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Abstract
In this paper, we investigate the constrained attitude control problem of hypersonic vehicles (HVs). An improved
prescribed performance dynamic surface control method is proposed based on an adaptive scaling strategy. Because
of the uncertain time-varying disturbances, the controlled state may violate the constraint in the prescribed per-
formance control (PPC) framework. An adaptive scaling strategy is introduced in the PPC method to avoid state
violation. The performance function is scaled with respect to the state adaptively. Moreover, a nonlinear disturbance
observer is used to compensate the sum of external and other internal disturbances of the system. The proposed
method improves the system dynamic performance while ensuring the system robustness. Furthermore, the stabil-
ity of the closed-loop system is proved by Lyapunov analysis. Finally, numerical simulations are implemented to
verify the effectiveness of the PPC method and superiority over other methods.

Abbreviations
AOA angel-of-attack
BBT bank to turn
DSC dynamic surface control
HV hypersonic vehicles
IPPDSC-NDO improved prescribed performance dynamic surface control - nonlinear disturbance observer
NDO nonlinear disturbance observer
PPC prescribed performance control
PPF prescribed performance function
PPSMC prescribed performance sliding mode control

Nomenclature

CLα lift force aerodynamic coefficient related with angle-of-attack
CYβ lateral force aerodynamic coefficient related with angle of sideslip
CDα drag force aerodynamic coefficient related with angle-of-attack
Cmα , Cmq pitch moment aerodynamic coefficient related with angle-of-attack and pitch angular velocity
Cnβ , Cnp, Cnr yaw moment aerodynamic coefficient related with angle of sideslip, roll angular velocity, and

yaw angular velocity
Clβ , Clp, Clr roll moment aerodynamic coefficient related with angle of sideslip, roll angular velocity, and yaw

angular velocity
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CLδe , CLδa lift force aerodynamic coefficient related with elevons
CYδe , CYδa , CYδr lateral force aerodynamic coefficient related with elevons and rudder
CDδe , CDδa , CDδr drag force aerodynamic coefficient related with elevons and rudder
Cmδe , Cmδa pitch moment aerodynamic coefficient related with elevons
Cnδe , Cnδa , Cnδr yaw moment aerodynamic coefficient related with elevons and rudder
Clδe , Clδa , Clδr roll moment aerodynamic coefficient related with elevons and rudder
Cδe

Lδe
, Cδa

Lδa
lift force aerodynamic coefficient derivatives related with elevons

Cδe

Yδe
, Cδa

Yδa
, Cδr

Yδr
lateral force aerodynamic coefficient derivatives related with elevons and rudder

Cδe

Dδe
, Cδa

Dδa
, Cδr

Dδr
drag force aerodynamic coefficient derivatives related with elevons and rudder

Cδe

mδe
, Cδa

mδa
, Cδr

mδr
pitch moment aerodynamic coefficient derivatives related with elevons and rudder

Cδe

nδe
, Cδa

nδa
, Cδr

nδr
yaw moment aerodynamic coefficient derivatives related with elevons and rudder

Cδe

lδe
, Cδa

lδa
, Cδr

lδr
roll moment aerodynamic coefficient derivatives related with elevons and rudder

1.0 Introduction
In recent years, HVs have been gradually widely used in military, civil, and other fields. Their main
feature is the fast speed. The fastest cruising speed can reach Mach 15–20, which can achieve rapid
attack on enemy targets. Because of their high penetration ability and other superior performance, many
countries are scrambling to invest a lot of funds and personnel for research. Although HVs have many
superior performances, they also have many control technology problems compared with ordinary vehi-
cles, such as large flight envelope and complex flight environment. Therefore, there will be uncertainties
in aerodynamic parameters. Moreover, the HV model has strong coupling and strong nonlinearity. These
problems will bring many new challenges to flight control technology [1, 2].

At present, scholars have proposed various tracking control methods for high-speed aircraft. A
backstepping method combined with the nonlinear disturbance observer is proposed to realise the auto-
disturbance rejection control of HVs [3]. An anti-saturation controller based on the backstepping method
and sliding mode theory is proposed to complete the control of HVs [4]. A robust adaptive controller
based on backstepping method is designed to overcome actuator saturation in HVs while achieving
good control effect [5]. A high-order sliding mode control based on feedback linearisation is proposed
to improve the controller’s robustness of HVs while eliminating chattering [6]. An integral sliding mode
control method is proposed to solve the problem of external disturbance in HVs tracking process [7, 8].
A control method based on nonlinear disturbance observer is proposed to deal with the disturbance
problems in the tracking control process of HVs [9]. A fault-tolerant control method based on fast fault
observer is proposed to solve the problem of fault for HVs [10]. A smooth adaptive terminal sliding-
mode-based controller is proposed for bank-to-turn (BTT) missiles [11]. A robust approximate optimal
controller based on adaptive dynamic programming is proposed, aiming to drive the HVs with uncertain-
ties to follow the virtual command [12]. The above methods have achieved good control performance,
but they don’t consider the problem of the system dynamic performance.

Scholars pay more attention to the dynamic performance in the tracking process besides the tracking
stability of HV in recent years. The PPC method is a pre-designed transient performance parameters
method. It has good compatibility with other control methods [13], which can better ensure the control
performance of the system. The concept of prescribed performance and funnel control method are pro-
posed by Ilchmann [14]. The PPC method proposed by Bechlioulis and Rovithakis further improves the
versatility of this method [13]. Since then, the PPC method has received widespread attention. Because
of its good dynamic performance, it is gradually applied to high-precision controllers of aerospace vehi-
cles [15–17]. Since the PPC method is to restrict the related state, it increases the design difficulty of the
related controller. In general, we can design a function to constrain the state. This method can convert
the constrained state into the new unconstrained state under the homeomorphism mapping. Meanwhile,
it can reduce the design difficulty of the controller [18, 19].

In addition, the PPC method generally has a problem that the state may violate the constraint. If the
state violation occurs, it will lead to a computational singularity, even a divergence of the system. Some

https://doi.org/10.1017/aer.2023.79 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.79


The Aeronautical Journal 877

new forms of prescribed performance function (PPF) in terms of the initial value and convergence time
are proposed [20–24], but the problem of state violation is not considered.

Based on the above analysis, this paper proposes an improved prescribed performance dynamic sur-
face control method with an adaptive scaling strategy, aiming to realise the constrained attitude control
of HVs with uncertain disturbances. The key idea of this paper is to propose an adaptive scaling strat-
egy and a nonlinear disturbance observer into the PPC framework based on the dynamic surface control
method. This combined control method can achieve not only the fast convergence of the system’s track-
ing error according to the prescribed performance, but also quick estimation and compensation of the
disturbance to enhance the system’s anti-disturbance ability. Besides, it can avoid the state violation.
The contributions of this paper are as follows :

(1) Based on an adaptive scaling strategy, an adaptive prescribed performance function is proposed.
The PPF can scale adaptively based on relevant state if the state violates the constraint. The
strategy can avoid the state violation. Furthermore, it can avoid a computational singularity and
the corresponding system divergence problem. Besides, we set some PPF structure parameters
according to the initial state error. It can make the parameter setting more flexible. In summary,
it can not only retain the advantage of PPC excellent dynamic performance, but also avoid the
problems caused by the state violation.

(2) The method of combining the PPC method and the dynamic surface control is adopted in this
paper to realise the design of the controller. It plays a role in enhancing system dynamic perfor-
mance. Meanwhile, a first-order filter is introduced to solve the problem of ‘explosion of terms’ in
the traditional backstepping control. Furthermore, a nonlinear disturbance observer is introduced
into the PPC framework, which makes up for the lack of system robustness. Finally, numerical
simulations are implemented to verify the effectiveness of the combined control method.

(3) For the constrained attitude control problem in this paper, by choosing the appropriate Lyapunov
function, the stability of the designed controller is proved. Furthermore, the constrained state
satisfies the PPF constraint we designed.

The organisational structure of this paper is as follows: in the second section, we give the modeling
assumptions and modeling process. The third section provides the controller design method and stability
proof based on the prescribed performance backstepping control. In the fourth section, the simulations
of tracking control are given, which verify the advantages of the control method. Finally, the method is
summarised in the fifth section.

2.0 Formulation
The tapered general-purpose winged-cone [25] is taken as the research object. The overall shape of the
winged-cone is a cone-shaped structure. Its front view and side view are shown in Fig. 1.

The front of the wing cone is equipped with canard wings, which can only be opened when flying at
low speed (subsonic state). When entering hypersonic flight, the canard will be inserted into the belly
of the wing cone to improve flight speed. When the winged-cone re-enters the atmosphere, the engine
shuts down and the flight only depends on elevons and rudder control to glide in the atmosphere.

Before establishing the HV dynamical model, we need to make corresponding assumptions according
to the flight characteristics of the HV to facilitate our subsequent modeling:

Assumption 1. Ignore the impact of the Earth’s rotation and treat the Earth as a sphere.

Assumption 2. Ignore the elastic characteristics of the body, wing and rudder surface, and consider
the HV as an ideal rigid body with uniform mass distribution.

Assumption 3. Ignore the impact of liquid fuel sloshing in the HV, and the mass of HV is considered
constant.
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Figure 1. Front and side views of the winged-cone.

In the reentry attitude control problem of the HV, we tend to pay the most attention to two groups of
states. They are attitude angle θ = (α, β,μ)T and attitude angular velocity ω= (q, r, p)T . The nonlinear
dynamical model of the HV used in this paper can be written as follows [25]:

α̇ = q − tan β(p cos α+ r sin α)+ −L + m0g cos γ cosμ

m0V cos β
+ dα

β̇ = p sin α − r cos α + Y + m0g cos γ sinμ

m0V
+ dβ

μ̇= p cos α+ r sin α

cos β
+ L(tan β + tan γ sinμ)+ Y tan γ cosμ− m0g cos γ tan β cosμ

m0V
+ dμ

q̇ = Jz − Jx

Jy

pr + m + xcg(D sin α + L cos α)

Jy

+ dq

ṙ = Jx − Jy

Jz

pq + n − xcgY

Jz

+ dr

ṗ = Jy − Jz

Jx

qr + l

Jx

+ dp (1)

where, α, β, μ respectively represent the angle-of-attack, angle of sideslip and angle of bank. q, r, p
respectively represent the angular rates of pitch, yaw and roll. γ represents flight path angle. Jx, Jy,
Jz are the rotational inertias of the body around three axes respectively. m0 and V are the mass and
velocity of the HV respectively. xcg represents the distance from the pressure centre to the mass center.
L, Y , D are the lift, lateral and drag force of the HV respectively. m, n, l are the pitch, yaw and roll
moment of the HV respectively. dα, dβ , dμ are the equivalent disturbance force of the HV model’s each
channel respectively. dq, dr, dp are the equivalent disturbance moment of the HV model’s each channel

respectively. g = g0

(
Re

Re + H

)2

, g0 is acceleration of gravity on the earth’s surface, Re is Earth radius,

H is the flight altitude.
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The aerodynamic forces and aerodynamic moments of the HV are expressed as follows :

L = CLq̄S

m = Cmq̄cS

Y = CYq̄S (2)
n = Cnq̄bS

D = CDq̄S

l = Clq̄bS

where, Ci (i = L, Y , D, m, n, l) represents the relevant force aerodynamic and moment aerodynamic coef-
ficient. q̄, c, b, S are the dynamic pressure, reference aerodynamic chord, wing span and reference area of
the HV respectively. Besides, q̄ = 1

2
ρV2, ρ = ρ0e− H

H0 , where ρ is atmospheric density, ρ0 is atmospheric
density on the earth’s surface, H0 is equivalent atmospheric scale height.

The aerodynamic coefficients’ composition are as follows [25]:

CL = CLα + CLδe + CLδa

CY = CYβ + CYδe + CYδa + CYδr

CD = CDα + CDδe + CDδa + CDδr

Cm = Cmα + Cmδe + Cmδa + Cmδr + Cmq

qc

2V
(3)

Cn = Cnββ + Cnδe + Cnδa + Cnδr + Cnp

pb

2V
+ Cnr

rb

2V

Cl = Clββ + Clδe + Clδa + Clδr + Clp

pb

2V
+ Clr

rb

2V

where, δe, δa, δr represent the left elevon angle, the right elevon angle and the rudder angle respectively.
The final actual control are the deflection angles of the HV. The control input is defined as U =

(δe, δa, δr)
T . In order to facilitate the subsequent controller design, Equation (1) is further sorted and

rewritten into an affine nonlinear form (without disturbances):

θ̇ = BδgsδU + fs(θ)+ gsω

ω̇= J−1gf δU + ff (ω) (4)

where, J−1 = diag{Jy
−1, Jz

−1, Jx
−1}. Bδ is the equivalent control force efficiency matrix. gs represents the

system state matrix of angle loop. The specific expression of matrix Bδ and gs are shown in Equations
(5 and 6):

Bδ = 1

m0V

⎛
⎜⎜⎜⎝

1

cos β
0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ (5)

gs =
⎛
⎜⎝

1 −sin α tan β −cos α tan β

0 −cos α sin α

0 sin α sec β cos α sec β

⎞
⎟⎠ (6)

where, fs(ω)=
(

fα fβ fμ
)T is a vector function of attitude angle. ff (ω)=

(
fq fr fp

)T is a vector
function of attitude angular velocity. The specific expression of vector function fs(ω) and ff (ω) are shown
in Equations (7 and 8):
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fα = −CLαq̄S + m0g cos γ cosμ

m0V cos β

fβ = −CYβ q̄S + m0g cos γ sinμ

m0V
(7)

fμ = CYβ q̄S cosμ+ CLαq̄S sinμ

m0V
tan γ + CLαq̄S − m0g cos γ cosμ

m0V
tan β

fq = Jz − Jx

Jy

pr +
q̄cS

(
Cmα + Cmq

qc

2V

)
+ xcgq̄S(CDα sin α + CLα cos α)

Jy

fr = Jx − Jy

Jz

pq +
q̄bS

(
Cnβ + Cnp

pb

2V
+ Cnr

rb

2V

)
− xcgq̄S CYβ

Jz

(8)

fp = Jy − Jz

Jx

qr +
q̄bS

(
Clβ + Clp

pb

2V
+ Clr

rb

2V

)
Jx

where, gsδ is the control matrix generated by deflection angle to attitude angle. gf δ is the control matrix
generated by deflection angle to attitude angular velocity. The specific expressions of matrix gsδ and gf δ

are shown in Equations (9 and 10):

gsδ = q̄s

⎛
⎜⎝

gαδe gαδa gαδr
gβδe gβδa gβδr
gμδe gμδa gμδr

⎞
⎟⎠ (9)

gf δ = q̄s

⎛
⎜⎝

gqδe gqδa gqδr

grδe grδa grδr

gpδe gpδa gpδr

⎞
⎟⎠ (10)

Equation (11) is the specific expression of variables in Equations (9 and 10):

gαδe = −Cδe

Lδe
; gβδe = Cδe

Yδe
; gμδe = Cδe

Yδe
tan γ cosμ+ Cδe

Lδe
(tan γ sinμ+ tan β) ;

gαδa = −Cδa

Lδa
; gβδa = Cδa

Yδa
; gμδa = Cδa

Yδa
tan γ cosμ+ Cδa

Lδa
(tan γ sinμ+ tan β) ;

gαδr = 0; gβδr = Cδr

Yδr
; gμδr = Cδr

Yδr
tan γ cosμ;

gqδe = cCδe

mδe
+ xcg

(
Cδe

Dδe
sin α + Cδe

Lδe
cos α

)
; grδe = bCδe

nδe
− xcgCδe

Yδe
; gpδe = bCδe

lδe
; (11)

gqδa = cCδa

mδa
+ xcg

(
Cδa

Dδa
sin α + Cδa

Lδa
cos α

)
; grδa = bCδa

nδa
− xcgCδa

Yδa
; gpδa = bCδa

lδa
;

gqδr = cCδr

mδr
+ xcgC

δr

Dδr
sin α; grδr = bCδr

nδr
− xcgCδr

Yδr
; gpδr = bCδr

lδr
;

The BδgsδU and fs(θ) in the Equation (4) are small quantities, and consider the existence of distur-
bances and unmodeled dynamics. In order to facilitate the subsequent controller design, Equation (4) is
further rewritten. These small quantities and unmodeled dynamics are treated as internal disturbances
of the model, and the final affine nonlinear model can be written as follows :

θ̇ = gsω+	s

ω̇= gf U + ff (ω)+	f (12)
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Figure 2. Control system structure block diagram.

where, gf = J−1gf δ. 	s = BδgsδU + fs(θ)+ D1. 	f = J−1Mδ + D2. D1 and D2 are the sum of external
disturbances and other internal disturbances such as system uncertainty and unmodeled dynamics,
D1, D2 ∈ R3×1.

3.0 Controller design
3.1 Prescribed performance control structure
The design method of the prescribed performance controller is as follows. First, the PPF is designed
to constrain the state, and then the corresponding control strategy is proposed for the constrained state.
The control performance of the system can be guaranteed. In order to obtain the better comprehensive
performance of angle tracking control, the PPC structure is adopted in the outer loop. The error transfor-
mation function in the outer loop is used to transform the actual control error into virtual error. Then a
dynamic surface controller is designed for the virtual error to ensure the boundedness of the transformed
system error. Finally, design the relevant dynamic surface controller in the inner loop.

In this section, the method of unconstrained translation of state under homeomorphic mapping is
adopted. It can transform the constrained state control problem into a new unconstrained state control
problem. The whole system control structure is shown in Fig. 2.

3.1.1 General PPF and error transformation form
The controlled state is generally taken as error e(t) in the prescribed performance tracking control. In
most current researches related to the PPC method [26–28], the PPF is usually used:

ρ(t)= k(ρ0 − ρ∞) e−λt + ρ∞ (13)

where, ρ0 represents the initial error limit, ρ∞ represents the steady-state error limit, λ represents the
error convergence rate limit, which can be designed manually. ρ(t) satisfies limt→∞ρ(t)= ρ∞ with ρ0 >

ρ∞ > 0. k is the scaling coefficient, and the default value is 1. Then, e(t) satisfies:

−Lρ(t)≤ ei(t)≤ Uρ(t) (14)

Generally, the unconstrained error transformation function is chosen as follows:

εi(t)= 1

2
ln

(
LU + Uxi(t)

LU − Lxi(t)

)

xi(t)= ei(t)

ρ(t)
(15)

where, εi(t) ∈ R(i = 1, 2, 3) is the unconstrained virtual error after conversion. ei(t) ∈ R(i = 1, 2, 3) is
the actual error.
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Figure 3. PPF curve.

In view of the Equation (15), taking the derivative of ε(t)= [ε1 (t) , ε2 (t) , ε3 (t)]
T with respect to

time, we can obtain

ε̇(t)= Tdė(t)+ Tc (16)

Tdi =
1

xi(t)+ L
− 1

xi(t)− U
2ρ(t)

(i = 1, 2, 3) (17)

Tci = −Tdi

ei(t) ρ̇(t)

ρ(t)
(i = 1, 2, 3) (18)

where, Td = diag(Td1, Td2, Td3), Tc = [Tc1, Tc2, Tc3]T . L and U represent the upper and lower error over-
shoot constraint coefficients, with the range of (0, 1). An example of PPF curve form is shown in Fig. 3
(L = U = 1).

3.1.2 PPF with adaptive scaling strategy
Due to the disturbances of the system and drastic changes of reference command, the tracking error may
suddenly become large and violate the constraint. In Equation (15), the unconstrained virtual state will
result in a computational singularity, even a system divergence caused by the error violation. Therefore,
this section proposes a PPC method with an adaptive scaling strategy. The scheme provides a PPF that
can adjust adaptively if the tracking error violation occurs. It can ensure that the tracking error no longer
violates the constraint through adaptive expansion.

In addition, the PPF structural parameters ρ0 is set according to the initial error size, l, ψ1 and ψ2

are the constant parameters we can design. It can make the PPF structural parameters to be set more
flexible.

Besides, a periodic scaling scheme is adopted. It can avoid the buffeting effect of the control response
caused by frequent PPF scaling. According to the above scheme, the adaptive scaling PPF can be realised.
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We summarise the implementation of adaptive scaling strategy in Algorithm 1.

Algorithm 1 The implementation of adaptive scaling strategy.
Initialisation:
1. Initialise the scaling coefficient k = k̄ = 1, the flag variable F1 = F2 = 0. Set ρ0 = l · |e0| +ψ1,
ρ∞ =ψ2.
2. Initialise the states parameters.
3. Calculate the initial PPF.
Iteration:
Step 1. Judge whether −Lρ(t) < e(t) <Uρ(t). If satisfied, F1 = 0, else F1 = 1.
Step 2. if (F1 == 0) & & (F2 == 0)

then k = 1; k̄ = 1; goto Step 6;
else if (F1 == 0) & & (F2 == 1)

then k̄ = 1; goto Step 6;
else if F1 == 1

then goto Step 3;
end.
Step 3. If |ė(t)| ≤ tan (ϑ)

then k =
(

1 + tanh

( |e(t)|
h

))
· k̄; k̄ = k;

else if |ė(t)|> tan(ϑ)

then k =
(

1 + |ė(t)| · tanh

( |e(t)|
h

))
· k̄; k̄ = k;

end
Step 4. Repeat Step 1.

If F1 == 0
then goto Step 5;
else if F1 == 1

then goto Step 3;
end
Step 5. Update the PPF and lock the scaling coefficient k for time T . During the period of T , set the
F2 = 1.
Step 6. Update the unconstrained error ε(t), the control and flight states.

Substituting the coefficients k, ρ0 and ρ∞ of Algorithm 1 into the Equations (13–18), then we can
get the new ε, Td and Tc. Therefore, according to the PPC principle, as long as we design the controller
to ensure that the virtual error ε is bounded, the tracking error of the original system will satisfy the
constraint performance −Lρ(t)≤ ei(t)≤ Uρ(t) we designed.

Remark 1. The Algorithm 1 includes the PPF of expanding and resuming. If the signal of the tracking
error violation occurs, the PPF is adaptively expanded according to the angle error and angle error
change rate, where h is the sensitivity coefficient. ϑ represents the error trend angle of the scaling point,
while tan(ϑ) corresponds to the error derivative of the scaling point. By adjusting the appropriate ϑ ,
we can obtain two types of scaling. We hope that the expanded PPF can reasonably cover the error
changes. Expansion methods based on error and error change rate are more predictive and reasonable.
Too frequent or excessive expansion is detrimental to the tracking performance of the system. Compared
to arbitrary expansion methods, this scheme can ensure the use of reasonable expansion times and
degrees. Based on the angle error and angle error change rate, we can design two expansion schemes
with different degrees of conservatism. It will guarantee as proper times and degrees of expansion as
possible.
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Remark 2. The expansion in algorithm1 has high priority. As long as the tracking error violation
occurs at any time, the expansion in the Algorithm 1 will be triggered and the expansion coefficient will
be locked. Once triggered, the scaling coefficient will be locked and maintained for time T . At the end
of the time T , the algorithm can recover to normal PPF (k = 1) immediately after judging no violation.
If the tracking error still violates the constraint after expanding, it can still expand according to the
previous expansion until no violation, and so on. The setting of T ensures the buffer effect of PPF’s
expansion after the violation.

Remark 3. PPF structure parameter ρ0 is set to ρ0 = l · |e0| +ψ1. In this way, it is associated with the
initial error and become more flexible. By adding a set of smaller constants ψ1 and ψ2 as constraints,
it can avoid PPF being too tight and causing frequent state violation.

3.2 Disturbance observer
Considering the uncertainties and disturbances in Equation (12), the controller own robustness cannot
effectively resist the disturbance. So a nonlinear disturbance observer (NDO) is adopted to observe and
compensate the disturbance [29], making the system more robust.

Lemma 1. [29] Consider the following system:

ẋ1 = x2

ẋ2 = F(x1, x2) (19)

where x1, x2 ∈ R1×1. If system (19) satisfies the conditions of x1(t)→ 0, x2(t)→ 0(t → ∞), then for any
arbitrary continuous bounded function v(t), T > 0 and Q> 0, the solution of the following system:

ẋ1 = x2

ẋ2 = Q2F

(
x1 − v(t) ,

x2

Q

)
(20)

satisfies:

lim
Q→∞

∫ T

0

|x1 − v(t)| dt = 0 (21)

Lemma 1 indicates that if Q is selected to be sufficient large, then x1 averagely converges to the input
signal v(t) and x2 weakly converges to the generalised differentiation of v̇(t).

Theorem 1. Consider the following system:

ẋ1 = x2

ẋ2 = Q2

(
−h1 tanh(x1)− h2 tanh

(
x2

Q

))
(22)

where, x1, x2, h1, h2, Q ∈ R1×1. Define the candidate Lyapunov function as follows:

V1 =
∫ x1

0

Q2h1 tanh(ξ) dξ + 1

2
x2

2 (23)

The derivative of Equation (23) can be obtained,

V̇1 = h1Q
2 tanh(x1) x2 + x2ẋ2

= −h2Q2 tanh

(
x2

Q

)
x2 (24)

≤ 0
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Therefore, when h1, h2 > 0, the system is asymptotically stable at (0, 0). The F(x1, x2) we selected
satisfies the Lemma 1.

Now, consider the system as follows :

ż = f (z)+ g(z) u + d (25)

where, z ∈ Rn×1 is the state, f (z) ∈ Rn×1 and g(z) ∈ Rn×n are continuous functions, u ∈ Rn×1 is the control
quantity, d ∈ Rn×1 is the sum of unmodeled dynamics and disturbances.

Theorem 2. [29] Consider the following system:

˙̂z = f (z)+ g(z) u + d̂

˙̂d = Q2

(
−h1 tanh

(
ẑ − z

)− h2 tanh

(
d̂

Q

))
(26)

where, ẑ and d̂ are the estimates of z and d. h1, h2, Q ∈ R1×1 represent adjustable observer parameters.
If T > 0 and Q> 0, the

lim
Q→∞

∫ T

0

∣∣ẑ − z
∣∣ dt = 0 (27)

holds true, it means that ẑ approaches z. Furthermore, based on Equations (25 and 26), we can obtain
that d̂ → d.

According to Theorem 1 and Lemma 1, it can be seen that the value of
∣∣∣ ˙̂d∣∣∣= ∣∣∣Q2F

(
ẑ − z, d̂

Q

)∣∣∣ may be

infinitely large when Q → ∞. It denotes that d̂ varies much faster than f (z)+ g(z) u. Then we have

lim
Q→∞

d
(

f (z)+ g(z) u + d̂
)

dt
≈ ˙̂d (28)

lim
Q→∞

f (z)+ g(z) u + d̂

Q
≈ d̂

Q
(29)

Then, replacing x2 in Equation (20) by f (z)+ g(z) u + d̂, the Equations (26 and 27) always hold true.

Assumption 4. [30] The d and ḋ are bounded. Based on this assumption, the system disturbance could
be observed. Thus all of the continuous and bounded system disturbances satisfy this assumption. The
stability analysis of disturbance estimation is feasible.

Remark 4. [31] Although only when Q → ∞ one can get d̂ → d in theory. Simulation studies show
that an effective estimation performance can be also obtained using the proposed NDO (26) by choosing
a finite Q. d̂ → d can still converge to a small convergence domain.

Remark 5. The parameter analysis of the NDO is as follows: Q, h1 and h2 are related to the conver-
gence speed and convergence accuracy. Increasing Q or h1 will improve the convergence speed and
convergence accuracy, but an excessively large Q or h1 will increase the high-frequency oscillation
during convergence process; h2 has the opposite effect. Increasing h2 is beneficial for suppressing high
frequency oscillation, but excessive h2 can slow down convergence speed and reduce accuracy. The
parameter tuning process is as follows: First, select a large Q as the dominant factor. Second, select
a small h1 to continue to fine-tune the system. Last, select a small h2 to suppress the high frequency
oscillation during convergence process. We provide the effectiveness verification of NDO in section 4.
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According to the above analysis, combing the nonlinear model (12), we can write the disturbance
observer model in the form of (30–31) :

˙̂
θ = gsω+ 	̂s

˙̂
	s = Rs

2

(
−hs1 tanh

(
θ̂ − θ

)
− hs2 tanh

(
	̂s

Rs

))
(30)

˙̂ω= gf U + ff (ω)+ 	̂f

˙̂
	f = Rf

2

(
−hf 1 tanh

(
ω̂−ω

)− hf 2 tanh

(
	̂f

Rf

))
(31)

where, θ̂ , ω̂, 	̂s, 	̂f are the estimated values of θ , ω, 	s, 	f . In addition, we define θ̃ = θ̂ − θ , ω̃=
ω̂−ω, 	̃s = 	̂s −	s, 	̃f = 	̂f −	f as the corresponding estimation errors of NDO. By designing and
adjusting the appropriate parameter Rs, hs1, hs2, Rf , hf 1, hf 2, we can ensure that the estimation errors
satisfy ‖θ̃‖< θ̄ , ‖ω̃‖< ω̄, ‖	̃s‖< 	̄s, ‖	̃f ‖< 	̄f . θ̄ , ω̄, 	̄s and 	̄f are their upper bounds.

3.3 Design of prescribed performance dynamic surface controller
Step 1: Define the first dynamic surface S1 = ε and error e1 = θ − θd. θd ∈ R3×1 is the given command
angle. Combined with the Equations (16–18), we can get the derivative of S1 as follows:

ė1 = gsω+	s − θ̇d

Ṡ1 = Tdė1 + Tc (32)

According to method of dynamic surface controller, the virtual control law ω1 is proposed as:

ω1 = gs
−1
(
θ̇d − 	̂s − Td

−1Tc − C1S1

)
(33)

where, C1 = diag(C11, C12, C13). C11, C12, C13 are positive constants.
Next, in order to avoid the complexity, let ω1 pass through a first-order filter with time constant τ ,

given by:

τ ω̇d +ωd =ω1,ωd(0)=ω1(0) (34)

Within this setting, ω̇d can be calculated by
(ω1 −ωd)

τ
without direct differential operation of ωd.

Further, the error of the low filter is defined as:

σ =ωd −ω1 (35)

Step 2: Define the second dynamic surface S2 =ω−ωd. Taking the derivative of S2 with respect to
time yields:

Ṡ2 = ω̇− ω̇d (36)

Consider the candidate Lyapunov function as :

V2 = 1

2
S1

TS1 + 1

2
S2

TS2 + 1

2
σ Tσ (37)
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The derivative of V2 can be written as :

V̇2 = S1
T Ṡ1 + S2

T Ṡ2 + σ T σ̇

= S1
T
(Tdė1 + Tc)+ S2

T
(
gf U + ff (ω)+	f − ω̇d

)+ σ T σ̇

= S1
T
(
Td

(
gsσ + gsS2 + gsω1 +	s − θ̇d

)+ Tc

)
+ S2

T
(
gf U + ff (ω)+	f − ω̇d

)+ σ T σ̇

= S1
T
(

Td

(
−	̃s + gsS2 + gsσ − C1S1

))
(38)

+ S2
T
(
gf U + ff (ω)+	f − ω̇d

)+ σ T σ̇

= −(TdS1)
T
	̃s + S1

T
(TdgsS2)+ S1

T
(Tdgsσ)

− S1
T
(TdC1) S1 + S2

T
(
gf U + ff (ω)+	f − ω̇d

)+ σ T σ̇

To stabilise V2, the control law U is proposed as:

U = gf
−1

(
−ff − 	̂f + ω̇d − TdgsS1 − C2S2 − S1

T
(Tdgsσ) S2

‖S2‖2 − Tdgs
TS1

)
(39)

where, C2 = diag(C21, C22, C23). C21, C22, C23 are positive constants.
Combining the disturbance observer form designed by Equations (30 and 31) and substituting the

Equations (33) and (39) into Equation (38), we can get :

V̇2 = −(TdS1)
T
	̃s + S1

T
(Tdgsσ)− S1

T
(TdC1) S1

− S2
T	̃f − S2

TC2S2 + σ T σ̇ (40)

According to the well-known Young’s inequality [32], we can obtain the following inequality:

−(TdS1)
T
	̃s ≤ χ1

2
(TdS1)

T
(TdS1)+ 1

2χ1

	̃T
s 	̃s (41)

−S2
T	̃f ≤ χ2

2
S2

TS2 + 1

2χ2

	̃T
f 	̃f (42)

where χ1 and χ2 is a positive tuning parameter. Then, we have

V̇2 ≤ χ1

2
(TdS1)

T
(TdS1)+ 1

2χ1

	̃T
s 	̃s + χ1

2
S2

TS2

+ 1

2χ1

	̃T
f 	̃f − S1

T
(TdC1) S1 − S2

TC2S2 + σ T σ̇ (43)

Integrating the Equations (34 and 35), we have

σ T σ̇ = σ T
(
−σ
τ

− ω̇1

)

= − 1

τ
σ Tσ − σ Tω̇1 (44)

Lemma 2. [33] The virtual control law ω1 is bounded and satisfies: ‖ω̇1‖ ≤ η, η is a nonnegative
continuous function.
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Therefore, according to the Lemma 2 and Young’s inequality, we can obtain the following inequality:

σ T σ̇ = − 1

τ
σ Tσ − σ Tω̇1

≤ − 1

τ
σ Tσ + χ3

2
σ Tσ + 1

2χ3

ω̇T
1 ω̇1 (45)

≤
(
χ3

2
− 1

τ

)
σ Tσ + η2

2χ3

where χ3 is a positive tuning parameter.
Integrating the Equations (43) and (45), V̇2 satisfies the following inequality :

V̇2 ≤ χ1

2
(TdS1)

T
(TdS1)+ 1

2χ1

	̃T
s 	̃s − S1

T
(TdC1) S1 + χ2

2
S2

TS2

+ 1

2χ2

	̃T
f 	̃f − S2

TC2S2 +
(
χ3

2
− 1

τ

)
σ Tσ + η2

2χ3

= −S1
T
[
Td

(
C1 − χ1

2
Td

)]
S1 + 1

2χ1

‖	̃s‖2 − ST
2

(
C2 − χ2

2
· I3×3

)
S2 (46)

+ 1

2χ2

‖	̃f ‖2 −
(

1

τ
− χ3

2

)
σ Tσ + η2

2χ3

Let M1 = 1
2χ1

‖	̃s‖2
, M2 = 1

2χ2
‖	̃f ‖2

, M3 = η2

2χ3

. They are satisfied:

M1 <
1

2χ1

	̄2
s

M2 <
1

2χ2

	̄2
f (47)

Consider �=
{(

S1, S2, σ , 	̃s, 	̃f

)
:V2 ≤ p

}
is a compact set. Thereby, η has a maximum value η̄ on

�. let M = 1

2χ1

	̄2
s + 1

2χ2

	̄2
f + η̄2

2χ3

, which leads to

V̇2 ≤ −S1
T
[
Td

(
C1 − χ1

2
Td

)]
S1 + M1 − ST

2

(
C2 − χ2

2
· I3×3

)
S2 + M2 −

(
1

τ
− χ3

2

)
σ Tσ + M3

≤ −S1
T
[
Td

(
C1 − χ1

2
Td

)]
S1 − ST

2

(
C2 − χ2

2
· I3×3

)
S2 −

(
1

τ
− χ3

2

)
σ Tσ + M (48)

Lemma 3. [32] ζminXTX ≤ XTAX ≤ ζmaxXTX, A ∈ Rn×n is a real symmetric matrix. ζmin and ζmax are the
minimum and maximum eigenvalues of matrix A. X ∈ Rn×1 is the arbitrary matrix.

According to the Lemma 3, by choosing appropriate parameters c1, c2, τ , χ1, χ2, χ3 and define

A =
(

TdC1 − χ1

2
Td

TTd

)
, B =

(
C2 − χ2

2
· I3×3

)
, C =

(
1

τ
− χ3

2

)
as real symmetric matrixs. Then V̇2 is

satisfied:

V̇2 ≤ −ζ1S1
TS1 − ζ2S2

TS2 − ζ3σ
Tσ + M

≤ −ζS1
TS1 − ζS2

TS2 − ζσ Tσ + M (49)
≤ −2ζV2 + M

where, ζ1, ζ2, ζ3 are the positive minimum eigenvalues of the real symmetric matrixs A, B, C. ζ =
min {ζ1, ζ2, ζ3}.
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Table 1. HV and environment parameters

Variables Symbols Value
Mass m 63,500 kg
Reference aerodynamic chord c 24.38m
Wing span b 18.29m
Reference area S 334.73m2

x-axis moment of inertia Jx 637,234 kg · m2

y-axis moment of inertia Jy 6,101,181 kg · m2

z-axis moment of inertia Jz 6,101,181 kg · m2

The distance from the pressure centre to the mass centre xcg 4.467m
Acceleration of gravity coefficient g0 9.8m/s2

Earth radius at the poles Re 6356.766km
Atmospheric density coefficient ρ0 1.226kg/m3

Equivalent atmospheric scale height H0 7315.2m
Flight path angle γ 0 rad
Flight velocity V 4,590 m/s
Flight altitude (Distance from sea level) H 33km

By comparison principle, it is easy from Equation (49) to obtain that

V2 ≤ M

2ζ
+
(

V2 (0)− M

2ζ

)
e−2ζ t (50)

According to (50), if 2ζ ≥ M

p
, then we have V̇2 ≤ 0 and V2 ≤ p is an invariant set. Therefore, if

V2 (0)≤ p, then V2 (t)≤ p, for all t> 0. In addition, S1, S2, σ are all semi-globally uniformly ulti-
mately bounded. By choosing proper ζ , and the convergence bound can be set as small as possible.
Furthermore, the unconstrained error is bounded. According to the previous conclusion, e1 can also
meet the prescribed performance requirements.

4.0 Numerical simulations
This section will use the control laws in Equations (33 and 34) and (39), disturbance estimations
Equations (30 and 31) for simulation verification and analysis. The simulation verification of the com-
mand tracking with continuous time-varying external disturbances and other uncertain parameters are
implemented.

The parameters of HV model in this paper are shown in Table 1.
The parameters of controller and disturbance observer in this paper are shown in Table 2.
The parameters related to the adaptive scaling strategy are shown in Table 3.
The HV uncertainty model and the time-varying external disturbances (apply within 20s–30s) are

shown in Table 4.
We take the attitude control problem of HV longitudinal channel as an example. We focus on the

angle-of-attack simulation results. The 6-degree of freedom simulations are implemented. The com-
mand angle of sideslip and command angle of bank are set to fixed 0 (rad). In the simulation, we set the
initial angle θ = [0.14, 0, 0]T

(rad), initial angle velocityω= [0, 0, 0]T
(rad/s). Besides, considering the

limit of the elevons, we set |δ| ≤ 20◦.
Due to the inability to provide explicit forms of system disturbances in the model of HV. Therefore, it

is difficult to provide a comparison chart between the disturbance terms and NDO observation results. So
the observation effect of NDO on system disturbances is verified here through the simple system shown
as Equation (25). The specific form is shown in Equation (51). The disturbance estimation method is
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Table 2. Controller and disturbance observer parameters

Components Numerical value
Outer loop control law C1 = diag(2, 2, 2)

Outer loop disturbance observer Rs = 60, hs1 = 1,
hs2 = 0.8

Inner loop control law C2 = diag(1, 1, 1),
τ = 0.005

Inner loop disturbance observer Rf = 60, hf 1 = 1,
hf 2 = 0.8

Table 3. Relevant parameters of adaptive scaling strategy

Components Numerical value
L = U = 1,

Relevant parameters of λ= 0.1, l = 1.1,
adaptive scaling strategy ψ1 = 1, ψ2 = 0.8,

T = 2, h = 6, ϑ = π

2

Table 4. Uncertainty and disturbances parameters

Components Numerical value
	CL 10%

	Cm 10%

	q̄(Dynamic pressure) 10%

dα, dq (Small disturbance) 0.01sin (0.5t)+ 0.01sin (t)+
0.01sin (1.5t)+ 0.01sin (2t)

dα, dq (Large disturbance) 0.1sin (0.5t)+ 0.1sin (t)+
0.1sin (1.5t)+ 0.1sin (2t)

shown as Equation (26). The selected NDO parameters are also shown as Q = 60, h1 = 1, h2 = 0.8.

ż = f (z)+ g(z)U + d

zd = sin(t)

U = g−1 (z)
[
−10(z − zd)− f (z)− d̂ + żd

]
(51)

f (z)= z2 + z + 2 sin (z)+ 1

g(z)= 10

where, the given test disturbance is set to 0.1sin(0.5t)+ 0.1sin (t)+ 0.1sin (1.5t)+ 0.1sin (2t).
Figure 4(a–d) show the relevant test results of NDO.

Comparing with the dynamic surface control method under observer compensation (DSC-NDO, the
green line in Figs. 5(b) and 6(b)) and the prescribed performance sliding mode control method (PPSMC,
the red line in Figs. 5(b) and 6(b)) to verify the advantages of the proposed method (IPPDSC-NDO, the
blue line in Figs. 5(b) and 6(b), the black line in Fig. 7). To prove the effectiveness of adaptive scaling
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Figure 4. Simulation results of the NDO.

strategy, the method in this paper is also compared with the scheme without applying the adaptive scaling
strategy (PPDSC-NDO, the red line in Fig. 7).

4.1 Simulation results of the NDO
Figure 4(b, c) show the estimation effect of the NDO on disturbance. The disturbance estimation error is
shown in Fig. 4(c), and it is bounded. The tracking effect of the given is shown in Fig. 4(a). Figure 4(d)
shows the control quantity. Therefore, the NDO can be used to estimate the disturbance of the attitude
control system.

4.2 Simulation results with uncertainties and small external disturbances
Figure 5(a, b) show that the proposed method has better control effect than other method under small
external disturbances and uncertainties. Figure 5(c–e) show the other states simulation results of the
proposed method. The elevons are shown in Fig. 5(c). The disturbance estimations are shown in Fig. 5(d).
The virtual error of the angle-of-attack is shown in Fig. 5(e), and it is bounded.

Compared with the DSC-NDO and PPSMC, it has smaller overshoot and better transient response.
Besides, it has no buffeting effect.

4.3 Simulation results with uncertainties and large external disturbances
Figure 6(a, b) show that the proposed method still has better control effect than other methods under
large external disturbances and uncertainties. Figure 6(c–f) show the other states simulation results of
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Figure 5. Simulation results with uncertainties and small external disturbances.

the proposed method. The elevons of the proposed method are shown in Fig. 6(c). The disturbance
estimations are shown in Fig. 6(d). The virtual error of the angle-of-attack is shown in Fig. 6(e), and it
is also bounded. The change of the scaling coefficient is shown in Fig. 6(f).

It can be seen from the Fig. 6(b) that the PPSMC has diverged and cannot complete the stability
control of the system. Although the dynamic surface control method with observer compensation has
achieved stable control, its overshoot and transient response are significantly weaker than the control
method proposed in this paper. Besides, it can be seen that the system expanded the PPF at 25.86s, 26.24s
and returned to normal at 28.24s, verifying the high priority of the Algorithm 1. Under this method, we
can see that the error (blue line) doesn’t violate the constraint with a proper expansion. The extent of
expansion is also reasonable. Therefore, compared with other methods, the control method proposed in
this paper can not only ensure excellent dynamic performance, but also have strong robustness.
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Figure 6. Simulation results with uncertainties and large external disturbances.

4.4 Simulation results with and without adaptive scaling strategy under uncertainties and large
external disturbances

Under large external disturbances and uncertainties, the strategy proposed in this paper plays an impor-
tant role in Fig. 7. It can ensure the stability of the system by adaptively adjusting the constraint of
PPF, while the non-strategy control appears divergent phenomenon. Therefore, it further verifies the
effectiveness of the control method and the adaptive scaling strategy proposed in this paper.

This paper mainly investigates the constrained attitude control problem of HVs under large distur-
bances and uncertainties. Although the method proposed in this paper takes the attitude control of HV
as an example, we believe that it can also be used in other fields; for example, the control problem
of near-space vehicle and the industrial control problem of complex working conditions. The research
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Figure 7. Simulation results with and without adaptive scaling strategy under uncertainties and large
external disturbances.

background of these issues often has strong uncertainties and disturbances, which is consistent with the
research background of this paper. We hope this method can have a certain promotional effect.

5.0 Conclusion
This paper proposes an improved prescribed performance dynamic surface control method with an adap-
tive scaling strategy. This method achieves good tracking control of the HV attitude command angle.
Compared with the traditional PPF, the PPF designed in this paper can scale adaptively according to the
relevant state and avoid the tracking error violation. In addition, a NDO is introduced to enhance the
robustness of the system. Thus, based on the PPC framework and NDO, it improves both robustness and
dynamic performance of the system. Finally, the numerical simulation results verify the effectiveness of
the control method we design.

Acknowledgments. The authors would like to express their sincere gratitude for the support of the National Natural Science
Foundation of China (Grant/Award Numbers: 61873319).

References
[1] Xu B. and Shi Z.K. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inf. Sci.,

2015, 58, (7), pp 1–19.
[2] Ding Y.B., Yue X.K., Chen G.S. and Si J.S. Review of control and guidance technology on hypersonic vehicle. Chin. J.

Aeronaut., 2022, 35, (7), pp 1–18.
[3] Sun H.B., Li S.H., Yang J. and Guo L. Non-linear disturbance observer-based back-stepping control for airbreathing

hypersonic vehicles with mismatched disturbances. Chin. J. Aeronaut., 2014, 8, (17), pp 1852–1865.
[4] An H., Liu J.X., Wang C.H. and Wu L.G. Approximate back-stepping fault-tolerant control of the flexible air-breathing

hypersonic vehicle. IEEE/ASME Trans. Mechatron., 2015, 21, (3), pp 1680–1691.
[5] Zong Q., Wang F., Tian B.L. and Su R. Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic

vehicle with input constraints and uncertainty. Nonlinear Dyn., 2014, 78, pp 289–315.

https://doi.org/10.1017/aer.2023.79 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.79


The Aeronautical Journal 895

[6] Sagliano M., Mooij E. and Theil S. Adaptive disturbance-based high-order sliding-mode control for hypersonic-entry
vehicles. J. Guid. Control Dyn., 2017, 40, (3), pp 521–536.

[7] Sun H.B., Li S.H. and Sun C.Y. Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn., 2013, 73,
pp 229–244.

[8] Sun H.B., Li S.H., Sun C.Y. and Wu L.G. Robust adaptive integral-sliding-mode fault-tolerant control for airbreathing
hypersonic vehicles. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng., 2012, 226, (10), pp 1344–1355.

[9] Yang J., Li S.H., Sun C.Y. and Guo L. Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic
vehicles. IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (2), pp 1263–1275.

[10] Zhu P., Jiang J. and Yu C. Fault-tolerant control of hypersonic vehicles based on fast fault observer under actuator gain loss
fault or stuck fault. Aeronaut. J., 2020, 124, (1278), pp 1190–1207.

[11] Yun Y., Tang S. and Guo J. Smooth adaptive fixed time convergent controller design for BTT missiles with uncertainties.
Aeronaut. J., 2020, 124, (1273), pp 323–345.

[12] Han X., Liu L., Fan H.J. and Cheng Z.T. Robust approximate optimal control for air-breathing hypersonic vehicle. Int. J.
Robust Nonlinear Control, 2023, 33, (7), pp 4117–4140.

[13] Ilchmann A., Ryan E.P., Sangwin C.J. and Guo L. Tracking with prescribed transient behaviour. ESAIM: Control Opt. Calc.
Var., 2002, 7, pp 471–493.

[14] Bechlioulis C.P., Rovithakis G.A., Sun C.Y. and Guo L. Robust adaptive control of feedback linearizable MIMO nonlinear
systems with prescribed performance. IEEE Trans. Autom. Control, 2008, 53, (9), pp 2090–2099.

[15] Shao X.D., Hu Q.L., Shi Y. and Jiang B.Y. Fault-tolerant prescribed performance attitude tracking control for spacecraft
under input saturation. IEEE Trans. Control Syst. Technol., 2018, 28, (2), pp 574–582.

[16] Gao S.H., Liu X.P., Jing Y.W. and Dimirovski G.M. A novel finite-time prescribed performance control scheme for spacecraft
attitude tracking. Aerosp. Sci. Technol., 2021, 118, pp 107044.

[17] Hua C.C., Chen J.N., Guan X.P. and Dimirovski G.M. Adaptive prescribed performance control of QUAVs with unknown
time-varying payload and wind gust disturbance. J. Franklin Inst., 2018, 355, (14), pp 6323–6338.

[18] Bechlioulis C.P. and Rovithakis G.A. Decentralized robust synchronization of unknown high order nonlinear multi-agent
systems with prescribed transient and steady state performance. IEEE Trans. Autom. Control, 2016, 62, (1), pp 123–134.

[19] Bechlioulis C.P. and Rovithakis G.A. Prescribed performance adaptive control for multi-input multi-output affine in the
control nonlinear systems. IEEE Trans. Autom. Control, 2010, 55, (5), pp 1220–1226.

[20] Bu X.W., Wu X.Y., Zhu F.J., Huang J.Q., Ma Z. and Zhang R. Novel prescribed performance neural control of a flexible
air-breathing hypersonic vehicle with unknown initial errors. ISA Trans., 2015, 59, pp 149–159.

[21] Bu X.W., Qi Q., Jiang B. and Huang J.Q. A simplified finite-time Fuzzy neural controller with prescribed performance
applied to Waverider aircraft. IEEE Trans. Fuzzy Syst., 2022, 30, (7), pp 2529–2537.

[22] Wei C.S., Luo J.J., Yin Z.Y. and Yuan J.P. Leader-following consensus of second-order multi-agent systems with arbitrarily
appointed-time prescribed performance, IET Control Theory Appl., 2018, 12, (16), pp 2276–2286.

[23] Liu Y., Li G., Li Y.C. and Wu Y.H. Novel prescribed performance control scheme for flexible hypersonic flight vehicles with
nonaffine dynamics and neural approximation. Int. J. Aerosp. Eng., 2021, 13, pp 1–14.

[24] Zhu S.P., Xu T., Wei C.S. and Wang Z. Learning-based adaptive fault tolerant control for hypersonic flight vehicles with
abrupt actuator faults and finite time prescribed tracking performance. Eur. J. Control, 2021, 58, pp 17–26.

[25] Keshmiri S., Colgren R., Mirmirani M. and Bai R.Y. Six DoF nonlinear equations of motion for a generic hypersonic vehicle.
AIAA Atmospheric Flight Mech. Conf. Exhibit, 20 August - 23 August, 2007, Hilton Head, South Carolina, America.

[26] Zhang C., Ma G.F., Sun Y.C. and Li C.J. Simple model-free attitude control design for flexible spacecraft with prescribed
performance. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng., 2019, 233, (8), pp 2760–2771.

[27] Wang W. and Wen C.Y. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed
transient performance. Automatica, 2010, 46, (12), pp 2082–2091.

[28] Bu X.W. Guaranteeing prescribed performance for air-breathing hypersonic vehicles via an adaptive non-affine tracking
controller. Acta Astronaut., 2018, 151, pp 368–379.

[29] Bu X.W., Wu X.Y., Chen Y.X. and Bai R.Y. Design of a class of new nonlinear disturbance observers based on tracking
differentiators for uncertain dynamic systems. Int. J. Control Autom. Syst., 2015, 13, (3), pp 595–602.

[30] Hao F., Zhang D., Cao L. and Tang S. Disturbance decoupling control for flexible air-breathing hypersonic vehicles with
mismatched condition. Asian J. Control, 2019, 21, (3) pp 1100–1110.

[31] Bu X.W., Wu X.Y., Zhang R., Ma Z. and Huang J.Q. Tracking differentiator design for the robust backstepping control of a
flexible air-breathing hypersonic vehicle. J. Franklin Inst., 2015, 352, (4) pp 1739–1765.

[32] Hu Q.L., Shi Y.X. and Shao X.D. Adaptive fault-tolerant attitude control for satellite reorientation under input saturation.
Aerosp. Sci. Technol., 2018, 78, pp 171–182.

[33] Hou M.Z., Liang X.L., Duan G.R. and Bai R.Y. Adaptive block dynamic surface control for integrated missile guidance and
autopilot. Chin. J. Aeronaut., 2013, 26, (3) pp 741–750.

Cite this article: Yin Z.Y., Wang B., Xiong R.T., Xiang Z., Liu L., Fan H.J. and Xue C.L. (2024). Attitude tracking control
of hypersonic vehicle based on an improved prescribed performance dynamic surface control. The Aeronautical Journal, 128,
875–895. https://doi.org/10.1017/aer.2023.79

https://doi.org/10.1017/aer.2023.79 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.79
https://doi.org/10.1017/aer.2023.79

	Introduction
	Formulation
	Controller design
	Prescribed performance control structure
	General PPF and error transformation form
	PPF with adaptive scaling strategy

	Disturbance observer
	Design of prescribed performance dynamic surface controller

	Numerical simulations
	Simulation results of the NDO
	Simulation results with uncertainties and small external disturbances
	Simulation results with uncertainties and large external disturbances
	Simulation results with and without adaptive scaling strategy under uncertainties and large external disturbances

	Conclusion

