: a variable must appear in the free variable list
of a lambda-form if

1. It is mentioned in the body of the lambda abstraction, and
2. It is not bound by the lambda, and
3. It is not bound at the top level of the program.

Thus, in the first version of map in the previous section, map does not appear in the
free-variable list of mfy because it is a global constant. On the other hand, in the
second version of map, mf is a free variable of both itself and mfy.

The free-variable rule handles mutual recursion without any further complications.
For example, the Haskell definition

f x y = fbody
where
g l a = . . . a. . . g2. . . x. . .
g2 b = . . . b . . . g l . • . y . . .
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would transform to the STG definition:

f = {} \ n {x,y} -> l e t r e c
g l = {g2,x} \ n {a} — . . . a . . . g2. . . x. . .
g2 = {gl,y} \ n {b} -+ . . . b . . . g l . . .y . . .

in
fbody

The l e t r e c builds a pair of closures, each of which points to the other.
The rule above says when a variable must appear in a free-variable list of a lambda-

form. Of course, any in-scope variable may appear (redundantly); surprisingly, there
is one situation in which such redundant free variables prove useful - see section 4.4.

4-2 Closures and updates

In the STG language, l e t ( r e c ) expressions bind variables to lambda-forms. Two
pieces of denotationally redundant but operationally significant information are
attached to a lambda-form: a list of the free variables of the lambda-form, and an
update flag. In this section we focus on the update flag.

Updates are an expensive feature of lazy evaluation, whereby the closure repre-
senting an unevaluated expression is updated with its (head) normal form when it
is evaluated (section 3.1.2). The aim is to avoid evaluating a particular closure more
than once.

In contrast to the G-machine, which performs an update after almost every
reduction, the Spineless Tagless G-machine is able to decide on a closure-by-closure
basis whether updating is required. (It shares this property with TIM and the
Spineless G-machine.) The update/no-update decision is controlled by the update
flag on a lambda-form: if the update flag is 'u', the corresponding closure will be
updated with its head normal form if it is ever evaluated; if it is 'n' no update will
be performed.

It is clearly safe to set the update flag of every lambda-form to u, thereby updating
every closure. But we can do much better than this. The obvious question is: to
which lambda-forms can we safely assign an update flag of 'n', without losing the
single-evaluation property? We explore this question by classifying lambda-forms
into distinct classes:
Manifest functions. A manifest function is a lambda-form with a non-empty argu-

ment list. For example, map and mf are manifest functions in the examples of
the previous section. Manifest functions do not require updating because they are
already in head normal form.

Partial applications. A partial application lambda-form is of the form

vs \ n {} ->• /{*!,...,xm}

where / is known to be a manifest function taking more than m arguments. Like
manifest functions, partial applications are already in head normal form, and
hence do not require updating. Both manifest functions and partial applications
are of course function values.
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Partial applications sometimes appear directly in programs, but they also arise
as a result of performing updates (section 5.6).

Only lambda-forms in precisely the form given above are classified as partial
applications. For example, the lambda-form

{x,y} \ u {} -> l e t z = . . .
i n f {z}

is not classified as a partial application, because its body is not in the required
form. There is a good reason for this: if a closure built from this lambda-form
was not updated, the closure for z would be re-built each time it was entered.

Constructors. A constructor is a lambda-form of the form

vs \ n {} -> c{xi,...,xm}

where c is a constructor. (Since constructor applications are always saturated in
the STG language, c is bound to have arity m.) The update flag on a constructor
is always n (no update).

Thunks. The remaining lambda-forms, those with an empty argument list but not
of the special form of a partial application or a constructor, are called thunks.
The lambda-forms mf y and f y are examples of thunks in the previous section.

Since thunks are not in normal form, it appears at first that they should all
have their update flag set to u. However, if the compiler can prove that a thunk
can be evaluated at most once then it is safe to set its update flag to n, thereby
allowing the update to be omitted.

For example, consider the following definition:
f = {} \ n {p,xs} -> l e t j = {p} \ n {} -• f a c t o r i a l p

in
case xs of

Nil {} - + { j , l }
Cons {y,ys}-> + {j ,2}

Here it is clear that j will be evaluated at most once, so its closure does not need
to be updated.

In summary, updates are never required for functions, partial applications and
constructors; and may in addition sometimes be omitted for thunks.

The analysis phase which determines which thunks need not be updated is called
update analysis. Not much work seems to have been done on this topic, but we are
working on a simple update analyser.

4-3 Generating fewer updatable lambda-forms

The translation from the Core to STG language is largely straightforward (apart
from the update analysis, which can of course be omitted by flagging all thunks
as updatable). There is an important opportunity to reduce the incidence of up-
dates, which concerns constructors and partial applications. Consider the Haskell
expression

l e t xs = y l : (y2 : (y3 : [ ] ) ) )
in . . .

https://doi.org/10.1017/S0956796800000319 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000319


Implementing lazy functional languages on stock hardware 149

A straightforward translation into the STG language gives

l e t xs = {yl ,y2,y3} \ u {} -»
l e t t l = {y2,y3} \ u {} -*

l e t t 2 = {y3} \ u {} -+
let t3 = {} \n {} -» Nil {}
in Cons {y3,t3}

in Cons {y2,t2}
in Cons {yl,tl}

in ...

Three updatable thunks have been built which will subsequently be updated when
(and if) xs is traversed. An alternative, and usually superior, translation is this:

l e t t 3 = {} \ n {} -• Ni l {}
in l e t t2 = {y3,t3} \ n {} -> Cons {y3,t3}
in l e t t l = {y2,t2} \ n {} -> Cons {y2, t2}
in l e t xs = {yl, t l } \ n {} -» Cons {yl, t l }
in ...

No updatable thunks are built at all. The only bad thing about this translation is
that if xs was to be discarded without being traversed then the work of constructing
all four constructor closures would have been wasted. (This is a strictly bounded
amount of work, however.)

Just the same alternative translation is possible when a known function is applied
to too few arguments; the l e t bindings for the argument expressions can be lifted
up a level so that a partial-application lambda-form remains, which does not need
to be updated.

In general,
• Updates can be omitted for parameterless lambda-forms if the body is a head

normal form.
• Opportunities for this improvement may be enhanced by moving l e t ( r e c )

bindings from the lambda-form to its enclosing context. More generally, any
small, bounded, computation may be moved from a lambda-form to its enclosing
context to expose a head normal form, and thereby avoid an update.

4-4 Standard constructors

The final form of the example in the previous section had three lambda-forms of
the form

{x,xs} \ n {} —> Cons {x, xs}

for various x and xs. Because they all have the same shape, they can clearly all
share a single code pointer. In general, a lambda-form of the form

{xi,...,xm} \ n {} -> c{x\,...,xm)

where c is a constructor of arity m, is called a standard constructor. All such lambda-
forms for a particular constructor c can share common code.
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The free-variable list of a global definition is usually empty, since the global can
only mention other globals, and is represented by a closure consisting only of a code
pointer. However, consider the following global Haskell definition:

a L i s t = [ t h i n g ]
t h i n g = . . .

A straightforward translation to the STG language gives

aList = {} \n Cons {thing,nil}
nil = {} \n Nil {}
thing = ...

This is perfectly correct, but it means having special-purpose code for aLis t , which
has references to t h i n g and n i l wired into it. If aL i s t was a list with several
items in it, each cell in the list would have a separate code sequence! An alternative
translation, is

aList = {thing,nil} \n Cons {thing,nil}
nil = {} \n Nil {}
thing = ...

The lambda-form for a L i s t now has free variables which are not strictly necessary,
but the payoff is that the lambda-form is now a standard constructor, and can use
the standard code for Cons. Instead of being represented by a code pointer alone,
a L i s t is now represented by the Cons code together with pointers to the globals
t h i n g and n i l .

We apply this idea throughout, not just at top level, to make sure that every
lambda-form whose body is a simple constructor application is a standard construc-
tor.

For nullary constructors, such as Nil, it is not only possible to share its code, but
also to share its closure. Thus, in the above example, the n i l global can be shared
by all occurrences of Ni l in the program.

4-5 Lambda lifting

Lambda lifting is a process whereby all function definitions are lifted to the top level,
by making their free variables into extra arguments (Johnsson, 1985; Peyton Jones
and Lester, 1991). In a lambda-lifted program each lambda-form has either no free
variables or no arguments. In contrast to most other abstract machines, the STG
machine does not require the program to be lambda lifted; a right-hand side can
have both free variables and arguments.

The operational difference between the two is fairly slight. Consider the following
STG language definition:

f = {} \ n {xl ,x2,x3} -»• l e t z = {xl,x3} \ n {y} -»• zbody
in fbody

in which the lambda-form for z has the free variables x l and x3, and argument
y. If lambda lifting is performed, a new global function (or supercombinator) $z is
introduced, giving:
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$z - {} \ n {xl ,x3,y} -» zbody
f = {} \ n {xl ,x2,x3} -y l e t z = {xl,x3} \ n {} -> $z {xl, x3}

in fbody

Now the program has only thunks (like z) and supercombinators (like f and
$z). Operationally, what happens is that when z is entered, it pushes its two free
variables, x l and x3, onto the evaluation stack and jumps to $z. In the original
version, which the STG machine can execute directly, the free variables can be used
directly from the closure itself.

In short, the local environment in which the STG machine executes consists of
two parts (section 5.2): values held in the closure just entered (its free variables),
and values held on the stack (its arguments). This two-level environment reduces
somewhat the movement of values from the heap to the stack, but it is not yet clear
whether this is a big improvement or only a marginal one.

4-6 Full laziness

Consider the binding

f = {x} \ n {y} -> l e t z = {x} \ u {} -» ez
in ef

where ez and ef are arbitrary expressions. Suppose x and y are both free in ef,
but only x is free in ez. Since the lambda-form for z does not have y as a free
variable, this is equivalent to the pair of bindings

z = {x} \ u {} ->• ez
f = {x,z} \ n {y} -> ef

Furthermore, the latter form may save work if f is applied many times, because z
will be instantiated only once rather than once for each call of f. In general, each
binding can be moved outwards until its immediately enclosing lambda abstraction
binds one of the free variables of the binding. This transformation is called the full
laziness transformation, and is described in detail by Peyton Jones and Lester, 1991.

4-7 Arithmetic and unboxed values

In a non-strict functional language implementation, when a variable is bound, it is
generally bound to an unevaluated closure allocated in the heap. When the value of
the variable is required, the closure to which it points is evaluated, and the closure
is overwritten with the resulting value. Further evaluations of the same closure will
find the value immediately.

This evaluation model means that all numbers are represented by a pointer to
a heap-allocated closure, or 'box', which contains either information which enables
the number to be computed, or (if the closure has been evaluated) the actual value
of the number. We call the 'actual value' an unboxed value; it can be manipulated
directly by the instruction set of the machine.

The uniform boxed representation makes arithmetic horribly expensive. A simple
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addition, which takes one instruction in a conventional system, requires a sequence
of instructions to: evaluate the two operands, fetch their values, add them, allocate
a new box for the result, and place the result in it.

One of the innovative features of our compiler is that unboxed values are explicitly
part of the Core and STG languages. That is, variables may be bound to unboxed
values, functions may take unboxed values as arguments and return them as results,
unboxed values may be stored in data structures, and so on. The main motivation
for this approach is that we can then be explicit about the steps involved in, say,
addition. To begin with, we declare the following data type:

da t a I n t = Mklnt Int#

This declares the data type of (boxed) integers, In t , as an algebraic data type with
a single constructor, Mklnt. The latter has a single argument of type Int#, the
type of unboxed integers. So the value (Mklnt 3#) represents the boxed integer 3
(3# stands for the unboxed constant 3, of type Int#).

Now, given the expression ( e l + e2), say, we can rewrite it like this:

case e l of
Mklnt x# —* case e2 of

Mklnt y# -» case (x# +# y#) of
t# -> Mklnt t#

The outer two case expressions evaluate e l and e2 respectively, while the inner
case expresses the fact that x# and y# are added, and then their result t# is boxed
with a Mklnt constructor. (By convention, we use a trailing # for identifiers whose
values or results are primitive. This is just for human readability: the identifiers +
and +# are distinct, but the # is not otherwise recognized specially by the compiler.)

It turns out that this simple idea allows several optimizations which hitherto
were buried in the code generator to be reformulated as program transformations.
Furthermore, the idea can be generalized in a number of directions, such as allowing
general algebraic data types with unboxed components (rather than just Int) . All
of this is discussed in detail in Peyton Jones and Launchbury, 1991.

For the purposes of this paper, it suffices to establish the following facts:
• Data types are divided into two kinds: algebraic data types are introduced by

explicit da t a declarations, while primitive data types are built into the system.
Values of primitive type can be manipulated directly by machine instructions,
and are always unboxed. For example, In t is an algebraic type, while In t# is
primitive. For the purpose of this paper, it suffices to identify primitive types
with unboxed types, though the generalisations discussed in Peyton Jones and
Launchbury, 1991 permit unboxed algebraic types as well.

• All literal constants are of primitive type; literals of algebraic type are expressed
by giving an explicit application of a constructor.

• All arithmetic built-in operations operate over primitive values (for example
+# above). Definitions for functions operating over non-primitive (i.e. algebraic)
values can be expressed directly in the STG language, and hence do not need to
be built in.
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• Values of unboxed type need not be the same size as a pointer. For example,
Double*, the type of double-precision floating-point numbers, occupy 64 bits
while pointers usually occupy 32 bits. As a result, polymorphic functions can take
only arguments of boxed type, because arguments must be passed to such functions
in a uniform representation. (Even if unboxed values were always the same size as
a pointer there would still be a difficulty for the garbage collector in distinguishing
a pointer from a non-pointer.)

• A l e t or l e t r e c expression cannot bind a variable of unboxed type. Such a
binding is instead made using a case expression. The reason for this is that when
a variable of unboxed type is bound, the expression to which it is bound must be
evaluated immediately; the whole point about unboxed values is that they cannot
be represented by as-yet-unevaluated closures.
In other words, in the STG language, case expressions perform evaluation, while

l e t and l e t r e c build closures. This uniform semantics gives rise to uniform
transformation laws; for example, a l e t expression whose bound variable is not
used can always be elided.

For the same reason, the global (top-level) bindings of an STG program cannot
bind values of unboxed type.

• There are two forms of case expression, as the the syntax of Fig. 4 describes.
One takes apart a value of an algebraic data type, while the other performs case
analysis on a value of primitive type.

4-8 Relationship to CPS conversion

Transformation to continuation-passing style (CPS) is a technique which has been
used to good effect in several compilers for strict (call-by-value) languages (Appel,
1992; Fradet and Metayer, 1991; Kelsey, 1989; Kranz, 1988; Steele, 1978). Though
the STG language is lazy, it has much the same flavour as CPS: nested constructs
are flattened to an explicit sequence of simple operations, so that the flow of control
is manifest, and there is a direct relationship between the remaining language
constructs and individual machine operations.

To make the connection explicit, Table 1 shows the approximate correspondence
between the constructs of the CPS language used by Appel (Appel, 1992), and
those of the STG language. There are a few minor differences between Appel's CPS
and the STG language. Firstly, CPS-based implementations usually unbundle case
expressions into forcing, multi-way selection, and extraction of the components of
the data value. These are all bundled up together in case expressions which, as
we have seen, can be used to advantage by the STG machine. Secondly, the STG
language uses a single construct, l e t ( r e c ) , to allocate function-valued and data-
valued closures, thus allowing arbitrary mutual recursion between the two. It is not
so clear how to achieve this using Appel's form of CPS.

There is a much more important difference though: the STG language is not a
continuation-passing style! In CPS, every user-defined function is given an extra
parameter, namely the continuation to apply to its result. For example, assuming a
continuation k, the expression
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Table 1. Approximate correspondence between CPS language constructs and those of
the STG language

Operation

Application
Local function definition
Record construction
Thunk construction
Forcing of data values
Selection of alternative
Extraction of record components

Primitive operations

Appel CPS form

APP
FIX 1
RECORD >

SWITCH I
SELECT J

PRIMOP

STG form

Application

l e t ( r e o )

case on algebraic types

case on primitive types

(f x) + y

would be converted to the CPS form

f x ( \ fx . + fx y ( \ r . k r ) )

The call to f is made into a tail call, passing to f an extra argument, the con-
tinuation ( \ f x . + fx y ( \ r . k r ) ) . This continuation says what to do after
(f x) has been computed, namely add the result to y and pass that value to k. In
contrast, the STG form of the same expression is:

case (f x) of
Mklnt x# —> case y of

Mklnt y# ->• case (x# +# y#) of

r# -> Mklnt r#

The continuation to the call to f is passed implicitly; when evaluation of f x is
complete, control returns to the second case expression. The second case evaluates
y, which of course is not necessary in Appel's world since SML is strict. A lazy
version of CPS would require the suspended computation inside a thunk to be a
function taking a continuation as its argument. So the CPS form would really be

f x ( \ f x . f o r ce y ( \ y r . + fx y r ( \ r . k r ) ) )

where fo rce is the function which forces a thunk (its first argument) by applying
it to force 's second argument (the continuation). This code is strikingly similar to
the STG form above.

This difference in the way in which continuations are handled clearly distinguishes
CPS from the STG language, but it is quite difficult to pin down all the implications
of the difference. For example, the CPS version has a natural stack-less implementa-
tion, since every call is a tail call. On the other hand, it may thereby incur the cost of
heap-allocating the closure for the continuation, and passing it as an argument to f.
The STG version suggests a stack-based implementation, since the current activation
frame contains the environment in which the continuation should be executed. But
of course, either implementation is possible from both styles.

The STG style also seems to be more natural for curried function application.
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Consider the call ( f x y ) , which is left unchanged by the conversion to the STG
language. If converted to CPS (assuming that the call itself has continuation k), this
would generate something like:

f x (\w. w k y)

This is a rather expensive and clumsy compilation for an ordinary function applica-
tion! We expect curried function application to be pervasive, so the STG language
provides it as primitive.

Of course, this imposes an extra requirement on the code generator for the STG
language: it must cope with functions applied to more or fewer arguments than they
are expecting. (For example, f might take one argument, x, do a lot of computation,
and finally reduce to a function which takes the second argument y.) As section 5
will show, though, graph reduction gives a natural way to provide this functionality.

In summary, the STG language has a similar flavour to CPS, but is a little less
extreme. So far we have not discovered any opportunities for optimisation which
are exposed by CPS but hidden by the STG language. (Consel and Danvy, 1991
show that transforming the source program to CPS may improve the accuracy of
some analyses; we have not investigated whether or not the STG language has a
similar property.)

5 Operational semantics of the STG language

The STG language is the abstract machine code for the STG machine. In this section
we give a direct operational semantics for the STG language using a state transition
system.

A state transition semantics specifies (a) an initial state for the machine, and (b)
a series of state transition rules. Each rule specifies a set of source states and the
corresponding target states after the transition has taken place. The set of source
states is specified implicitly, using pattern-matching and guard conditions; if a state
is in the source set for a given transition rule we say that the rule matches the state.
At most one transition rule should match any given state, and if no rule matches,
the machine halts.

The state has five components:
1. The code, which takes one of several forms, given below,
2. The argument stack, as, which contains values,
3. The return stack, rs, which contains continuations,
4. The update stack, us, which contains update frames,
5. The heap, h, which contains (only) closures,
6. The global environment, a, which gives the addresses of all closures defined at

top level.
Sequences are used extensively in what follows. They are denoted using curly

brackets, thus {ai,...,an}. The empty sequence is denoted {}; if as and bs are two
sequences then as -H- bs is their concatenation; and a : as denotes the sequence
obtained by adding the item a to the beginning of the sequence as. The length of a
sequence as is denoted length(as).
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A value takes one of the following forms:

Addr a A heap address
Int n A primitive integer value

In the operational semantics, values are tagged with Addr and Int and so on to
distinguish these different kinds of value. We later discuss ways to avoid actually
implementing this tagging in a real implementation (section 8). We could add further
forms of value for other primitive data types, such as floating-point numbers,
but they are handled exactly analogously to integers, so we omit them to reduce
clutter.

We use w, wi,..., to range over values, and ws to range over sequences of values.
The argument stack, as, is just a sequence of values. The 'top' of the stack is the

beginning of the sequence. The return stack and update stack will be dealt with
later (Sections 5.4 and 5.6 respectively).

The heap, h, is a mapping from addresses, ranged over by a,a\,..., to closures.
Every closure is of the form

(vs \n xs —> e) ws

Intuitively, the lambda-form (vs \n xs —>• e) denotes the code of the closure, while
the sequence of values ws gives the value of each of the free variables vs. (We use n
to range over update flags, which can be either u or n.) This is exactly the uniform
representation discussed in section 3.1.3.

The global environment component of the state, a, maps the name of each variable
bound at the top level of the program to the address of its closure. These closures can
all be allocated once and for all before execution begins. (Indeed, unlike the other
components, a does not change during execution.) The STG machine is unusual in
binding globals to closures rather than to code sequences. It is important to do so,
however, because a global may be updatable, so there must be a closure to update!

As we discussed earlier, it is possible to share the code for standard-constructor
closures (section 4.4). In the special case of constructors with no arguments (such as
Nil) it is possible to share not just the code for the closure, but the closure itself.
For example, all references to Ni l can use the address of a single global closure.
This is easily done by adding niladic constructors as a possible form of atom (Fig. 4),
and extending a with the address of a suitable closure for each niladic constructor.
For the sake of simplicity, we do not perform this optimisation in the operational
semantics which follows.

Finally, the code component of the state takes one of the following four forms,
each of which is accompanied by its intuitive meaning:

Eval e p Evaluate the expression e in environment p and
apply its value to the arguments on the argument
stack. The expression e is an arbitrarily complex
STG-language expression.

Enter a Apply the closure at address a to the arguments
on the argument stack.
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ReturnCon c ws Return the constructor c applied to values ws to
the continuation on the return stack.

Returnlnt k Return the primitive integer k to the continuation
on the return stack.

The local environment, p, maps variable names to values. The notation p[v \-* vv]
extends the map p with a mapping of the variable v to value vv. This notation
also extends in the obvious way to sequences of variables and values; for example
p [vs i—» ws].

The val function takes an atom (Figure 4) and delivers a value:

val
val

p a
p a

k
V

= Int k
= pv
= a v

if v G dom(p)
otherwise

If the atom is a literal k, val returns a primitive integer value. If it is a variable, val
looks it up in p or a as appropriate, val extends in the obvious way to sequences of
variables: val p a vs is the sequence of values to which val p a maps the variables vs.

5.1 The initial state

We begin by specifying the initial state of the STG machine. The general form of
an STG program is as follows:

gi = vsi \ni xsi -* e\

gn = vsn \nn xsn -> en

One of the g, will be main. Given this program, the corresponding initial state of
the machine is:

Code

Eval (main {}) {} {}

where a

"init —

Arg Return Update
stack stack stack Heap Globals

{} {}

"gi i-» {Addr a\)

gn i-> {Addr an) _
a\ i—> (vs\ \n\ x

"inir

e\) {a vs\)

_ an h-» (vsn \nn xsn -»• en) {a vsn)

We write a machine state as a horizontal row of its components, sometimes with
auxiliary definitions (as here) introduced by a 'where' clause. In this initial state, the
code component says that main is to be evaluated in the empty local environment;
the argument, return and update stacks are empty; the initial heap hinit contains
a closure for each global; and the global environment a binds each global to its
closure.
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Notice that the values in the range of the global environment are all addresses.
This reflects the fact that global variables are always boxed.

5.2 Applications

We begin the main operational semantics with the rule for applications.

such

= >

that

Eval

val p

Enter

if

a

a

xs)

f =

P

Addr a

{val P a xs) -H-

as

as

rs

rs

us

us

h

h

a

a

(1)

The top line of the rule gives the state before the transition, while the bottom line
gives the state afterwards. We use a pattern-matching notation for the top line. In
this case, the rule only matches if the code component is an Eval of an expression of
the given form. The 'such that' clause further constrains the rule to the case where
/ is bound to the address of a closure (and not to a primitive value).

The rule says that to perform a tail call, the values of the arguments are put on the
argument stack, and the value of the function is entered. The function is expected
to be a closure; the other case, when / is not an address but rather is a primitive
value instead, is dealt with in section 5.5. Notice that the local environment is
discarded at this point; in general, the local environment only has a very local
lifetime.

The next thing to discuss is the rule for entering a closure. We give only the
rule for entering non-undatable closures; the rule for updatable closures is given in
section 5.6.

such that

where

Enter a

length{as) :

Eval e p

wsa -H- as '

length(wsa

P

as rs us h[at

> length(xs)

as' rs us h

= as
) = length(xs)

= [VS !-»• WSf,

-» (vs

XSI-*

\ n xs —> e) ws/] c

a

wsa]

(2)

When a non-updatable closure is entered, the local environment is constructed by
binding its free variables to the values wsf found in the closure, and its arguments
to the values wsa found on the stack. Then the body of the closure is evaluated in
this environment. In this rule we use a 'where' clause to give values to variables used
in the result state of the rule.
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5.3 l e t ( r e c ) expressions

As mentioned earlier, a l e t expression constructs one or more closures in the heap.

Eval

=> Eval

where p'

U

Prhs

/

\

e p

—

=

l e t

in e

Pi

h

P

Xl

Xn

' CHl-

ant-

= VS\ \Jl\

- VSn \Jtr

Addr ai,
-> (vsi \n

->• (vsn \n

XSi ->•

xsn —*

. . . , Xn ' ^

1 XSi - »

„ xsn -*

p

/

Addr an

ei) (Prhs

en) (Prhs

as 1

as l

]
VSi)

VSn) .

•s

'S

US

US

h

h'

a

a
(3)

The rule for l e t r e c is almost identical, except that prns is defined to be p' instead
of p.

5.4 Case expressions and data constructors

The return stack is used for the first time when we come to case expressions. Given
the expression

case e of alts

the operational interpretation is 'push a continuation onto the return stack, and
evaluate e'. When the evaluation of e is complete, execution will resume at the
continuation, which then decides which alternative to execute. The rule for case
follows fairly directly:

Eval (case e of alts) p as rs us h a
Eval e p as (alts,p) :rs us h a

(4)

The continuation is a pair (alts,p); the alternatives alts say what to do when
evaluation of e completes, while the environment p provides the context in which to
evaluate the chosen alternative. We will have more to say about how this expensive-
looking environment saving is performed later, in section 9.4.1.

The other side of the coin is the rules for constructors and literals. Presumably e
eventually evaluates to either a constructor or a literal, at which point the continu-
ation must be popped from the return stack and executed. The rules for constructors
and literals each use an intermediate state, ReturnCon and Returnlnt respectively,
just as the rule for function application uses Enter. Primitive values are dealt with
in the next section, while the rules for constructors are given next.

Evaluating a constructor application simply moves into the ReturnCon state:

Eval (c xs) p as rs us h a
ReturnCon c (val p a xs) as rs us h o (5)

The rules for ReturnCon return to the appropriate continuation taken from the

FPR2
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ReturnCon c ws as {...; c vs

Eval e p[vs *—> ws] as

e; ..., p) : rs us h a

rs us h a
(6)

Provided that the continuation on the return stack contains a pattern c vs whose
constructor c is the same as that being evaluated, we just evaluate the right-hand
side of that alternative, in the saved environment p augmented with bindings for the
variables vs to the values of the actual arguments to c.

If there is no such alternative, the default alternative is taken. The rule for this is
easy when no variable is bound in the default case:

such that

ReturnCon c

C =/= Ci (1

Eval ed p

ws

< i

as

<n)

as

1 cn vsn ->
\ default

en;

\

, p : rs

rs

us

us

h

h

a

a

(7)

However, if a variable v is bound by the default, we need to heap-allocate a con-
structor closure to which to bind v, thus:

such that

where

ReturnCon c ws

C^Ci (1 < i <

Eval ed p[v >—>• a]

/ C\
1

as
Cn

\v

n)

as

h'= h[a i—y (vs \n {} —> c

vs is a sequence of arbitrary
length(vs) = length(ws)

vs\ —y

9

- » ed

vs) ws]

distinct

en \

en; ' p

variables

: rs

rs

us

us

h a

hi a

(8)

This rule is a little complicated, and a simple program transformation can elimi-
nate the variable-binding form of default from the language (for algebraic case
expressions, anyway):

case e of ...; v
let v = xs \u {} —> e
in
case i! of ...; default

In implementation terms this version is a little less efficient, because a closure for
v will be allocated and then updated, whereas using Rule 8 simply allocates the
constructor in its final form.
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Lastly, if there is no match and no default alternative, no rule matches, which is
interpreted as failure.

5.5 Built in operations

In this section we give the extra rules which handle primitive values. The rule for
evaluating a primitive literal k enters the Returnlnt state:

Eval k p as rs us h a
Returnlnt k as rs us h a

(9)

A similar rule deals with the case where a variable bound to a primitive value is
entered:

Eval (f {}) p[f *—> Int k] as rs us h a
Returnlnt k as rs us h a

(10)

Next come the rules for the Returnlnt state, which look for a continuation on the
return stack. First, the case where there is an alternative which matches the literal:

Returnlnt k as
Eval e p as

2; . . . , p) : rs us h a
rs us h a (11)

Next, the cases

such that

where the

Returnlnt

k*kt

Eval e p[>

default alternative

(
k as

V
(1 < i < ri)

c i—• Int k] as

is taken:

k\ - > e\;
• • • j

k -^ p •

x —• e

\

» p

/

: rs

rs

us

us

h

h

a

a

(12)

Returnlnt k as
kn -* en;

\ default

\

, P

e I

:rs us h a

such that k =f= fc,- (1 < i < n)

=> Eval e p as rs us h a

(13)

Finally, we need a family of rules for built-in arithmetic operations which, for each
binary built-in operation © have the form:

6-2
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(14)
Eval (© {x\,x

==> Returnlnt (ii
-2}) p[xi
®h)

H-> Int

5.6

i\, X21—> Int 12,

Updating

as
as

rs
rs

us
us

h
h

a
a

In this section we cover the updating technology necessary for a graph reduction
machine. Updates happen in two stages:

1. When an updatable closure is entered, it pushes an update frame onto the update
stack, and makes the argument and return stacks empty. An update frame is a
triple (asu, rsu, au), consisting of:
• asu, the previous argument stack;
• rsu, the previous return stack;
• au, a pointer to the closure being entered, and which should later be updated.

2. When evaluation of the closure is complete an update is triggered. This can
happen in one of two ways:

• If the value of the closure is a data constructor or literal, an attempt will
be made to pop a continuation from the return stack, which will fail be-
cause the return stack is empty. This failure triggers an update. (In the real
implementation we can avoid making the test by merging the return and
update stacks, and making the update into a special sort of continuation -
section 10.1.)

• If the value of the closure is a function, the function will attempt to bind
arguments which are not present on the argument stack (because they were
squirreled away in the update frame). This failure to find enough arguments
triggers an update.

These situations are made precise in the following rules. First, we need to add
an extra rule which applies when entering an updatable closure (that is, one whose
update flag is u). The rule is similar to the usual closure-entry rule (Rule 2):

= >

where

Enter a

Eval e p

p = [vs*—>

as rs

{} (}

WSf]

(as,rs,a)

us

: us

Ha

h

-> (vs \u {} - e) WSf] a

a

(15)

The difference is that the argument stack, return stack, and closure being entered
are formed into an update frame, which is pushed onto the update stack. (Naturally,
the real implementation manipulates pointers rather than copying entire stacks -
section 10.3.) Since closures with a non-empty argument list are never updatable
(section 4.2), we only deal with this case in the rule given.

Next, we need new rules for constructors which see an empty return stack. When
this happens, they update the closure pointed to by the update frame, restore the
argument and return stacks from the update frame, and try again. It may be that the
restored return stack contains the continuation, but it too may be empty, in which
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case a second update is performed, and so on until the continuation is exposed.

ReturnCon c

=> ReturnCon c

ws

ws

0 0
asu rsu

where vs is a sequence of arbitrary
length(vs) = length(ws)
hu = h[au I-* (fs \ n {} —> c

(asu, rsu,

distinct

vs) ws]

au) : us

us

variables

h

hu

a

a

(16)

The closure to be updated (address au) is just updated with a standard-constructor
closure. Only a rule for ReturnCon need be given. It is not possible for the Returnlnt
state to see an empty return stack, because that would imply that a closure should
be updated with a primitive value; but no closure has a primitive type (section 4.7).

Finally, we need a rule to handle the case where there are not enough arguments
on the stack to be bound by a lambda abstraction, which triggers an update. The
relevant rule is:

such that
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length(as) <

Enter a as -
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G

a
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(17)

(The rule will only apply if the number of arguments #xs is greater than zero, so
the closure being entered will be non-updatable; hence the \ n in the first line of
the rule.) The closure to be updated (address au) has as its value the value of the
closure being entered (address a) applied to the arguments on the stack as. It is
therefore updated with a closure whose code is ((vs -H- xsi) \ n xsi —> e); the body
e is the same as that of a, but it has more free variables (xsi as well as vs) and fewer
arguments (xs2 instead of xs). After the update the Enter is retried.

This concludes the basic rules for updating. However, one of the constraints in a
real implementation is that it cannot manufacture compiled code 'on the fly', so we
need to be careful about the code part of closures which are created by updating.
The code required for constructors, (us \ n {} —> c vs) is all right, because we can
precompile it for each constructor c.

The code for partial applications ((vs -H- xsi) \ n XS2 —» e), is more tiresome,
since it suggests that we need to precompile the entire body e of every function for
every possible partial application. An alternative rule for partial-application updates
avoids this problem:
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Here the closure being entered a is used in the new closure. The new code required,
namely ((/ : xsi) \ n {} —» / xsi), can be shared between all partial applications to
the same number of arguments. All that is required is a family of such code-blocks,
one for each possible number of arguments.

Part III: Mapping the abstract machine to stock hardware

We have now completed the abstract description of the Spineless Tagless G-machine.
Whilst it has some interesting features, its real justification is that it maps very nicely
onto stock hardware, with a rich set of design alternatives, some of which we have
already indicated. In the rest of the paper we describe the mapping in detail.

6 Target language

Our goal is, of course, to generate good native code for a variety of stock ar-
chitectures. One approach to this is to write individual code generators for each
architecture, and this is likely to give the best results in the end. Unfortunately,
to compete with more mature imperative languages, whose code generators have
evolved and improved over many years, we would have to do a comparably good
job of code generation, which is a lot of work.

Motivated by this concern, we generate code in the C language as our primary
target, rather than generating native code direct. In this way we gain instant
portability, because C is implemented on a wide variety of architectures, and we
benefit directly from improvements in C code generation. This approach, of using C
as a 'high-level assembler' has gained popularity recently (Bartlett, 1989; Miranda,
1991).5 In particular, the work of Tarditi et al. (1991) on compiling SML to C,
developed independently and concurrently with ours, addresses essentially the same
problems (Tarditi, Acharya and Lee, 1991).

5Here, 'Miranda' is not the trade mark. It is the last name of a researcher at Queen Mary
and Westfield College, London.
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Rather than generating C directly, we go via an internal datatype called 'Abstract
C. This allows the following spectrum of alternatives for the final code generation,
with increasing efficiency and decreasing portability:
• We can generate ANSI-standard C, which should be widely portable.
• We can generate C which exploits various non-standard extensions to C supported

by the Gnu C compiler (Stallman, 1992).
• We can generate native machine code directly.
So far we have concentrated only on the first two alternatives.

Compiling via C is very attractive for portability reasons, but like all good things,
it does not come for free. In the rest of this section we describe a few tricks which
substantially improve the code we can generate using this route, usually by exploiting
non-standard extensions to C provided by Gnu C.

6.1 Mapping the STG machine to C

At first it appears sensible to try to map functions from the original functional
program onto C functions, but we soon abandoned this approach. The mis-match
between C and a non-strict higher-order functional language is too great.

Instead, the argument stacks and control stack are mapped onto explicit C arrays,
bypassing the usual C parameter-passing mechanism. All 'registers', such as the stack
pointers, heap pointer, heap limit, and other registers introduced later, are held in
global variables.

This approach results in a great deal of global-variable manipulation. The over-
heads can be reduced without losing portability, by caching such globals in (register-
allocated) local variables during the execution of a single code-block, based on a
simple usage analysis (Tarditi, Acharya and Lee, 1991). At the expense of portability,
the overheads can be eliminated entirely, by telling the C compiler to keep particu-
lar globals in specified registers permanently, a (highly non-standard, architecture-
specific) facility provided by the Gnu C compiler.

6.2 Compiling jumps

The main difficulty with generating C concerns labels. We use the term code label (or
just label) to mean an identifier for a code sequence. The important characteristics
of a code label are that:
• It can be used to name an arbitrary block of code.
• It can be manipulated; for example, it can be pushed onto a stack, stored in a

closure, or placed in a table.
• It can be used as the destination of a jump.
We usually think of labels as being represented by code addresses. The trouble is
that C has nothing which directly corresponds to code labels. There are two ways
out of this dilemma, which we outline in the following subsections.

6.2.1 Using a giant switch

The first solution is to map labels onto integer tags, and embed the entire program
in a loop with the following form:
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i n t cont = 1;
while (TRUE) do

switch (cont ) {
1: . . . code for l a b e l 1 . . . ;
2: . . . code for l a b e l 2 . . . ;
. . . and so on . . .

}

Now a jump can be implemented by assigning to cont followed by a break
statement. The switch statement will then re-execute with the new label.

The shortcomings of the technique are clear. Firstly, a layer of indirection has
been imposed, because labels are not implemented directly as code pointers.

Secondly, and more seriously, separate compilation is made much more difficult.
The C code for the entire program, including the run-time system, has to be
gathered together into a single giant C procedure and then compiled. Not only does
this stress the C compiler quite substantially, and impose heavy recompilation costs
on even local changes, but it also means that a special linker has to be written to
paste together the C code generated from each separately-compiled source-language
module.

6.2.2 Using a tiny interpreter

Because of these problems we use an alternative method, based on a nice trick.
The idea is to compile each labelled block of code to a parameter-less C function
whose name is the required label. Now, C does treat functions as storable values,
representing each by a pointer to its code. The only problem is how to jump to such
a code block. The only mechanism C provides is to call the function, but then every
jump would make C's return stack grow by one more word, causing certain stack
overflow.

A C compiler which implemented a tail call as a jump would not suffer from this
problem, but it would hardly be a portable solution to require such an optimization
for correct operation. Furthermore, C is complicated enough to make the tail-call
optimization quite hard to get right (in the presence of variadic functions, for
example) and no C compiler known to us does so.

So here is the trick: each parameterless function, representing a code block, returns
the code pointer to which it would like to jump, rather than calling it. The execution
of the entire program is controlled by the following one-line 'interpreter':

whi le (TRUE) { cont = ( * c o n t ) ( ) ; }

That is, cont is the address of the code block (i.e., C function) to be executed next.
The function to which it points is called, and returns the address of the next one,
and so on. The loop is finally broken by a long-jump, though one could equally well
test cont for a particular value instead, for a fairly minor cost.

Here, for example, is a code block which jumps to a label found on top of the
return stack:

CodeLabel f ( ) {
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CodeLabel lbl = *RetSp--;

return( lbl );

}

The result is a fully-portable implementation which supports separate compilation
in the usual way, with a standard linker. Labels are represented directly by code
addresses.

Temporary variables, used within a single code block, are declared as local
variables of the C function generated for the code block. Their scope is thereby
limited, so that a good C compiler will put them in registers where possible.

It turns out that this idea is actually very old, and that we only reinvented it.
Like several other clever ideas, Steele seems to have been its inventor; he called it
the 'UUO handler' in his Rabbit compiler for Scheme (Steele, 1978). The same idea
is used by Tarditi, Acharya and Lee, 1991, who use C as a target for their SML
compiler.

6.3 Optimizing the tiny interpreter

In the portable tiny interpreter described above, a 'jump' has the following overheads:
• the epilogue generated by the C compiler for the current C function, conclud-

ing with a return instruction, which pops the return address to return to the
'interpreter';

• a jump to implement the interpreter's loop;
• a subroutine call instruction, which pushes the interpreter's return address;
• the prologue generated by the C compiler for the new C function.
At the expense of portability, we can make some architecture- and compiler-specific
optimisations to this jump sequence:
Eliminating register saves. For architectures with a fixed register set, most C com-

pilers implement a callee-saves convention for all registers except a small number
of work registers. There is a save sequence at the start of each function and a
restore sequence at the end.

Gnu C provides a compiler flag which makes the compiler use a caller-saves
convention. In conjunction with the direct-jump optimization described below this
eliminates all register save instructions.

Eliminating the frame pointer. Most C compilers generate instructions at the begin-
ning and end of functions to set up a frame pointer register. This is redundant,
because the compiler can always figure out the offsets of local variables from the
stack pointer itself, but it is vital for debuggers.

Gnu C provides a compiler flag to suppress frame-pointer manipulation, at the
expense of confusing the debugger.

Generating direct jumps. Instead of generating re t u rn ( l b l ) we actually gen-
erate JUMP( l b l ), where JUMP is a macro. For a portable implementation,
JUMP expands to a r e t u r n statement, but the implementation can be made faster
by making JUMP expand to an in-line assembly-code instruction which really does
take a jump. (Most C compilers provide an assembly-language trapdoor, which
we exploit here.) Using in-line assembly code in this way has its pitfalls, especially
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if we simultaneously try to use local variables. Miranda (1991) gives details of the
tricky things one has to do.

6.4 Debugging

The use of a tiny interpreter turned out to have a very useful property which we
had not anticipated: it is a tremendous debugging aid.

The STG machine frequently takes an indirect jump, to the code pointed to by
a closure. If a bug has caused a closure to be corrupted, this indirect jump usually
causes a segmentation fault or illegal instruction. The difficulty is that there usually
no way of backing up to the code which performed the jump, which is the first step
in identifying the source of the error.

Using the (unoptimized) tiny interpreter provides an easy solution, because it can
easily record a trail of the most recent few jumps. Since every jump passes through
the tiny interpreter, it faithfully records the address of the code block containing
the fatal jump.

Furthermore, it is easy to add to the tiny interpreter's loop a call to a hygiene-
checking routine, which checks that the machine state looks plausible. While it slows
down the program considerably, we have found this hygiene-checking an invaluable
aid for trapping the point at which the machine state becomes corrupt, rather than
the point at which the corruption causes a crash, which is often much much later.

It is hard to overstate the usefulness of this trick, especially since it has no impact
at all on the compiler and the code it generates. Only people who have spent all
night trying to find the cause of the heap corruption which subsequently led to a
system crash can truly appreciate it!

7 The heap

The heap is a collection of closures of variable size, each identified by a unique
address. We use the term pointer to refer to the address of a closure.

7.1 How closures are represented

Each closure occupies a contiguous sequence of machine words, which is always laid
out as shown in Fig. 5.

The first word of a closure is called its info pointer, and points to its info table.
Following the info pointer is a block of words each of which contains a pointer,
followed by a block of words containing no pointers. (The distinction between the
two is that the garbage collector must follow the former but not the latter.) There is
a single, statically-allocated, info table associated with each bind in the program text
(Fig. 4). Each dynamic instance of this binding is a heap-allocated closure whose
info-pointer refers to its static info table (Rule 3).

The info table contains a number of fields which will be described later, but the
most important is the first field, which contains the label of the closure's standard-
entry code. The operation of entering a closure is performed by:
• loading the address of the closure into the Node register, and
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Fig. 5. The layout of a closure.

• jumping to the standard-entry code for the closure, whose label is usually fetched
from the info table by indirecting from Node.

The standard-entry code can access the various fields of the closure by indexing
from the Node register. The rest of the info table contains:
• enough information to enable the garbage-collector to do its job, In fact we

implement this information as two code labels, which are described further in
section 7.3,

• debugging information for inspection by a debugger or trace generator,
• for our parallel implementation, enough information to enable the closure to be

flushed into global memory. This, too, is actually implemented as a code label.
It is usual for heap-allocated objects to contain layout information, to specify

their size and which of their fields contain pointers. In contrast, our closures do not
contain any such information. Rather, as we shall see, size and layout information
is encoded in the info table.

Indirection closures are generated by update operations, and they have a particu-
larly efficient representation:

Ind_Info -*" Pointer to another closure

The standard-entry code for Ind_Info consists of only two instructions: one to
load the indirection pointer from the closure into Node and a second to enter the
new closure.

In retrospect, this representation is quite similar to that chosen by the Chalmers
group for their G-machine implementation (Johnsson, 1987). In their system, every
heap cell has a one-word 'tag' which points to a table of entry points for the various
operations that could be performed on the cell. Our system differs from theirs in
two respects. First, and most important, rather than having a fixed collection of
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'tags', we generate a new info table for each bind in the program text, together with
its associated code. This essentially eliminates the 'interpretive unwind' used by the
G-machine. Second, the operation of entering a closure involves an indirection to
find the code label to jump to; this indirection can be avoided when generating
native code directly, as section 7.6 discusses.

7.2 Allocation

The closures for top-level globals are allocated statically at fixed addresses; we call
them static closures. A static closure is not necessarily immutable, however, because
it may be a thunk which is updated during execution. (The alert reader will spot
that this policy gives rise to a garbage-collection problem, which we return to in
section 10.8.)

All other closures are allocated dynamically from the heap. As is now well
understood, for good performance it is essential to allocate from a contiguous block
of free space, rather than from a free list (Appel, 1987). Free space is delimited
by two special registers: the Hp register points to one end of it, while the HLimit
register points to the other. Allocation is done on a basic-block basis, so that only
one free-space exhaustion check is made for each basic block.

7.3 Two-space garbage collection

Garbage collection is performed by a two-space stop-and-copy collector (Baker,
1978). Available memory is divided into two semi-spaces. When garbage collection
is initiated, all live closures are copied from one semi-space to (one end of) the
other.

This copying process involves two basic operations on closures:
• Each live closure must be evacuated from from-space to to-space.
• As to-space is scanned linearly, each closure must be scavenged; that is, each

closure to which it points must be evacuated, unless it has already been evacuated,
and the new to-space pointer substituted for the old from-space pointer.
The unusual feature of our system is that these two operations, evacuation and

scavenging, are implemented by code pointed to from the info table of each closure.
These code sequences 'know' the exact structure of the closure, and therefore can
operate without interpretive loops, and without any further layout information.

The evacuation code, which is called as a C function, does the following:
• It copies the closure into to-space.
• It overwrites the closure in from-space with a forwarding pointer, which points to

the newly-allocated copy of the closure in to-space.
• It returns the new to-space address of the closure to the caller.
The scavenging code of a closure, also called as a C function, does the following.
For each pointer in the closure,
• it calls the evacuation code for the closure to which it points;
• it replaces the pointer in the original closure with the to-space pointer returned

from this evacuation call.
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The scavenging code knows which of the argument fields contain closure addresses
(and hence must be evacuated), and which are not (and hence must not be evacuated).

A C function does the once-per-collection work of switching spaces and accu-
mulating statistical information, but almost all the work of garbage-collection is
carried out by the evacuate and scavenge routines of the closures in the heap. As in
the case of the standard-entry code of a closure, the info-table dispatch mechanism
for evacuation and scavenging provides the opportunity to deal with several special
cases 'for free' (that is, without any further tests):
Forwarding pointers. A forwarding pointer handles the situation where a second

attempt is made to evacuate the closure; an attempt to evacuate a closure which
has been overwritten with a forwarding pointer simply returns the to-space address
found in the forwarding pointer. There is a nice optimization available here. Most
systems distinguish a forwarding pointer by some sort of tag bit, which has to be
tested just before evacuating. Instead, we make a forwarding pointer look just like
any other closure: it has an info pointer and one field which points to the to-space
copy. The info table for a forwarding pointer has rather simple 'evacuation' code,
which just returns the to-space address found in the forwarding pointer! So to
evacuate a closure one simply jumps to its evacuation code, regardless of whether
the closure is now a forwarding pointer or not. No forwarding-pointer test is
performed.

All heap-allocated closures are at least two words long to leave enough space
for a forwarding pointer.

Indirections. All indirections can easily be removed during garbage collection, by
another nice trick. All that is required is that the evacuation routine of an
indirection jumps to the evacuation routine of the closure to which the indirection
points! (The use of 'jumps to' rather than 'calls' is deliberate - this is a tail
call!) Since indirections are thereby never moved into to-space, they don't have a
scavenging routine.

Static closures. Some closures, notably those for global closures (section 5.1), are
allocated at fixed, static locations. These closures must not be moved by the
garbage collector. This is easily arranged by making their evacuation code return
immediately without moving the closure.

Constructor closures can exist in both static and dynamic space (section 4.4), so
in fact we need two info tables for each constructor, one for each of these cases.
(The standard-entry code for the constructor can still be shared, of course.)

Small integers. A fixed-precision integer (of type Int) is represented by the Mklnt
constructor applied to the primitive integer value (section 4.7). This in turn is
represented by a two-word closure consisting of the Mklnt info pointer and the
primitive integer value. The evacuation code for Mklnt sees if the value of the
integer lies in a pre-determined range and, if so, uses the integer to index a table
of statically-allocated In t closures, returning the address of this static closure.
The effect is that all small integers are 'commoned up' by the garbage collector,
and made to point to one of a fixed collection of small-integer closures.

If the integer is not in the range of the table, the closure is evacuated to to-space
as usual. There is an easy refinement: give the new copy a different info pointer
which won't perform the test again next time (because it will certainly fail again).
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The small-integer check could of course be made at the time an In t is allocated,
but that means generating extra code in lots of places, whereas doing it in the
garbage collector requires just one chunk of extra code. The same optimisation
applies to Char closures and all other constructors isomorphic to In t or Char.

7.4 Other garbage collector variants

Two-space garbage collection works well until the residency of the program ap-
proaches half the real memory available, at which point the virtual memory system
begins to thrash. We have implemented a dual-mode collector, which switches dy-
namically between a single-space compacting collector and a two-space collector
to try to minimize paging, with encouraging early results (Sansom, 1991). We are
developing a further extension to a generational collector, based on Appel's simple
two-generation scheme (Appel, 1989).

7.5 Trading code size for speed

The info-table dispatch mechanism outlined above allows some interesting space-
time tradeoffs to be made.

So far we have assumed that each kind of closure has its own evacuation
and scavenging code, which 'knows about' its size and layout. This requires new
evacuation and scavenging routines to be compiled for each closure in the program.
But since the garbage collection routines for a closure depend only on its structure,
it is often possible to share them. For example, all closures which consist of exactly
one pointer field (apart from the info pointer) can share the same evacuation and
scavenging routines. Indeed our runtime system contains standard garbage-collection
routines for a number of common layouts.

What if a closure must be constructed which does not match one of these
standard layouts? It is possible to compile special garbage-collection code for it, but
actually we adopt a compromise position which allows us to provide all evacuation
and scavenging routines as part of the runtime system. Instead of generating code
for garbage-collection routines for a 'non-standard' closure, we provide 'generic'
evacuation and scavenging routines in the runtime system. These routines look in
the closure's info table to find certain layout information, namely the number of
pointer words and non-pointer words in the closure. (This is contained in the 'Other
info' field of Fig. 5.) They then each use a loop to do their work, instead of having the
loop unrolled as the special-purpose routines do. Notice that the layout information
is stored in the (static) info table, so there is no extra cost in allocating the closure.
The only extra execution cost is in executing the loops in the garbage collection
routines.

It is for the benefit of these 'generic' routines that closures are laid out with
pointers preceding non-pointers. This convention means that only two numbers
are required to encode the layout information. It also makes it more likely that a
closure's layout will 'fit' a standard layout directly supported by the runtime system.
For example, all closures with two words of non-pointers and two of pointers can
use the same routines; if the layout convention was more liberal, there would be
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a number of different possible layouts of such closures. The convention carries no
runtime cost, of course.

7.6 The standard-entry code for a closure

There is one particular place where we have found that the use of C prevents an
obvious code improvement. The info pointer of a closure points to a table containing
a number of code labels. One of these is used much more than the others, namely
the one used when the closure is entered.

It would be better to arrange that the info pointer pointed directly to this code,
placing the rest of the info table just before the code. Then, entering the closure
takes one fewer indirections, but the other info-table entries are still available by
using negative offset from the info pointer.

This is usually quite easy to arrange when generating native code, but even the
Gnu C compiler doesn't allow the programmer to specify that an array (the info
table) must immediately precede the first word of the code for a function!

We abstract away from this issue by using a C macro ENTER ( c ), where c
contains the address of the closure to be entered. The usual definition of ENTER is:

#de f ine ENTER(c) JUMP(**c)

8 Stacks

The abstract machine contains three stacks:
• The argument stack, which contains a mixture of closure addresses and primitive

values.
• The return stack, which contains continuations for case expressions.
• The update stack, which contains update frames.

The question is: how are these stacks to be mapped onto a concrete machine?

8.1 One stack?

The three stacks all operate in synchrony, so it would be possible to represent them
all by a single concrete stack. The major reason we choose not to do so is to avoid
confusing the garbage collector. The garbage collector must use all the pointers in
the stack as a source of roots, and must update them to point to the new locations
of the closures. Thus, it needs to know which stack locations are closure addresses
and which are code addresses or primitive values.

There are a couple of ways around this problem, while retaining a single stack.
One possibility is to distinguish pointers from non-pointers with a tag bit (usually
the least-significant bit). This is a nuisance, because it makes arithmetic slower,
and because it makes standard 32-bit floating-point numbers impossible. It is also
rather against the spirit of our implementation, where all type information is static,
requiring no runtime testing.

Another possibility, described in an earlier version of the Spineless Tagless G-
machine (Peyton Jones and Salkild, 1989) uses static bit-masks associated with the
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code pointed to by return addresses on the stack to give the stack layout. This works
fine, but since then we have introduced the idea of fully-fledged unboxed values,
which fatally wounds this technique. Consider, for example, the program

pick b f g = if b then f else g
h b n = pick b (+# 1#) (-# 1#) n

Here, when p i c k is called, the four arguments b , (+# 1 # ) , ( - # 1 # ) , and n will

be on the argument stack. The last of these will presumably be primitive, since later

( + # 1 # ) or ( - # 1 # ) will be applied to them. Now here is the point: if garbage col-

lection is initiated during the evaluation ofb, there is no context information available
to tell that the bottom argument on the stack is primitive.

To conclude, using a single stack seems to require runtime tagging; previous ways
of avoiding this cannot cope with fully-fledged unboxed values.

8.2 Two stacks

The obvious solution, which we use, is to provide two concrete stacks, the A-stack
for pointers and the B-stack for non-pointers. This was the solution adopted by
the G-machine, where the non-pointer stack was called the V-stack, and a number
of subsequent systems. The nomenclature we use is taken from the ABC machine
(Koopman, 1990), where 'A' stands for 'argument' and 'B' for basic value. However,
our argument stack is split between the A and B stacks, and the B stack contains
other things besides non-pointer arguments, as will become apparent. The detailed
mapping of each of the abstract stacks to these two concrete stacks is given in
subsequent sections.

The stack pointers are held in special registers SpA and SpB. Like other twin-stack
implementations, we make the two stacks grow towards each other, to avoid the
risk that one will overflow while the other has plenty of space left; in this paper,
the A-stack grows towards lower addresses. In our sequential implementation, this
stack space is allocated in a fixed-size area, separate from the heap.

9 Compiling the STG language to C

We are now at last ready to discuss the code which is generated for each of the
constructs in the STG language. This section is rather long and detailed. We make
no apology for this because, as remarked earlier, an abstract machine can only
be considered a success if it maps well onto concrete architectures, with plenty of
opportunities for optimizations.

We begin with an overview of the code generation process for an arbitrary STG
expression, by considering the various syntactic forms an expression can take (Fig. 4):
• Calls to non-built-in functions (section 9.2). The expression / a\,...,an is compiled

to a sequence of statements which pushes the arguments a\,...,an onto the
appropriate stacks, adjusts the A and B stack pointers to their final values, and
enters the function / . As we discuss later, this 'enter' may take the form of entering
the closure bound to / via its info table, or of jumping direct to the appropriate
code for / .
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l e t ( r e c ) expressions (section 9.3). The l e t expression

l e t xi = Ifi; ...; xn = //„ in e

is compiled to a sequence of statements which allocates a closure in the heap for
each lambda-form lfi,...,lfn, followed by the code for e. l e t r e c expressions
are treated in the same way, the only difference being that the closures allocated
thereby may be cyclic.
If the lambda-form //, is not a standard constructor, the code generator also

produces:
- A separate block of code labelled x,_entry, obtained by compiling the body

of Ift. (See section 9.2.1 for why it may be useful to give this code an extra
entry point.)

- The declaration for a statically-initialised array x,_inf o, which is the info table
for x,-. The first element of the info table is (the label of) the standard-entry
code x,-_entry.

Both of these declarations are hoisted out to the top level, rather than appearing
embedded in the middle of the code for the l e t expression. In our code generator
this flattening process is performed after code generation, the intermediate data
type (Abstract C) permitting nested declarations.
If the lambda-form is a standard constructor, the shared info table for the

appropriate constructor can be used, and there is no need to generate x,_inf o
and x,_entry.
Literals and calls of built-in operators (section 9.5). A primitive literal k is compiled
to statements which load k into a register (exactly which register depends on fe's
type), adjusts the A and B stack pointers to their final values, and returns to the
address on top of the B stack. A call to a built-in operation works in the same
way except that the operation is performed first.
This makes it sound as if every built-in operation is associated with a return,

but an easy optimization allows sequences of built-in operations to be compiled
(section 9.5).
case expressions (section 9.4). The primitive case expression

case e of palts

is compiled to code which saves any volatile variables used by palts on the stacks,
and pushes a return address on the B stack, followed by the code for e. An
arbitrary but unique label is invented for the return address, which is used to
label a separate block of code compiled from palts.
The code compiled for palts performs case analysis on the value returned (if

there are any non-default alternatives) followed by the code for each alternative
expression. Like the code for lambda-forms, this entire code block is hoisted to
the top level.
The code for algebraic case expressions is similar, except that (the address of)

a return vector is pushed instead of a return address (section 9.4.3).
Top level bindings (section 9.1). The top-level bindings are treated a little differently
to nested ones. Each declaration g,- = //, is compiled to the declaration of a
statically-initialised array g,_closure, which represents the static closure for
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g,. An info table g,_info and standard-entry code-block g,_entry are also
produced just as for nested bindings.

• Standard constructors (section 9.4.2). As already mentioned, no code is generated
for lambda-forms which are standard constructors, the shared info table and code
for the constructor being used instead. It is therefore necessary to generate this
info table and entry code for each constructor declared in the module.

To make these ideas concrete, Fig. 6 gives the code compiled for map, whose STG
code is as follows (see section 4.1):

map = {} \ n {f,xs} —>
case xs of

Ni l {} -> Ni l {}
Cons {y,ys} -> l e t fy = {f, y} \ u {} -> f {y}

mfy = {f,ys} \ u {} -> map {f, ys}
i n Cons {fy,mfy}

This code is written assuming that lists use a vectored return convention, and
Cons returns its arguments in registers, matters which are explained more fully in
section 9.4.

The rest of this section explores code generation in more detail. Each subsection
corresponds to the similarly-numbered subsection of section 5 which gives !the
operational semantics of the STG language.

9.1 The initial state

The machine is initialised to evaluate the global main, with empty argument, return
and update stacks (section 5.1). The abstract machine's initial heap is not empty,
but rather contains a closure for each globally-defined variable. We implement this
by allocating a static closure for each such variable (section 7.2). Each of these
closures can be referred to directly by its C label, thus effectively using the linker to
implement the global environment a.

9.2 Applications

The code generated for applications follows directly from Rule 1 in the operational
semantics, and consists of two steps:
• push the arguments on the stack and adjust the stack pointer,
• enter the closure which represents the function.
We discuss these steps separately below. Before doing so, here is a small example.
Consider the binding

apply3 = {} \ n {f, x} -> f x ,x ,x

The following code is generated for the application f {x, x, x}. When this code is
executed, a pointer to f is on top of the A stack, and under it is a pointer to x

Node = SpA[O]; /* Grab f into Node register */
t = SpA[l]; /•* Grab x into a local variable */
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StgWord map_closure[] = {map_info};
StgWord map_info[] = {map_entry, ...rest of info table...}
map_entry() {

...argument satisfaction check...
JUMP( map_direct );

}
map_direct() {

...stack overflow check.. .
SpB[l] = ret_vecl; SpB = SpB+1; /* Push return vector */
Node = SpA[l]; ENTER( Node ); /* Enter xs */

StgWord ret_vecl[] = {ret_nill, upd_nil, ret_consl, upd_cons};
ret_nill() {

SpA = SpA+2; /* Pop args */
SpB = SpB-1; RetVecReg = SpB[l]; /* Grab return vector *•/
JUMP( RetVecRegfO] );

}
ret_consl() { /* Head and tail in regs RetDatal and RetData2 */

/* Allocate fy and mfy */
Hp = Hp + 6;
...heap overflow check...
Hp[-5] = fy_info; Hp[-4] = SpA[O]; Hp[-3] = RetDatal;
Hp[-2] = mfy_info; Hp[-1] = SpA[O]; Hp[O] = RetData2;

/* Return the cons cell */
RetDatal = &Hp[-5]; RetData2 = &Hp[-2];
SpB = SpB-1; RetVecReg = SpB[l]; SpA = SpA+2;
JUMP( RetVecReg[2] );

StgWord fy_info[] = {fy_entry, ...rest of info table...}
fy_entry() {

...push update frame... /* This is an updatable thunk •*/

...stack overflow check...
SpA[-l] = Node[2]; SpA = SpA-1; /* Push y */
Node = Node[l]; ENTER( Node ); /* Enter f */

StgWord mfy[] = {mfy_entry, . . . r e s t of info t a b l e . . . }
mfy_entry() {

. . . s t a c k overflow check . . .
SpA[-l] = Node[2]; / * Push f, ys * /
SpA[-2] = Node[ l ] ;
SpA = SpA-2;
JUMP( map_direct );

Fig. 6. The code generated for map.
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SpA[O] = t; / * Push extra args * /
SpA[-l] = t;
SpA = SpA - 1; / * Adjust stack pointer * /
ENTER( Node ); / * Enter f * /

9.2.1 Entering a closure

What does it mean to 'enter' a closure? After all, the operational semantics has quite
a few rules dealing with the Enter state. The Spineless Tagless machine devolves
responsibility for all these complications to the closure being entered, so that the
code to enter a closure is simple and uniform. We establish the following very
simple entry convention for closures: when a closure is entered a particular register,
the Node register, points to the closure. The code for the closure can access its free
variables by indexing directly from the Node register. All the 'caller' has to do is to
load a pointer to the closure into the Node register, and jump to the standard-entry
code for the closure via its info pointer. (As previously discussed, this jump can
involve either one or two indirections, depending on the particular representation
chosen for closures and info tables - section 7.6.)

It is possible to make some useful optimisations to this process, when entering a
non-updatable closure. Many functions are denned at the top level of the program,
or in standard libraries (map, for example). Entry to such functions can be made
much more efficient than the standard entry mechanism just described:
• Such a function has no free variables, so there is no point in making Node point

to its closure.
• The code label for the function is statically determined, so the jump can be a

direct one, rather than indirecting via the info pointer.
• The code generator knows how many arguments (if any) the closure is expecting,

so if at least this number of arguments is being supplied by the call, the jump
can be made to a point (called the direct-entry point) just after the argument
satisfaction check (see section 9.3.2). Indeed, with a bit more cleverness, the stack
and heap overflow checks can often be bypassed as well.

• The argument-passing convention at the direct-entry point can be different to the
standard ones. In particular, arguments can be passed in registers. This should
be beneficial, but perhaps less so than in a strict language, because functions
frequently begin by evaluating one of their arguments, so the others have to be
saved on the stack anyway. We have not yet implemented this idea.

Of these improvements, all but the first can be applied to locally-defined functions
as well. For example, consider the expression

f = {} \ n {x,y} -> l e t g = {x} \ n {z} -* + {x, z}
in g {y}

The call to g can be made by pushing its argument y onto the stack, loading a
pointer to the closure for g into Node, and then jumping directly to the appropriate
code for g. Since the call is to a function whose definition is statically visible, the code
generator can compile direct jumps, including bypassing the argument satisfaction
check where appropriate.
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We need to take a bit more care when entering an undatable closure. In this case
we must jump to it via its info pointer, and never directly to its standard-entry code,
because an update might have changed the info pointer! At first it seems that we
must also always make Node point to the closure, since the standard-entry code for
an updatable closure begins by pushing an update frame recording the address of
the closure to be updated. But since the code to push the update frame is compiled
individually for each closure, we can arrange for it to include the static address of
the closure in the update frame, rather than Node.

No optimizations at all apply when entering the closure for a lambda-bound
variable, as in the case of apply3 above.

9.2.2 Pushing the arguments

'Pushing the arguments onto the stack' is not quite as simple as it sounds.
Firstly, the arguments may be a mixture of pointers and non-pointers so each

must be pushed on the appropriate stack. The argument stack of the operational
semantics is thereby split between the A and B stacks.

Secondly, in our implementation the environment p of the operational semantics
is represented partly by locations in the stacks. This is quite conventional in many
language implementations. It means, though, that the stacks must be cleared of
the accumulated environment (or perhaps just part of it - see section 9.4.1) before
pushing the arguments to the call. Of course, we need to take a little care here: we
must not overwrite a stack location which contains a value which is required for
another argument position. There are several ways to solve this, the simplest being
to move all the threatened live stack locations into registers (when generating C,
local variables) before starting to overwrite them.

Here is an example:

f = {} \ n {x,y} - g {y,x}

On entry to f, x and y will be on the stack. It immediately calls g which requires
the same arguments, but in the other order, so at least one register must be used
during the stack rearrangement.

Such argument-shuffling is rather unusual. It is much more common for the same
argument to appear in the same position, in which case no code need be generated
at all. This is often the case for recursive functions which pass some arguments
along unchanged.

9.3 let(rec) expressions

As mentioned earlier, l e t and l e t r e c expressions always compile to code which
allocates a closure in the heap for each definition, followed by code to evaluate the
body of the let(rec). Each of these closures consists of an info pointer, and a field
for each of its free variables.

For example, the expression

l e t / = fs \n xs —• b
in e
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compiles to code which allocates a closure for / , and then continues with code to
evaluate e. For example, consider the definition of compose:

compose = {} \ n {f, g, x} -> l e t gx = {g,x} \ u {} -> g {x}
in f {gx}

The code for the body of compose runs as follows:

/* Allocate heap block */
Hp = Hp - 3; /* Allocate some heap */
if (Hp < HLimit) /* Heap exhaustion check */

{ . . . trigger GC. . . };
/* Pill in closure for gx */
Hp[0] = &gx_info; /* info pointer */
Hp[l] = SpA[l]; /* g */
Hp[2] = SpA[2]; /* x */
/* Call f */
Node = SpA[0]; /* Grab f into Node */
SpA[2] = &Hp[0]; /* Push gx */
SpA = SpA + 2; /* Adjust SpA */
ENTER( Node );

Here, gx_inf o is the statically-allocated info table for gx:

static int gx_info[] =

{ &gx_entry,
&scavenge_2,
&evacuate_2,

In this info table, gx_en t ry is the name of the C function which implements
the standard-entry code for the closure gx. scavenge_2 and evacuate_2 are
runtime system routines for performing garbage collection on closures containing
two pointers (section 7.3).

9.3.1 Allocation

The allocation of these closures is straightforward, and was discussed in section 7.2.
References to dynamically-allocated closures within a single instruction sequence

are made by offsetting from the heap pointer. (The code generator keeps track of
the physical position of the heap pointer, so that correct offsets can be made even
if it is moved by instructions within the basic block.)

Notice the use here of the term 'single instruction sequence'. In particular, this
method of addressing cannot survive over the evaluation triggered by a case expres-
sion, because such an evaluation may take an unbounded amount of computation.
Not only may this move the heap pointer unpredictably, but it may trigger garbage
collection, which may rearrange the relative positions of the closures. In short, at
the points in the operational semantics where the environment p is saved on the
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return stack, a pointer to each live closure must be saved on the pointer stack
(section 9.4.1).

9.3.2 The code for a closure

Much more interesting, of course, is the standard-entry code for the closure. This is
the code which will get executed if the closure is ever entered. The standard-entry
code for every closure begins with the following sequence:
Argument satisfaction check. This concerns updating, and is discussed in section 10.2.

It is only generated if there are one or more arguments.
Stack overflow check. If the execution of the closure can cause either stack to

overflow, or (if the stacks are organised to grow towards each other) collide,
execution is halted. (On a parallel machine, which works with many stacks,
different action is taken.) This stack overflow check can 'look ahead' into all the
branches of any case expressions involved in the evaluation of the closure, taking
the worst-case path as the overflow criterion. Of course, if there is no net stack
growth, no check is performed.

Heap overflow check. A similar check is performed for heap overflow, if any heap
is allocated. This was discussed in section 7.2. The heap check cannot look ahead
into case branches, because the evaluation implied by a case can perform an
unbounded amount of computation.

Info pointer update. In the case of an updatable closure, its info pointer may now
be overwritten with a 'black hole' info pointer or, in a parallel system, a 'queue
me' info pointer. This is discussed in more detail below (section 9.3.3).

Update frame construction. For updatable closures only, an update frame is pushed
onto the update stack. This action causes a later update, which overwrites the
closure with its head normal form. The implementation of updates, and the
mapping of the update stack, are discussed in detail in section 10.
Code is now generated for the body of the closure, with the free variables bound

to appropriate offsets from the Node register, and the arguments to offsets from the
appropriate stack pointers. (Like many other compilers, ours keeps track of where
the stack pointers are pointing within the current activation record, so that at any
moment it can generate the correct offset from the current stack pointer.)

9.3.3 Black holes

When an updatable closure is entered, its standard-entry code has the opportunity
to overwrite the closure's info pointer with a standard 'black hole' info pointer
provided by the runtime system. Whilst this operation costs an instruction, it has
two advantages:
• If the closure is ever re-entered before it is updated, the black hole entry code

can report an error. This situation occurs in programs where a value depends on
itself; for example

l e t r e c a = 1+a in a
• If a closure is left undisturbed until it is finally updated with its head normal form,

there is a serious risk of a space leak. For example, consider the STG definitions
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ns = {} \ u {x} -> . . x . .
1 - {} \ u {ns} —> l a s t {ns}

where . . x. . produces some very long list, and l a s t returns the last element
of a list. If the thunk for 1 is left undisturbed until it is finally updated with the
last element of the list ns, it will retain a pointer to the entire list, rather than
consuming it incrementally. (This nice example is due to Jones, 1991.) Overwriting
the thunk for 1 with a black hole immediately it is entered solves this space leak,
because a black hole retains no pointers.

It is also possible to obtain both these advantages in a slightly more subtle way,
without performing the black-hole overwriting operation. Firstly, non-termination
of the form detectable by black holes always results in stack overflow. The cause
of the stack overflow can then easily be determined by noticing that there is more
than one pointer on the update stack to the same closure. This can only happen
if its value depends on itself. It is also possible that the error message obtainable
from a post-mortem of the update stack could be rather more informative, because
the entire collection of closures involved in the self-dependent loop can be identified
and, since they all still have their original info tables attached, their source code
location information could be shown too.

Secondly, we address the space-leak question. In the above example, the pointer
to ns retained by 1 only matters at garbage-collection time. In almost all cases a
thunk will be entered and updated between garbage collections, so that no space
improvement is gained by overwriting with a black hole. What we would like to
do is to black-hole only those thunks which are under evaluation at garbage collection
time. Happily, they are exactly the thunks to which the update stack points! So
we can safely omit the black-hole update on thunk entry, provided that instead we
begin garbage collection by black-holing all the thunks pointed to from the update
stack.

Since both these techniques rely on the update stack, they only apply to updatable
thunks (update flag u). If a thunk is non-updatable (update flag n) it must still be
black-holed by its standard-entry code. For this reason in our implementation we
have two variants of the n update flag: r for reentrant (the closure may be entered
many times, and should not be black-holed), and s for single-entry (the closure will
be entered at most once, and should be black-holed). The r flag is used for manifest
functions, constructors and partial applications, while the s flag is only used for
thunks where update analysis has determined that an update is not required.

In a parallel system, the standard-entry code for an updatable thunk should
overwrite the thunk with a 'queue me' info pointer (section 3.1.3). Unlike the black-
holing of a sequential system, this operation cannot be postponed until garbage
collection.

9.4 case expressions

Pattern matching, via case expressions, is utterly pervasive in lazy functional
programs, all the more so in the Spineless Tagless G-machine because the boxing
and unboxing operations of arithmetic are done using case expressions rather
than by some ad hoc mechanism. One of the strengths of the Spineless Tagless
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G-Machine is that there is a rather rich design space for how pattern-matching can
be implemented, including some rather efficient options.

case expressions (and only case expressions) cause evaluation to take place.
In the operational semantics this is expressed by pushing a continuation onto
the return stack, and evaluating the expression to be scrutinized (Rule 4). This is
mirrored precisely by the code generated for case expressions.

In code generation for most languages the act of pushing a continuation (or
return address) is immediately followed by a function call. It is worth noticing in
passing that this is not the case for the STG language; there may be a significant
gap between the instruction(s) which push the continuation and the instruction (if
any) which actually transfers control. For example, consider the expression

case (case f x of . . . )
of . . .

The continuation for the outer case is pushed, then the continuation for the inner
case, and then the call to f is made. Few programmers write this sort of code, but
it arises as a result of program transformations within the compiler. The order of the
two case expressions can be interchanged, but only at the risk of code duplication.

The main point of interest is how continuations are represented. Recall that a
continuation in the operational semantics consists of two parts:

1. The alternatives of the case expression,
2. The environment p in which they should be executed.

The representation of alternatives is intimately connected with the code generated
for primitive values and constructors, so we defer discussion of the first topic until
the following sections. Environment-saving is independent of constructors, so we
discuss it first.

9.4.1 Saving the local environment

The local environment is saved by saving in the stacks the values of all variables
which are live (that is, free) in any of the alternatives. The way in which a live
variable is saved depends on where it currently resides:
• It may already be in a stack, for example if it was an argument to the current

closure. No code need be generated.
• It may be in a register, or it may be bound to an offset from the heap pointer. In

this case it must be saved in the appropriate stack.
• It may be in the closure currently pointed to by Node. In this case there are two

possibilities: save the variable itself, or save Node.
The latter reduces the number of saves because saving Node effectively saves the

values of several variables at once. On the other hand, an extra memory access is
subsequently required to get the value of the variable.
Another problem with saving Node is that the entire contents of the closure

must then be retained by the garbage collector, even though the continuation
may only use some of its fields. The space-leak avoidance mechanisms described
in section 9.3.3 cannot be applied. (It is possible to rescue the space behaviour
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by compiling a bitmask to indicate which fields of the closure are live, but it is
complicated.)

Our current policy is to avoid these difficulties by saving all variables individually.
When saving a variable in a stack, we can economise on stack usage by re-using
stack slots belonging to variables which are now dead. There is also a useful side
benefit: the structure pointed to by dead pointers in the stack cannot be reclaimed by
the garbage collector, so overwriting such pointers with live ones is a 'good thing'.
One could experiment (though we have not yet done so) with generating extra
instructions to overwrite dead pointers whose slots are not to be reused, specifically
to make their space reclaimable.

9.4.2 Constructor applications

The expression scrutinised by a case expression must eventually evaluate either to
a primitive value or a constructor application. We deal with the latter case in this
section, deferring the primitive case to section 9.5.

The code generated for a constructor application must return control to the appro-
priate alternative of the case expression, making the argument of the application
available to the alternative. This is just what is done by the rules for constructors in
the operational semantics (Rules 5, 6 and 7).

For example, consider the expression:

l e t
hd = {} \ n {xs} —»• case xs of

Cons {y,ys} -> y {}
N i l {} —» e r r o r {}

s i n g l e = {w, ws} \ n {} —* Cons {w, ws}
in
hd {single}

where w and ws are bound by some enclosing scope. The code generated for
the case expression in hd pushes a continuation and enters the closure for xs,
which is bound to s i n g l e in this case. The code for the constructor application
Cons {w,ws}, in the body of s i n g l e , should return control to the appropriate
alternative, returning w and ws in some agreed way. (Remember that constructor
applications in the STG language are always saturated.)

There are two main aspects to consider:
• There may be several alternatives, so there is the question of how the appropriate

one is selected.
• The constructor for a particular alternative may have arguments, in which case

these need to be communicated to the code for the alternative.
These two issues are now discussed in turn.

9.4.3 Selecting the alternative

The simplest possible representation for the alternatives is a single code label,
which we call a return address, pushed on the B stack. Control is returned by the
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constructor application to the labelled code when evaluation of the scrutinized object
is completed.

If there is only one member of the algebraic data type (tuples, for example),
the evaluation of the (single) alternative can proceed immediately. If there is more
than one member of the type (lists, for example), the tag of the object is put into
a particular register RTag, and a C s w i t c h statement is generated to perform
the case analysis on RTag. (In a native-code generator, this multi-way jump can
be compiled using a tree of conditionals or using a jump table, depending on the
sparsity of the alternatives, but using C as our target code allows to delegate this
choice to the C compiler.)

This is not the only possible representation for the alternatives. Another possibility
is to represent the alternatives by a pointer to a table of code labels, with one entry
in the table for each constructor in the data type. Fig. 7 illustrates the situation for
a c a s e expression which is scrutinizing a list. A pointer to this table, which we
call a return vector, is pushed on the B stack by the code for the c a s e expression.
Then, instead of loading RTag, the code for the constructor application can transfer
control directly to the appropriate destination, thus saving a jump. We call this a
vectored return, and the pointer to the return vector a vectored return address.

The important point to note is that the return convention can be chosen inde-
pendently on a datatype by datatype basis. A particular c a s e expression will only
scrutinize objects of a particular type. In practice, we (somewhat arbitrarily) use
vectored returns for data types with up to eight constructors, because this catches
the vast majority of data types without risking wasting (code) space on large
sparsely-used return vectors.

9.4.4 Returning the constructor arguments

There is a correspondingly simple convention available for communicating the con-
structor arguments to the alternative: make the Node register point to a constructor
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closure containing the appropriate values. The code for the alternative can then
address its components by indexing from the Node register as usual.

This works fine, and is simple enough, but a much better alternative is readily
available: if there are sufficiently few arguments, return them in registers! If the
closure being scrutinised is already a constructor then not much is gained; indeed
something may be lost, because all its components may be loaded into registers when
perhaps the alternative only requires one of them. But there is a terrific gain when
a thunk is scrutinised, because it may thereby avoid ever building the constructor in
the heap. The most critical example of this is ordinary integer arithmetic. Consider
the following example:

neg = {} \ n {x} —> case x of
Mklnt {x#} ->• case (neg# {x#}) of

y# -• Mklnt {y#}

neg is the function which negates an integer. It operates by evaluating the integer
x to extract its primitive value x#, negating it to give y#, and then returning the
integer Mklnt {y#}. Now, under the simple return convention, the boxed value
Mklnt {y#} would be constructed in the heap, Node would be made to point
to it, and control returned to the continuation. If, instead, the component of the
constructor, y# is returned in a register, the value need never be built in the heap,
except as result of an update (section 10). It turns out that this has a big effect on
performance.

As before, the important point is that the return convention can be chosen on a
datatype by datatype basis. Integers are not a special case. For example, list 'cons'
cells can be returned by putting the head and tail values into specific registers.
(Independently, a vectored or non-vectored return convention can be chosen.) Even
the choice of which registers are used to return values can also be made independently
for each data type. For example, a floating-point number can be returned in a
floating-point register.

For the reason given before, it is probably not a good idea to return constructors
with many arguments entirely in registers. We therefore make a virtue of necessity
(there are only a limited number of registers) and return larger constructors by
allocating them in the heap and making Node point to them.

It turns out that the return-in-registers convention makes updates substantially
harder, as we shall see, but the gain is well worth it.

9.5 Arithmetic

Suppose that the expression scrutinised by a case turns out to evaluate to a
primitive value; that is, either a primitive literal (Rule 9), a variable whose value is
primitive (Rule 10), or an arithmetic operation whose result is primitive (Rule 14).
All three of these rules enter the Returnlnt state, which takes action depending on
the alternatives stored on top of the return stack.

The return convention for primitive values is simple. The continuation on top of
the return stack is always a return address, pointing directly to the continuation
code. The primitive value itself is returned in a standard return register, chosen
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independently for each primitive data type. For example, one register can be used
for integers and another for floating point values. The code generated for a primitive
literal simply loads the specified value into the appropriate return register, pops the
return address from the B stack and jumps to it. Similarly, the code generated for
a primitive variable just loads the value of the variable into the return register and
returns; and arithmetic follows in the same way.

The code generated at the return address implements the case analysis implied by
the alternatives (if any), using a suitable C swi t ch statement. Often there is only
one alternative, which binds a variable to the value returned. This is easily done by
binding the variable to the appropriate return register.

There is a very important special case, when compiling expressions of the form:

case v\ © v2 of alts

for built-in arithmetic operations ©. It would be pointless to push a return address,
evaluate v\ © v2, and return to the return address! These operations can easily be
short-circuited, and it is practically essential to do so. We can express this equivalence
by doing some simple transformations on the rules to give the derived rules:

/

Eval

case © of

en\
x 2 >

Int h
Int i2

where

Eval ep[xi-> Int (i\ © i2)]

kj j= h © i2 (1 < j < n)

as rs us h

as rs us

(18)

case © of

Eval
Int i{

Int i2
as rs us

= > Eval e p as rs us h a

where k = ii © i2 (19)

In particular, once this optimization is implemented, the expression

case © {xi,X2} of x —> e

compiles to the simple C statement:

x = x l © x2

where x, x l and x2 are the C local variables used to hold the values of x, xi and
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10 Adding updates

So far everything has been quite tidy: tree reduction is nice and easy. Sadly, graph
reduction is harder, and updates are quite complicated. This is much the trickiest
part of the Spineless Tagless G-machine. Still, we begin bravely enough.

10.1 Representing update frames

Recall that when a closure is entered it has the opportunity to push an update frame
onto the update stack. An update frame consists of
• A pointer to the closure to be updated.
• The saved argument and return stacks.
After an update frame is pushed, execution continues with empty argument and
return stacks.

Of course, we don't actually copy the argument and return stacks onto a separate
update stack! Instead, we dedicate two registers, called the stack base registers, to
point just below the bottom-most word of the A and B stacks, respectively. The
argument and return stacks can now be 'saved' and then 'made empty' merely by
saving the stack base registers in the update frame, and making them point to the
current top of the A and B stacks.

Where is the update stack kept? It could be represented by a separate stack all
of its own, but we have chosen to merge it with the B stack. The minor reason for
this is to avoid yet another stack. The major reason is that it makes available an
important optimization which we discuss below (section 10.3).

To conclude, the operation of pushing an update frame (Rule 15) is done by:
• Pushing an update frame onto the B stack.
• Setting the stack base registers to point to the top of their respective stacks.
(The alert reader will have spotted that a pointer (to the closure to be updated) has
thereby ended up on the B stack. We discuss this in section 10.7.)

An update is triggered in one of two ways: either a function finds too few
arguments on the stack, or a constructor application finds an empty return stack.
These two situations are discussed in the following sections.

10.2 Partial applications

When a closure is entered which finds too few arguments on the stack, an update is
triggered. This is described by Rules 17 and 17". The check for too few arguments is
called the argument satisfaction check, and occurs at the start of the code for every
closure which takes one or more arguments (cf. section 9.3.2).

A minor complication is that the arguments are split between the A and B stacks,
but this presents little difficulty. If the last argument is available then certainly all
the others will be, so the check is performed only on the stack which contains the
last argument.

The argument satisfaction check is performed by subtracting the stack base pointer
of the appropriate stack from the corresponding stack pointer, giving a difference in
words. This is compared with the (statically calculated) number of words required
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for all the arguments which are passed on that stack. If too few words are present, a
jump is taken to a runtime system routine, UpdatePAP, which performs the update.
Once the update has been done, UpdatePAP concludes by re-entering the closure,
which Node should be pointing to. The argument satisfaction check is thereby
performed again, as Rule 17 requires, in case a further update is needed.

A special case is required for top-level closures, because the code entering the
closure may not have made Node point to it (section 9.2.1). In this case, just before
jumping to UpdatePAP, the argument-satisfaction-check code loads a pointer to
the closure into Node. (Recall that top-level closures are statically allocated, so their
address is fixed.)

What does UpdatePAP do? It follows Rule 17°:
1. First, it builds in the heap a closure representing the partial application, whose

structure is given below.

2. Next, it overwrites the closure to be updated (obtained from the update frame)
with an indirection to the newly-constructed closure.

3. It restores the values of the stack-base registers from their values saved in the
update frame.

4. It removes the update frame from the B stack, sliding down the portion of the
stack (if any) which is above it.

5. Finally, it re-enters the closure pointed to by Node.
What does the partial-application closure look like? In the most general case it
contains:
• The info pointer PAP_Inf o.

• The total size of the closure, and the number of pointers in it. As well as being
used by the storage manager, this information is required by the standard-entry
code of PAP_Inf o (see below).

• The pointer to the function closure, which is in Node.

• The contents of the A stack between the top of stack and its stack base pointer.

• The contents of the B stack between the top of stack and its stack base pointer.
If this partial-application closure is entered, the standard-entry code of PAP_Inf o
pushes the saved stack contents onto their respective stacks (using the size infor-
mation to determine how many words to move to which stack), and then enters
the function closure saved in the partial application closure. Its garbage-collection
routines use the size information stored in the closure to guide their work.

So much for the general case. A couple of optimizations are readily available.
Firstly, a collection of specialized PAP_Inf o pointers can be provided for var-
ious combinations of numbers of pointer and non-pointer words. For example,
PAP_Inf o_l_0 is used when there is one pointer word and no non-pointers. The
advantages of such specialized info pointers are: there is no need to store the field
sizes in the closure; and the entry and garbage-collection code is faster because it has
no interpretive loop. There is, of course, a small execution-time cost in UpdatePAP
to decide whether a special case applies.

Secondly, if the new closure is small enough it can be built directly on top of the
closure to be updated.
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10.3 Constructors

The other way in which an update can be triggered is when a constructor finds an
empty return stack. It looks as though the code for a constructor application has to
test for an empty return stack; indeed this is just what is implied by Rule 16. This
looks expensive, because constructors are so common. Furthermore, the return stack
is almost always non-empty, so the test is in vain. Data structures are often built once
and then repeatedly traversed. Each time pattern matching is performed on a data
structure, a continuation is pushed on the return stack, and the closure representing
the data structure is entered. Since it is already evaluated, it returns immediately
(perhaps using a vectored return), but it must first perform the return-stack test.

So now comes the tricky part. Since update frames and continuations are both
stored on the B stack, if a return address is not on top of the stack, then an
update frame must be. / / we make the top word of each update frame into a code
label, UpdateConstr, the constructor could just return without making any test. In
the common case where there is no update frame this does just what we want.
If an update is required there will be an update frame on top of the B stack, so
the 'return' will land in the UpdateConstr code, which can perform the update
and then return again, perhaps to another update frame, or perhaps to the 'real'
continuation.

Before we examine the complications, it is worth looking at the crude costs and
benefits. The cost is one extra instruction for every update frame pushed. The benefit
is the omission of a couple of instructions (one of them a conditional jump) from
every constructor evaluation. If data structures are traversed repeatedly, constructor
evaluations will occur substantially more often than updates. The benefits look
significant.

The trouble is that this trick interacts awkwardly with the various return conven-
tions for constructors discussed in Sections 9.4.3 and 9.4.4. With the simple return
conventions, everything works fine. The case alternatives are always represented by
a' simple code label on the B stack, and the result is returned by making Node point
to the constructor closure. All UpdateConstr need do is to overwrite the closure
to be updated with an indirection to this constructor closure, restore the stack base
registers, and return again.

10.4 Vectored returns

Life gets more complicated when we add vectored returns. There is no problem with
providing a vectored form of UpdateConstr; each entry in its return vector points
to code which performs the update and then returns in its turn in a vectored fashion.
The difficulty is that when the update frame is created, the return convention is not
known. This is because the type of the expression may be polymorphic. Consider,
for example, the compose function, which looks like this in the STG language:

compose = {} \ n {f, g,x} -> l e t gx = {g, x} \ u {} -> g {x}
in f {gx}

The code for the closure gx does not know its type. Hence, when it pushes the
update frame it cannot know whether a vectored return is to be expected or not. In
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-*- Code for Nil alternative
-*- Code to update with Nil
-*• Code for Cons alternative
-+• Code to update with Cons

Fig. 8. Vectored updates.

short, UpdateConstr must be able to cope with either a vectored or a non-vectored
return.

If we were generating machine code this would present little problem. We just
adopt the convention that the pointer to a vector table points just after the end
of the table, so that the table is accessed by indexing backwards from the pointer.
Now UpdateConstr labels ordinary code immediately preceded by its vector table.
Sadly, C does not allow us to specify the relative placement of data and code in this
way, so instead we have to adopt the convention that non-vectored returns behave
just like vectored returns through a vector table with one entry (cf. section 7.6). This
imposes an extra indirection on non-vectored returns.

10.5 Returning values in registers

Unfortunately, matters get worse when we consider the idea of returning constructor
values in registers. Now UpdateConstr has no way to figure out how to perform
the update, because it has no way to tell what return convention is being used.
Can the closure which pushed the update frame push a version of UpdateConstr
appropriate for the data type? As just discussed, the answer is no, because of
polymorphism.

This looks like a rather serious problem. There is a way round it, but it is rather
tricky.

The idea is this: the update frame may not know the type of the value being
returned, but the case expression which caused the evaluation in the first place cer-
tainly does. So UpdateConstr does not perform an update at all; it merely records
that an update is required, by placing a pointer to.the closure to be updated in a
special register UpdatePtr. It is up to the case expression continuation to per-
form the update. How does the continuation 'know' whether an update is pending?
Simple: each entry in the case-expression's return vector is expanded to a pair
of code labels (Fig. 8). The first of these is just as before (i.e. the code for the
case-expression alternative); the other performs an update on the closure pointed
to by UpdatePtr, and then jumps to the first. We call these the normal return code
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and update return code, respectively. All UpdateConstr has to do to precipitate
the update is to return to the update return code rather than the normal return
code, which it can do merely by increasing its offset into the return vector by one.

The costs are surprising slight. There is a static space cost, as each vector table
now doubles in size. The extra code to perform the update can be generated once
only for each constructor, and then pointed to from all the return vectors for its data
type. This per-constructor update code can still find its way to the appropriate case
alternative provided the pointer to the return vector is kept handy in a register.

One objection remains, which looks serious: suppose there are several update
frames on top of each other before the 'real' continuation is reached? This can arise
in programs like the following:

l e t
i n
l e t
i n
l e t
i n

x l

x2

x3

x3

= . . .

= {xl}

= {x2}

\ u

\ u

{}

{}

-» x l

-> x 2

When x3 is entered, it will push an update frame and then enter x2, which will
push another update frame and enter xl . When x l reaches head normal form it
will find two update frames on top of the stack, reflecting the fact that both the
closure for x2 and that for x3 must be updated with xl 's value. This looks like a
rather special case, but it does arise in practice: any closure which may return the
value of another closure has the same property. For example, the definition of x3
could be:

x3 = {x2, z} \ u {} case . . . of
Ni l {} -> x2
Cons {p,ps} -* p

The problem with multiple update frames is that the UpdatePt r register can
only point to one closure! Fortunately there is an easy solution. Recall that all
return vectors including that for UpdateConstr consist of paired entries, and that
UpdateConst r returns to the update return code rather than the normal return
code of the pair. The update return code of the UpdateConstr vector therefore
knows that it is not the first update frame, and so UpdatePt r is already in use. One
possibility would be to chain together all the closures to be updated, but there is a
simpler way: the second (and subsequent) update frames just update their closures
with an indirection to the one pointed to by UpdatePtr . When the latter is finally
updated all the updating has been successfully completed. This can result in chains
of at most two indirections; and remember that indirections are all eliminated by
the garbage collector.

Finally, what of non-vectored returns? We still need a pair of code addresses to
return to, as in the vectored case. If the results are returned in a heap-allocated
closure pointed to by Node there is no problem: the update return code just performs
the update and jumps to the normal return code. If results are being returned in
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registers, then the update return code needs to perform case analysis on RTag to
figure out how to perform the update. As before, there need be only one copy of
this update return code.

10.6 Update in place

The update technology just described has another very important benefit: it allows
the updated closure to be overwritten directly with the result (if it is small enough),
rather than being overwritten with an indirection to the result.

Up to now, our uniform return convention has meant that closures are only ever
overwritten by indirections, even though it is often the case that it is in principle
possible to overwrite it directly with the result. Not only does this introduce extra
indirections but, more seriously, it gives rise to a lot of extra memory allocation.
Kieburtz and Agapiev (1988) specifically identify and quantify this shortcoming.

If the dual-return mechanism of the previous section is used, however, then this
shortcoming can easily be overcome. The code performing the update knows exactly
how the closure is laid out so, if it is small enough, it can directly overwrite the
closure to be updated. For example, here is the code to perform updates for a list
Cons cell:

ConsUpd() {
UpdatePtr[O] = Cons_Info;
UpdatePtr[l] = Head;
UpdatePtr[2] = Tail;

JUMP( ReturnVector[2] );

}

Here we are assuming that the Cons constructor returns its head in a register
Head and tail in Tai l . Cons_Inf o is the info table for the Cons constructor. The
address of the return vector is assumed to be in a register ReturnVector. The
offset of 2 picks the first code address of the pair for Cons.

For larger constructors, the new object cannot be built directly on top of the
old one, so a new object must be built in the heap and the old one updated with
an indirection to it. The usual heap-exhaustion check must be made, and garbage
collection triggered if no space remains. The update routine must then be careful to
save any pointers being returned in registers into a place where the garbage collector
will find them.

How does the updating code know if the closure to be updated is large enough?
There are two main possibilities:
• We can establish a global convention for the minimum size of updatable closures;

making them all large enough (by padding if necessary) to contain a list cons cell
seems a plausible guess. There is scope for another small optimization here: if
a closure is being allocated whose type is (say) Int , then it cannot possibly be
updated by anything other than an integer, so it does not need to be padded out
to cons-cell size.

• The updating code can look in the closure's info table to find its size, and either
update in place or use an indirection, depending on what it finds. This costs more

7-2
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time than the unconditional scheme, but has the merit that it will succeed in
updating in place more often. This is another aspect of the design which we plan
to quantify.

Update in place is not always desirable. Suppose that the value of the thunk turned
out to be an already-existing constructor which returns its components in registers.
Then update-in-place will overwrite the thunk with a copy of the constructor. No
work is duplicated thereby, but there is a potential loss of space if both copies stay
live for a while. At worst, a great many copies of the same object could be built in
this way, substantially increasing the space usage of the program. The point is this:
once copied, there is no cheap mechanism for 'commoning up' the original with the
copy.

Our preliminary measurements suggest that up to 10% of all updates copy an
already-existing constructor, though the figure can occasionally be much higher (for
the program reported by Runciman and Wakeling, 1992 it is 47%). We plan to
make more careful measurements to see how important this effect is. If it turns out
to be significant we will implement a simple extension of the dual-return-address
scheme outlined in section 10.5, whereby each element of the return vector is a
triple of return addresses. We omit the details, but the scheme has the effect of
always updating a thunk with an indirection whenever the value of the thunk is an
already-existing heap object.

10.7 Update frames and garbage collection

Update frames, which include a pointer to the closure to be updated, are kept on the
B stack. At first this looks rather awkward, because the garbage collector expects all
pointers to be on the pointer stack, but it actually turns out to be quite convenient,
because of the following observation: if the only pointer to a closure is from an update
frame, then the closure can be reclaimed, and the update frame discarded.

We can take advantage of this during garbage collection in the following way.
First perform garbage collection as usual, but without using the pointers from
update frames as roots. Now, look at each update frame and see if it points to a
closure which has been marked as live. If so, and a copying collector is being used,
adjust the pointer to point to the new copy of the closure. If not, squeeze the update
frame out of the B stack altogether.

It is easy to find all the update frames, because the stack base register for the
B stack always points to the topmost word of the topmost update frame; and the
saved stack base register for the B stack points to the next update frame, and so on.
This gives a top-to-bottom traversal, but it turns out that a bottom-to-top traversal
makes the 'squeezing-out' process much more efficient, for two reasons:
• Since the squeeze must move data towards the bottom of the stack (otherwise the

stack would creep up in memory!), working from bottom to top means that each
word of the B stack is moved only once.

• When an update frame is removed, the stack-base pointers for the next update
frame above it need to be adjusted. This is easy to do when working bottom to
top.
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Happily, it is easy to make a top-to-bottom traversal, reversing all the pointers, and
then make the bottom-to-top traversal to do the work.

The result of all this is that the garbage collector reclaims redundant update
frames. The main benefit is the saving in updates performed. This optimisation was
performed, but not documented, in Fairbairn and Wray's original TIM implemen-
tation.

10.8 Global updatable closures

As previously discussed (section 9.1), each globally-defined variable is bound to a
statically-allocated closure. Since such closures have no free variables (except of
course other statically-allocated closures), there is no need to treat them as a source
of roots during garbage collection.

But some of these global closures may have no arguments, and hence be updatable:
we call such such argument-less top-level closures constant applicative forms or CAFs.
For example, i n t s is a CAF whose value is the infinite list of integers:

ints = {} \u {} from {zero}
zero = {} \n {} Mklnt {0#}

where from is a function returning the infinite list of integers starting from its
argument.

There are two difficulties:
1. If such a CAF is updated, there will be pointers from the static space into the

dynamic heap. The question is: how is the garbage collector to find all such
pointers?

2. With the garbage-collection techniques described in section 7.3, closures in static
space need different garbage-collection code from those in the dynamically-
allocated heap. The two are readily distinguishable (by address), but it is un-
fortunate if every update is slowed down by a test when the vast majority of
updates are to dynamic closures.

There is more than one way to solve this problem, but the one we have adopted is
as follows. The idea is to arrange that:

1. CAFs which are being evaluated, or whose evaluation is complete, are linked
together onto the CAF list, which is known to the garbage collector. This solves
the first of the above problems.

2. All update frames point to closures in the dynamic heap, thus solving the second
problem.

We achieve these goals by adding a little extra code to the start of the standard-entry
code for a CAF (Fig. 9). The extra code does the following: it allocates a black hole
closure in the heap whose purpose is to receive the subsequent update; it pushes an
update frame pointing to this black hole; and it overwrites the static CAF closure
with a three-word CAPlist cell, pointing to the black hole in the heap, and linked
onto the CAF list.

In the example shown in Fig. 9, the CAFs p, q and r have all been entered, and
hence are linked onto the CAF list (we use CL to abbreviate the info pointer for
a CAFList cell). The evaluation of p is not yet complete, so it still points to a
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Fig. 9. Global updates.

black hole in the dynamic heap (info pointer BH). The evaluation of q has been
completed, and the black hole has been updated with an indirection (info pointer
I) to its value, s has not been entered, so it consists of a info pointer (S) only.

A CAFList cell looks like any other closure. If entered, it simply enters the
heap-allocated closure to which it points, behaving just like an indirection. The
garbage collector knows about the CAF list, and walks it iteratively, evacuating the
heap-allocated closure to which each cell points, and updating the cell appropriately.
This is slightly pessimistic, since it holds onto the value of every CAF even though
the program may never reference it again, but there is no avoiding this unless the
garbage collector traverses the code as well.

11 Status and profiling results

We have built a compiler for Haskell whose back end is based on the STG machine,
just as described above. The whole implementation has been constructed rather
carefully so that it may be used as a 'motherboard' into which other implementors
may 'plug in' their optimisation passes. All the source code is available by anonymous
FTP by contacting haske l l - r eques tOdcs . glasgow. ac. uk.

Apart from the STG machine technology described in the current paper, the
major innovations of the compiler are:
• The systematic use of unboxed values to implement built-in data types.
• A new approach to input/output based on monads, which allows the entire I/O

system to be written in Haskell (Hammond, Peyton Jones and Wadler, 1992). This
is done via a general-purpose mechanism which allows arbitrary calls to be made
from Haskell to C. As a result the I/O system can be readily extended without
modifying the compiler or its runtime system.

• The Core language, which serves as the main intermediate data type in the
compiler, is actually based on the second-order lambda calculus, complete with
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ALLOCATIONS: 73920 (231212 words total:
70387 admin, 136489 goods, 24336 slop)

avg #words of: admin goods slop
14426 ( 19.5%) function values 1.0 1.7 0.1
45131 ( 61.1%) thunks 1.0 1.7 0.5
9609 ( 13.0%) data values 1.0 1.7 0.0

0 ( 0.0%) big tuples
0 ( 0.0%) partial applications

407 ( 0.6%) black-hole closures 3.0 0.0 0.0
4341 ( 5.9%) partial-application updates 0.0 4.4 0.0

6 ( 0.0%) data-value updates 0.0 4.5 0.0
Total storage-manager allocations: 49594 (235559 words)
STACK USAGE:
A stack max. depth: 222 words
B stack max. depth: 446 words
ENTERS: 142737, of which 41914 (29.4%) direct to the entry code

[the rest indirected via Node's info ptr]
35626 ( 25.0%) thunks
24713 ( 17.3%) data values
64346 ( 45.1%) function values
[of which 21604 (33.6%) bypassed arg-satisfaction chk]
4788 ( 3.4%) partial applications
13264 ( 9.3%) indirections

RETURNS: 49212
48991 ( 99.6%) in registers [the rest in the heap]
49210 (100.0%) vectored [the rest unvectored]
24499 ( 49.8%) from entering a new constructor
[the rest from entering an existing constructor]

UPDATE FRAMES: 35626 (0 omitted from thunks)
35626 (100.0%) standard frames

0 ( 0.0%) constructor frames
0 ( 0.0%) black-hole frames

UPDATES: 35626
25788 ( 72.4%) data values
[25781 in place, 6 allocated new space, 1 with Node]
4349 ( 12.2%) partial applications
[8 in place, 4341 allocated new space]
5489 ( 15.4%) updates followed immediately
2594 ( 10.1%) in-place updates copied

Fig. 10. Example output of dynamic profiling information.

type abstraction and application. This permits us to maintain complete type
information in the presence of extensive program transformation, as well as
accommodating other front ends whose type system is more expressive than
Haskell's.

The implementation covers almost the whole language, but virtually no optimisa-
tions have yet been implemented. As a result, we have not compared its absolute
performance with other compilers. (This omission is an important shortcoming of
this paper, which will be rectified by a follow-up paper.)

We have begun to gather simple dynamic statistics, however. Fig. 10 shows some
output taken from a run of a simple type-inference program. This program takes
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some 600 lines of Haskell source code (apart from functions used from the Prelude),
and the sample run allocated about 10 megabytes of heap. The profile has the
following main headings:
Allocations, split into various categories. Most allocation is for thunks. The pro-

portion of data-value allocation seems surprisingly low, because most data values
are built by updating a thunk, rather than by performing new allocation in a
l e t ( r e c ) . This program uses monads heavily, so quite a lot of function-valued
closures are allocated.

Stack high-water marks are self explanatory.
Enters, with a classification of what kind of closure is being entered. In this case,

a rather low proportion of function calls (34%) bypass the argument satisfaction
check, again due to the very higher-order nature of the program.

Returns, which give information about the data-value returns which took place. In
this run, almost all were vectored and in registers. The third classification tells how
many returns were from entering an already-evaluated constructor (some 50% in
this case). In the cell model, the enter/return sequence would not be performed
for these cases.

Update frames classifies various forms of update frame, which is rather uninforma-
tive in this case.

Updates. The fifth line counts the number of times two or more update frames were
stacked directly on top of one another. The last line counts the number of updates
in which an already-existing value was copied by an updates (section 10.6).
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(v, G)-machine, 137, 138

A-stack, 173
ABC machine, 128, 137
Abstract C, 131, 174
activation frame, 138, 153
address, 155, 167
algebraic data type, 151
allocation, 179
argument satisfaction check, 161, 180, 187
argument stack, 155, 172
arithmetic, 150, 185

B-stack, 173
black holes, 135, 180
built-in operation, 174

cache, 138
CAF list, 194
CAFs, 194
c a l l / c c , 138
case expression, 139
case expressions, 143
cell model, 134
closure, 132
closure mode, 134
closures, 135, 155, 167

entering, 133, 167, 177
static, 169, 170

code, 155
code pointer, 133
continuation, 161
constant applicative form, see CAFs
constructors, 139, 147

niladic, 155
standard, 148

continuation, 182
continuation-passing style, see CPS
Core language, 130, 131
CPS, 144, 152
currying, 137, 153

data structures, 139
data values, 132
debugging, 167
direct-entry point, 177

Enter, 155
entering, see closures
environment pointer, 133
evacuation, 169
Eval, 155
eval-apply model, 137
evaluation stack, 138, 153

forcing, see thunks
forwarding pointer, 170
frame, 133
frame pointer, 166
free variables, 145
full laziness, 150
function application, 137, 153, 157, 175
function values, 132

G-machine, 138
garbage collection, 169, 193

Index
generational garbage collection, 138, 171
global environment, 155
globals, 144, 152, 169, 175, 194
graph reduction, 137

Haskell, 130
head normal forms, 132
heap, 155
heap overflow check, 180

indirection, 135
indirections, 168, 191
info pointer, 167
info table, 167, 172, 174
initial state, 156, 175
input/output, 195
integers

small, 170

lambda lifting, 143, 149
lambda-form, 143
laziness, 134
local environment, 156

saving, 182
locality, 138
locally-defined functions, 177
locals, 144

main, 144, 156
manifest functions, 146
monads, 195

non-updatable, 144
normal forms, 132
normal return code, 190

operational semantics, 154

paging, 138
PAP_Info, 188
parallel execution, 135
partial applications, 146, 162, 188
pattern matching, 139, 143, 181
pointer, 167
primitive data type, 151
primitive values, 160
profiling, 195
push-enter model, 138

'queue me', 136, 181

reduction, 134
register saves, 166
return address, 183
return convention, 140, 184
return stack, 158, 172
return vector, 184
ReturnCon, 156, 158
Returning 156, 158, 160, 185

scavenging, 169
SECD machine, 137
second-order lambda calculus, 195
self-updating model, 134
sequences, 154
space leak, 180
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stack base registers, 187
stack overflow check, 180
stacks, 172
standard constructors, see constructors
standard-entry code, 167, 180
state transition system, 154
status flag, 134
STG language, 131, 142
strictness analysis, 131
supercombinator, 149
suspension, 132

T-code, 130
tag big, 172
tagless, 135
target language, 163
threads, 138
Three Instruction Machine, see TIM
thunks, 132, 147

forcing, 134, 140
representing, 134

TIM, 133, 138

unboxed values, 131, 150
uniform representation, 135
updatable, 144
update flag, 142, 146

reentrant, 181
single-entry, 181

update frame, 161, 180, 187, 189
update return code, 191
update stack, 161, 172
UpdatePAP, 188
updates, 134, 135, 146, 161

in place, 192

values, 132, 155
vectored return, 184, 189
vectored returns, 140
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