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HOPF BIFURCATION AT INFINITY
WITH DISCONTINUOUS NONLINEARITIES

XIANGJIAN H E '

(Received 3 September 1990; revised 30 November 1990)

Abstract

In this paper, we consider the existence of a family of periodic solutions of large
amplitude when a pair of eigenvalues of the linear part of a first-order system of
ordinary differential equations crosses the imaginary axis. We refer to this problem
as a Hopf bifurcation problem at infinity. In our work, the nonlinearities may
be discontinuous at the origin, and the proof of existence of periodic solutions is
arrived at through the corresponding system of integral equations. The applicability
of the result is demonstrated by the study of the dynamics of a train truck wheelset
system.

1. Introduction

In recent years, many researchers have concerned themselves with the Hopf
bifurcation problem of dynamical systems. The Hopf bifurcation theorem
is the simplest result which guarantees the bifurcation of a family of small-
amplitude time-periodic solutions of an evolution equation from a family of
equilibrium solutions.

The bifurcation of periodic orbits from certain critical points of a real n-
dimensional (n > 2) first-order system of autonomous ordinary differential
equations was treated by E. Hopf [1] in 1942. To explain briefly Hopf s work,
let the differential equation be denoted by

dx/dt = F(X,x), xeRn, (1.1)

where A is a real parameter, and let xk be a critical point at X. Let it be
assumed that F is analytic in a neighbourhood of (X, x) = (0, x°) and let
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the matrix ^ ( 0 , x°) have exactly two, nonzero, purely imaginary eigenval-
ues, say ±ico0, and no eigenvalues of the form 0, ±2ia>0, ±3ico0, ... Hopf
proved that a nonconstant periodic orbit bifurcates from (A, x) = (0, x°)
under the sole additional assumption that a'(0) # 0, if a(A) + z«(A) denotes
that eigenvalue of Fx(k, xk) which is a continuous extension of +ico0 . Us-
ing a different approach, Friedrichs [2] established an existence theorem for
the two-dimensional problem under the assumption that F in (1.1) is only
three times continuously differentiable. Friedrichs' other assumptions are in
a slightly different, though equivalent, form. Several other authors have de-
veloped the theory in various directions using varying assumptions. Relaxing
the condition a'(0) ^ 0 and requiring that the critical point x° of (1.1) at
A = 0 be asymptotically stable, Chafee [3] has shown the existence of two
manifolds of bifurcating periodic orbits which are at times distinct. Under
certain simplifying assumptions on the form of f in (1.1), Brushinskaya
[4] has established criteria sufficient to guarantee that the bifurcated periodic
orbit exists. In [5, 6], the authors proved the Hopf bifurcation theorem spe-
cially suited to systems in block-diagram form by the method of harmonic
balance. Some other authors, following Hopf, have approached the bifurca-
tion problem by trying to vary the initial conditions and parameters so as to
produce a nontrivial time periodic solution (see, for example, [7, 8]). Others
have introduced the unknown period explicitly as a new parameter in the
equations and attempted to find solutions having a known period (see, for
example, [9-11]). It is difficult to compare those papers since they are set
in different technical frameworks and have related but differing hypotheses.
But no matter what they did, they all required that the nonlinearities be of
C1 class. In [12], employment of topological considerations made it possible
to throw aside the usual assumptions of differentiability of nonlinear terms,
but the continuity near the origin was still necessary for the discussion.

In this paper, we drop this assumption of continuity at the origin and
examine large periodic solutions. To this end, we consider what happens if
a pair of eigenvalues of the linear part of the right hand side in (2.1) below
crosses the imaginary axis for large \x\. We refer to this problem as Hopf
bifurcation at infinity, following Glover [13].

In Section 2, we construct a sequence of continuous operators, which con-
verges to the given jump nonlinearity. For each operator in this sequence,
using Glover's terminology [13] along with the method of parameter function-
alisation [12], we establish when the corresponding system with the continu-
ous nonlinearity has a periodic solution with large amplitude. We prove that
the limit of a subsequence of these solutions is a nonzero, periodic solution
of the system with the jump nonlinearity.
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Furthermore, if we replace the condition (2.2) by

M ^ = Oj (1.2)
||x||

then the existence of small periodic solutions can be discussed in the same
way. So, our existence result stated in Theorem 2.1 of this paper is clearly
related to several previous works in [2-13]. One will find that our result is
stronger than those in [2-13].

In order to show the applicability of the result, a train truck wheelset sys-
tem of Hadden [14] considered by Glover [13] is re-examined here. For
such wheelsets, many researchers [13-17] have concerned themselves with
the existence of the periodic solutions. In many instances, the proofs are
not rigorous. For example, in [14], the authors try to find the periodic solu-
tions using the describing function representation and ignoring higher order
harmonics, and in [13, 17], Glover tries to verify the existence of the pe-
riodic solutions of a wheelset by replacing the discontinuous nonlinearities
(sgn functions) by tanh functions, which are continuous. One can easily see
that the existence results in [13, 14, 17] cannot guarantee the existence of the
periodic solutions of a wheelset and our result of a wheelset dynamics in this
paper implies the result in [13].

2. Main result and its proof

Let us consider the system

+ a{X,x), (2.1)

where A (A) is a linear operator defined on R" and takes values in R",
a(A, x) is an operator from RxRn to R" and where A is a parameter. We
make two assumptions:

(HA)(i) A(XQ) has exactly two, nonzero, purely-imaginary eigenvalues, say
±ieo0 (co0 ± 0);

(ii) A(X0) has no eigenvalues of the form 0, ±2ico0, ±3ico0,... ;
(iii) let p(k) be the continuous branch of eigenvalues of A{X) passing

through the eigenvalue ia>Q for A = Ao. Then the real part, Re(p(A)),
takes values of opposite sign in every neighbourhood of Ao.
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(Ha)(i) a(k, x) is a bounded operator,
(ii) a(k,x) is continuous in k\

(iii) a(k, x) is piecewise continuous in x;
(iv) a(k, x) obeys the growth condition

lim IW- f ' l l -Q (2.2)
IWH°° ||X|| V '

uniformly with respect to k.

We shall now state the main result of this paper:

THEOREM 2.1. 7/" {HA) and (Ha) are true, then for every e > 0 there exist
a ke in the interval (kQ - e, kQ + e), a constant Ce > 0 and a corresponding
nonzero continuously Te-periodic vector function xe(t)(\Te-2n/(o0\ < e) such
that

l2Ce > \\xe(t)\\ > Ce > - (-oo<f<+oo) (2.3)

and

x£(t) = xe(Te) + f'[A(ke)xe(s) + a(ke, xe(s))]ds.
Jo

PROOF.

STEP 1. Since a(k, x) is a bounded, piecewise continuous operator, we can
construct a sequence {ak(k,x)} of continuous operators such that

ak{k,x)^a{k,x) (2.4)

for each x e Rn and k e R evidently. Without loss of generality, we can
assume that there exists a positive number M e R such that

\\ak(k,x)\\<M

for all x e R" and k e R.
STEP 2. Let P denote the projection onto the two dimensional, real subspace
spanned by the eigenvectors of ±i<oQ. Perform the change of variable from
x to u through [13]:

2

Then the system
dx/dt = A(k)x + ak(k,x), (2.5)

is equivalent to a new dynamical system given by [13]

du/dt = M(k)u + bk(k,u), (2.6)

when Px or Pu ̂  0 .
In (2.6),

M(k) = A(k) - 2Re(p(k))I
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and
bk(X, u) = \\Pu\\\(X,x(u)) - 2(Pu, ak(X, x(u)))u,

where (•, •) is the standard inner product and [13]

x(u) = u/\\Pu\\2.

By Step 1, we know that

\\bk(X, u)\\ < M\\Pu\\2 + 2M\\Pu\\ ||u|| < 3M||«||2. (2.7)

STEP 3. Let C([0, K], R") denote the Banach space of continuous Rn-valued
functions denned on the interval [0, K] , where K = 2n/coQ + 1, with the
topology of uniform convergence. Consider in C([0, K], Rn) the operators
of the form

Uk{T,X;u)(t) = eMW'u(T)+ f eMm~s)bk{X, u(s)) ds, k=l,2,...,
Jo

(2.8)
which depend on the two parameters T and X, [12].

Represent Uk(T, X;u) in the form of a sum
Uk(T, X; u) = V(T, X)u + vk(T, X; u), (2.9)

where
V(T,X)u(t)±eMWtu(t),

vk(T,X; u)(t) ± f eMm~s)bk{X, u(s))ds.
Jo

(2.10)

LEMMA 2.1. For any given k e {1, 2, ...}, there exist sequences {qm\qm>
0, qmeR} independent ofk, {ukm e C([0, K], Rn)}, {Tk m € [0, K]}
and {Xk m | Xk m in the neighbourhood ofX0} such that, for each fixed k,

uk,m =

k,mk,0 l0' ^ . m ^ i t . O ^ V am^° ™ m -> OO
and

\qm < \\ukj\ < \qm , \\Puk>m\\ > ||(/ - P)iifcf m||.

REMARK. In the proof of Lemma 2.1, which follows next, we shall show that
Tk 0, Xk 0 here are independent of k.

PROOF. One can see the detail of this proof in [12]. In fact, from the as-
sumption (HA), we have that 1 is an eigenvalue of multiplicity 2 of the linear
operator V(2n/co0, Xo) and the dimension of the eigenspace of the eigen-
value 1 is 2 [12, p. 153]. Without loss of generality, one can assume that
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[12, p. 155] there exist two vectors g and h in Rn which are independent
of k, T and A, and a function 1{T, A) such that

V(T,k)(g + ih) = l(T,k)(g + ih), (2.11)

where l(T, A) is the continuous branch of eigenvalues passing through the
eigenvalue 1 when (T, k) = {2n/co0, Ao). Next, set Eo = p[C{[0, K], Rn)]
and E° = (I - P)[C([0, K] , Rn)], then

C([0,K],Rn) = EQ®E°.

In this case, without loss of generality one can assume that ||u|| = ||Pw|| +
| |( / - P)u\\ for each u e R" . Let

Bm = {ueE0: \\u - qmg\\ < l-qjg\\},

Bm = {u€E°: ||u|| < \qm\\g\\}

where q > 0 will be defined later, and

Without loss of generality, we can choose g to be a unit eigenvector g
(i.e. | | s | | = l ) . Then

ym<\M\<l<lm for«6Qm, (2.12)
by the definitions of Bm and Bm .

NOTE. It is evident that in R2 a sequence of Jordan curves {&m} converg-
ing to (2n/co0, Ao) exist, and the boundary dBm of the ball Bm in the
plane Eo is a Jordan curve. Therefore, for each m there exists a home-
omorphism ym of the ball Bm onto the closure Dm of the set bounded
by 5?m, defined by ym{u) = {Tm(u), Xm{u)) whenever u G Bm, such that

Let us consider for each m and k a family of T parameter-dependent
vector fields

^ . m ^ . «) = RJ*> ») + SJ*, ") + w
k,J*> «). (2-13)

where T e [0, 1], u e Qm and

y0 = (2n/co0,
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We should like to define qm > 0 in such a way that x¥lc m ( r , u) ^ 0 for all
T from the interval [0,1] and u from the boundary of the cylinder Qm .

Note that it is easy to verify that (see, for example, [12] pp. 158-159) there
exist m0 > 0, ? and rm , which is dependent on m but independent of qm ,
such that

\\RJ*,»)\\>lrmqm for uedBm®Bm (2.14)

and

\\Sm{-c,u)\\>^?qm for m > m0 and u&Bm®dBm. (2.15)

Furthermore, we have that

by the definition of vk in (2.10), where C is a constant which is independent
of m, k, Tm and Xm .

If here « e f l m , then by (2.12) ||u|| < (3/2)qm. Therefore,

^ 2 mk , J ^ m for ueBm@Bm. (2.16)

Hence, we can choose qm in such way that the following inequalities would
be fulfilled

P m ( T , « ) l l > l l ^ , m ( T , t 0 l l for re [0 ,1 ] , uedBm®Bm,

P M ( T , t t ) | | > | | ( / - . P ) » i M ( T , ! 0 | | for r e [0 ,1 ] , ueBm@dBm,
(2.17)

and also the sequence {qm} can be chosen in such a way that qm —* 0 as
m - o o [10, p. 159].

Thus, we know that

so that %¥k m(0, M) = <J>fe m{u) has a singular point in Clm (see, for example,
[12], pp. 159-160).

Note that,

0, u) + Wkm(0, u)

= {I-V{ym{Pu)))u-vk{ym{Pu),u)

u), km{Pu))u + vk(TJPu), XJPu); «)

Hence, there exists uk m such that
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Il-Pw*:, J l > IIC ~ p)uk,mW > obviously, by the definition of Clm . Let
Tk.m = T

m(Puk,J • h,m= * m C V « ) -
Then, for each k , by the definition of ym, (Tk m, Xk m) € Dm . See the
Note above in this step. Hence, by Lemma A 1.1 in Appendix 1, {Tkm, Xk m)
~> (T^o > ^/t,o) - (^^/^o > ^o)' wnich is independent of k , as m -* oo for
each k. This completes the proof of Lemma 2.1.

REMARK. By the definition of Uk in (2.8), (2.18) means that there exists
u

k

> * ! ' • R " ) s u c h t h a t f o r k = \ , 2 , . . . ,k m

, k ) m f c i m

o
So, by the continuity of bk , uk m{t) is a Tk ^-periodic solution of

duldt = M{Xkm)u + bk{kkm, u). (2.19)
Hence, we have

LEMMA 2.2. For any given fce{l,2,...}, there exist sequences {qm > 0},
iTk,m e t°> K l } ' {^,m} and a sequence of Tkm-periodic solutions {ukm(t)}
of the system (2.19) SMC/I that for this k,

0 < ^ m < ll«*.mll < \*m, \\Puktm\\ > \\(I-P)ukiJ\. (2.20)

S T E P 5 . C o n s i d e r t h e s o l u t i o n u k m s h o w n i n L e m m a 2 . 2 . T h e n , P u k m ^ 0
e v i d e n t l y . L e t

" * • "

Then, by (2.20),

IIM II WPu, II +11(7 — P)u I
IIv II _ ' ! k,m" _ II Ac,mil IIv / k,m\|

^ 2\\Pukt

»k,m\\ + W-P)uk,m\\

^-FT < T" (2- 2 1 )
\Uk,m
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and

Hence, by the equivalence between (2.5) and (2.6), we have

LEMMA 2.3. For any given k e{l,2, ...}, there exist sequences {qm > 0},
iTk,m}> {h,m) and a sequence of Tkm-periodic solutions {xk m(t)} of the
system

such that for this k,

and

\\Pxk<m\\>\\(I-P)xktm\\.

Hence, by the continuity of ak and the equivalence of the systems of
differential and integral equations, we have

LEMMA 2.4. For each k e {1, 2, ...}, there exist sequences {qm} (qm > 0),
{TL. m } , U t m\ and the sequence of continuously T. -periodic functions
{xk m(t)} such that for this k,

Xk,i
• • - • " (2 .24)

and
2 8

3qm ~ k> ~ qm

Note that the sequences {Tk m} , {kk m} and {xk>m{t)} are bounded for
each m . Hence, there exist convergent subsequences of them for each fixed
m. Without loss of generality, we may assume that for each m ,

Tk m~* Tm, Xk m —• km, xk m{t) -> xm{t) as k —> oo.

Hence, we know that xm(t) is continuous by Lemma 2.4 and

,,x(s))]ds (2.25)
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by (2.4). Note that Dm is closed. Thus, (Tm, Xm) e Dm . This means that
(Tm, Xm) ->(To, Xo) as m -* oo (see Lemma Al.l in Appendix 1).

Furthermore,

= \Tm-T0\<e,

and qm —* 0, as m —* oo. Thus, for any given e > 0, there exists a
sufficiently large m0 such that

mo ° ° m o (OQ
 r"o

8 . ,,

and

Hence, for this given e > 0 if we let CE = 2/{'iqm ) and denote Xm , Tm

and xm (t) by Xe, Te and xe(/) respectively then the proof of Theorem 2.1
is completed.

REMARK. If e is sufficiently small, then by (2.3) the periodic solution xe(t)
is very large and this is what we mean by a periodic solution of large amplitude.

3. Existence of periodic solutions of a train truck system at infinity

Now, let us consider the wheelset system which is taken from D'Souza and
Caravavatna [14]. The equations of motion are derived by considering the
three degrees of freedom in the lateral, yaw, and parallelogramming direc-
tions. The wheel profile is assumed to be conical, with a as the half angle
of the cone. The creep forces at the rail-wheel intersection are assumed to
be linear functions of creep. The equations of motion are given below.

Lateral direction:
rna .(£

where the last two terms represent the flange contact forces Fx and F2

which are modeled here as stiff linear springs with dead band, as shown in
Figure 1.
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Ft F 2

143

-A -A

y+Ltp

Figure 1. Flange contact forces

Yaw direction:

(2Iw + 21, + 2L2mw + 2d2mf + Ib)y/ + {21 w 2d2m,)d + c2 sgn(y/ + d)

Parallelogramming direction:

(2/2 + 2d2mf +

6) + FXL -

0) + c3 sgn 9

(3.2)

6)

a

The parameters and typical numerical values in (3.1), (3.2) and (3.3) are
listed in [14], along with the nomenclature.

Note that (see Figure 1)
y + Ly/> A
-A<y + Ly/ <A

ko(y + Ly/) + Ak0, y + Ly/ < -A
-AkQ, y + Ly/ > A
-kQ(y + Ly/), -A<y + Ly/<A
Ak0, y + Ly/<-A.

ko(y + Ly/)-Ak0,
Fx = { 0,
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Similarly,

{ -Ak0, y-Ly/>A

-ko(y-Ly/), -A<y-Li//<A
Ak0, y-Ly/<-A.

Hence, if we denote by

i -Ak0, z> A

-koz, -A<z<A
Ak0, z<-A,

then,
Fl = ko(y + Ly) + h(y + Ly/),
F2 = ko(y - Ly/) + h(y - Ly/)

and h(z) is a bounded continuous vector function of z.
Thus, after changing variables to

X = ( x l , x 2 , Xrf = ( y , y / + 6,y/f,

(3.1), (3.2) and (3.3) become

X + A(V)X + {B + 8K)X = CSga(DX) + dg(X) (3.4)

where
fcl2 0 0 \ f kn -kn

A(V) = Ml- 0 c22 0 , B = M-l\-k2l k22 -k23

V 0 0 cj \
(2k0 0

K = M 0 0
V 0 0

0 0
= 0 1 0

1 - i ;
f 0

M= 0
V 0

and the Sgn vector is given by
Sgn(x,, x2, xj = (sgn(x,), sgn(x2), sgn(*3))

T. (3.5)
In (3.4), the flange contact forces are ignored by setting 8 = 0; otherwise
8 = 1 and the parameters are shown in Table 1 (see Appendix 2).https://doi.org/10.1017/S0334270000006950 Published online by Cambridge University Press
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[13] Hopf bifurcation at infinity 145

Now, we rewrite (3.4) as an equivalent first-order system by letting Y =

{yx,y2.• • • > y 6 ) T = ( x i , x 2 , x i , x i , x 2 , J C 3 ) T i .e.

-A{V)) Y +

Here, we can see that the nonlinear term of (3.6) is bounded and piecewise
continuous in y.

A numerical calculation, using the values from Table 1, shows that the
linear matrix

/ 0 I \
\-B-SK -A(V)J

satisfies the assumption (HA).
Let

-( ° M
~ \-B-SK -A{V)j '

0
+ $g{yx , y2 > y3)

,y6.' '

Then (3.6) is equivalent to

Y = H(V)Y + F(Y). (3.7)

Without loss of generality, we can assume that
(i) H(V0) has exactly two, nonzero, purely-imaginary eigenvalues, say

±ia)0 (co0 ? 0);
(ii) H(V0) has no eigenvalues of the form 0, ±2ico0, ±3/OJ0 ,

Then, by Theorem 2.1, we have that

THEOREM 3.1. For any given e > 0 there exists a Ve in the interval (VQ —
e, VQ + e) and a corresponding nonzero continuously Te-periodic vector func-
tion Ye(t)(\Te - 2n/co0\ < e) such that

W l / e (-oo<f<+oo)

and

Ye(t) = Ye(Te)+ f'[H(Ve)Ye(s) + F(Ye(s))]ds. (3.8)
Jo
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REMARK. If the nonlinearity F(Y) in (3.7) is continuous, then for a given
Ve, the vector function Ys{s) shown in Theorem 3.1 is a periodic solution
of the system

Y = H{Ve)Y + F(Y). (3.9)

Hence, our result shown in Theorem 3.1 implies the result which Glover
obtained in [13].

Appendix 1

LEMMA A 1.1. In R2 space, let {Dm} be a sequence of bounded, closed sets.
Suppose that

(i) 2'm is theboundaryojDm for each m and {&m} converges to {To, Ao)
as m - f o o , where (To, XQ) is a fixed point in R ;

(ii) {(Tk m, Xk m)} is a double sequence in R2 such that for each m

(Al.l)

Then
(i) for each k, limm_>00( J k i M ,XktJ exists and is equal to (To, Xo);
(ii) for each m, if ]imk^O0{Tkiin ,Xk>m) exists and is equal to {Tm, Xm),

then Hmm^oo(Tm, Xm) exists and is equal to (To, Ao).

PROOF. Step 1. In fact, since {-§^} converges to (To, XQ) as m -+ oo and
S?m is the boundary of Dm , we know that each Dm is contained in a circle
with center (TQ, Xo) and radius Qm, where Qm -> 0 as m - K » . Hence,
for any sequence {(am, bj e Dm}, limm_>oo(am, bj exists and is equal to
(To, Ao). In particular, for each k, l i m ^ ^ t ^ m , kk m) = (Tp, Ao).

Step 2. Since ]imk^O0{Tk<m, Xk m) = (Tm,XJ and Dm is closed, we
have that (Tm, Am) e I>m by (Al.l). Hence, by the statement shown in Step
1 above, \imm_^oo(Tm,Xm) = (T0,X0).

This completes the proof of this lemma.
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Appendix 2

TABLE 1. Parameter values for 80-ton hopper car truck.

ml = 2(m2 + mf) = 2096kg,

IW + 2d2mf2IW + 2d2mf = 2\A5kg,

cn=cx =23000JV,

cn = 4 / n ( H - r o a / f l ) = 2.103 x l O 7 ,

c2l =c2 = 8 2 2 7 ,

c22 = 4(f22 + a2f33) = 1.283 x l O 7 ,

c23 = c3 = 5791/,

c33 = 4/2/u(l + roa/a) = 1.568 x 107Nm2,

kn=kl + AWa/a = 367906^/w"1,

*12 = 4 / n = 2 . 0 5 x l 0 V ,

k2l = 4(/22 - a2f3i)ar0/a = -2.0254 x 107iVm2,

2̂2 = k3 ~ 2aaW = 5 - 1 6 1 x 106Jrad~l,

k2i = ^32 = k3 = 5.17 x 10 ,

3̂3 = ks + *aL2W/a = 5.180 x 106 Jrad'1.
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