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The use of mathematical models in the epidemiological study of
infectious diseases and in the design of mass immunization

programmes

Community-based immunization is the primary method available today by
which to reduce the scale of morbidity, and, in certain countries, mortality,
associated with the most common childhood viral and bacterial infections. The
decline in the incidences of a number of important vaccine preventable infections,
such as polio, diphtheria and measles, in many countries, and the worldwide
eradication of the smallpox virus, is testimony to the effectiveness of this method
of control.

Surprisingly, however, appreciation of how vaccination influences the incidence
and distribution (say, between age classes) of infections within a community is
often poor amongst medical and public health personnel. The expectation that
vaccination of 50% of a community will result in a 50% reduction in the incidence
of infection is but one example of a misunderstanding of the underlying
epidemiological principles. In reality, the behaviour of a human host/infectious
disease agent interaction is invariably non-linear (i.e. complex) at the population
level. As such the impact of large-scale immunization programmes may not be
intuitively obvious and, thus, not easy to predict. The effects are as much
dependent upon the typical course of infection within the individual patient, the
biology of the infectious agent and the social and demographic makeup of the
community, as on the type of mass vaccination policy implemented to control the
spread of infection.

Given the complexity of the association between host (human) and parasite
(infectious agent), at both the individual and the population levels of observation,
is it possible to make rational, informed decisions about the optimal strategy of
immunization for a specific infectious agent in a particular country, population or
community ? Mathematical descriptions of the typical course of infection in the
individual and of the details of transmission between people have begun to
provide a scientific framework to aid decision makers in predicting the outcome of
different vaccination programmes and of highlighting problems that may arise in
the future (Anderson & May, 1985a; Dietz, 1982).

A major goal of theoretical or mathematical study in epidemiology is to develop
understanding of the interplay between the variables that determine the course of
infection within an individual, and the variables that control the pattern of
infections within communities of people. In view of the successes achieved by
combining empirical and theoretical work in the physical sciences, it is surprising
that many people still question the potential usefulness of mathematical models
in epidemiology. Much of the doubt centres on the simplicity of many
mathematical models, in the face of known biological complexity. However, it is
often the case in scientific study that although many factors influence a particular
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process, a few dominate the observed outcome. The role of simple models is to
provide a precise framework on which to build complexity as quantitative
understanding improves, in a manner akin to the design of controlled experiments
in the laboratory where a number of factors are held constant and one or more are
varied.

Over the past few years this journal has published a number of articles which
describe mathematical models of infectious disease transmission and control.
These articles have aimed to help in the interpretation of observed epidemiological
trends, to guide the collection of data towards further understanding, and to
design programmes for the control of infection and disease (Anderson & May,
1983; Anderson, Grenfell & May, 1984; Anderson & May, 19856; Grenfell &
Anderson, 1985; Nokes, Anderson & Anderson, 1986; Anderson, Crombie &
Grenfell, 1987; McLean & Anderson, 1988). This present article is intended to
provide a summary of the aims and uses of mathematical models for the study of
directly transmitted viral and bacterial infections. We highlight the major
concepts underlying the transmission of vaccine-preventable infections that are
fundamental to a sound understanding of the impact of mass immunization in the
community. The article is written with the medical epidemiologist and public
health worker in mind and emphasis is therefore given to basic principles,
epidemiological data and the practical implications of model predictions.
Mathematical details are kept to a minimum and the interested reader is referred
to technical references for descriptions of model structure and assumptions.

MODEL CONSTRUCTION

Which infectious organisms?

Much of the theory developed to date describes the transmission of directly
transmitted viral and bacterial infections that induce lasting immunity to
reinfection (often assumed to be lifelong) in those who recover, and have a
relatively short duration (a matter of days or weeks from infection to recovery/
elimination) in relation to human life expectancy (many decades) (Kermack &
McKendrick, 1927; Bailey, 1975; Anderson & May, 1985a). A sound under-
standing of the typical course of infection within an individual is a prerequisite
for model construction and investigation. It is important to have quantitative
information on the latent and infectious periods of the infection and, in some
cases, the incubation period of the disease. As depicted in Fig. 1, the latent period
is defined as the average period from the time of infection to the point where an
individual becomes infectious to others, the infectious period as the average period
for which an individual is capable of transmitting the infection, and the incubation
period as the average time from infection to the appearance of symptoms of
disease. All these periods are variable but the measurement of an average often
suffices provided the duration is short in relation to the life expectancy of the
human host and the average age at which individuals acquire infection (Anderson,
1982).

Given these data requirements it is no surprise that much of the mathematical
literature has centred on the common childhood infections such as measles,
rubella, mumps, pertussis and diphtheria. Unfortunately, for many infections the
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Fig. 1. Diagramatic representation of the typical time course of an acute viral or
bacterial infection in an individual and concomitant progression through infection
classes. The average stay within the latent and infectious classes is seen to be only
transient when compared with that within the susceptible or immune classes.

details regarding the life history of the infectious organism within the host and the
rate of transmission between hosts are inadequate to permit accurate
mathematical descriptions (e.g. Haemophilus inftuenzae and cytomegalovirus).
Genetic variability that generates distinct strains of the virus or bacterium can
seriously complicate the process of model construction and hence most attention
has focussed on infectious agents such as measles and rubella viruses which appear
to be antigenically stable by comparison with, say, the influenza and echo
viruses.

What do models describe ?

The unit of epidemiological study in the investigation of viral and bacterial
infections (microparasites) is invariably the infected host, given the practical
difficulties associated with the accurate measurement of viral abundance
(concentration) within the infected individual (Anderson & May, 1979). A further
important unit, in the case of infections that induce lasting immunity in those who
recover, is the individual with antibodies specific to antigens of the infectious
agent under study. These seropositive individuals denote those who have current
infections or who have experienced infection at some time in the past. For most
common directly transmitted viral infections, the production of specific antibodies
appears to continue (even in the absence of re-exposure) for the life of the
individual.

With these two measures in mind, the individuals in a population can be
segregated according to their current or past infection status. In practice, finer
divisions (perhaps further stratified by age, sex or spatial location) are desirable
to specify individuals who are (i) protected from infection by maternally derived
antibodies (the duration of protection in infants is usually short, being of the order
of 6 months); (ii) susceptible to infection; (iii) infected but not yet infectious

https://doi.org/10.1017/S0950268800029186 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268800029186


D. J. NOKES AND R. M. ANDERSON

Bi

N

V
ac

ci
na

ti
on

1

\

rths

i

U
months

1
T
Xyears

H
days

I
T

Y
days

1
T

u- z
decades

N=M+X+H+Y+Z

— •

»(
= 

bi
rt

hs
D

ea
th

Fig. 2. The flow of individuals within a stable population between infection
compartments for a directly transmitted mieroparasitic infection. The categories M,
X, H, Y and Z denote the number (or density) of neonates with maternal antibody
protection, susceptibles, infecteds who are not yet infectious, infectious individuals
and immunes (natural or vaccine-induced), respectively, and are shown together with
the relative duration of stay in each class. Arrows indicate the rate of movement of
individuals from one infection class to the next.

(latent); (iv) infectious to others (capable of transmitting the infection); and (v)
recovered, thus immune to reinfection (with antibodies specific to antigens of the
infectious agent). With the passage of time, and, inevitably, with increasing age,
individuals pass from one class or infection category to another. Mathematical
models attempt to capture this flow of individuals between the different infection-
status compartments within a population, and, as such, are often referred to as
compartmental models. A diagrammatic illustration of this flow is presented in
Fig. 2.

The number of individuals within any one compartment at one point in time is
dependent upon the average duration of stay within that compartment. The
shorter the period of stay, the smaller the proportion of the total population in
that infection class. So, for example, in the case of measles whose average
infectious period is roughly 7 days, the mean age at first exposure (in a developed
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Fig. 3. Equilibrium proportions of a population, stratified by age, in each infection
class for an acute infectious disease (based on data for rubella in the United Kingdom)
at one point in time. The proportion of individuals in the latent and infectious classes
have been scaled by a factor of 25 to make them visible.

country prior to mass vaccination) is approximately 4-5 years, and immunity is
lifelong (say with a human life expectancy of 75 years), we would expect (and we
observe) a very small proportion of a population with a current infection, a
larger proportion susceptible to infection and a very large proportion (the vast
majority) recovered and immune to reinfection (serologically positive). These
notions are depicted diagrammatically in Fig. 3.

Compartmental models, of the sort most widely used in the study of childhood
viral and bacterial infections, are simply sets of differential or partial differential
(where populations are stratified by age or spatial location) equations that
describe the rates of flow between compartments by reference to the numbers or
proportions in each infection category (e.g. susceptibles, infecteds or immunes)
and the epidemiological rate parameters that determine transmission, the course
of infection in the individual and the demography in the human community (i.e.
birth and death). These equations clearly specify the population structure and the
rates involved and any biological and epidemiological assumptions which have
been made. They therefore define what epidemiological variables and parameters
need to be measured or monitored, and permit analytical or numerical
investigations of how the epidemiology of a given infection is influenced by
different biological and demographic assumptions and different control pro-
grammes. With respect to mass immunization they facilitate the quantitative
study of time- and age-dependent changes in the pattern of infection under
different immunization policies.
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EPIDEMIOLOGICAL CONCEPTS

Transmission
A central concept in simple theory of infectious disease transmission is the mass-

action principle which states that the net rate at which new cases of infection arise
is proportional to the density (or number) of susceptible individuals, X, times the
density of infectious persons, Y, times the probability of transmission from
infectious to susceptible individual, /? (i.e. f$XY). The probability of transmission
/? is formed from two components, namely, the likelihood of close contact between
two individuals such that transmission can occur (dependent upon the pattern of
mixing in the population), plus the probability that transmission will occur as a
result of close contact (dependent upon the innate contagiousness of the infectious
organism and, perhaps, on the genetic or behavioural 'susceptibility' of the
individual host).

This mass-action principle is based on the assumption that susceptible and
infectious individuals mix in a homogeneous (= random) manner. In practice this
rarely occurs but the principle can be modified to take account of age- and space-
dependent mixing or other forms of heterogeneity that exist in host or parasite
populations (Anderson & May, 1984).

The net rate at which new infections arise (e.g. fiXY in the homogeneous case)
defines the incidence of infections, / , which can be recorded by direct observation.
Unfortunately, the measurement of / tells us nothing about the respective
densities of susceptibles or infecteds (X or Y), nor of the magnitude of the
transmission coefficient /?. On an individual basis, the per capita rate of infection
of susceptible people, A, is simply the transmission coefficient /? times the density
of infectious persons, Y (i.e. A = fiY). This rate is often referred to as the 'force of
infection' (FOI), and can be measured by reference to the serological status of an
individual through time (or as he or she ages) with respect to antibodies specific
to the infectious agent in question.

The basic reproductive rate of infection, Ro

The average number of secondary cases of infection generated by one primary
case in a susceptible population is simply the number of susceptibles present with
which the primary case can make contact (X) times the length of time the primary
case is infectious to others, D, times the transmission coefficient, /? (rate of mixing
and innate contagiousness of the infectious agent). This quantity defines the
transmission potential of an infection and is called the basic (= potential)
reproductive rate of infection, Ro, where

Ro = pXD. (1)

Note that Ro is a dimensionless quantity that defines the potential to produce
secondary cases (in a totally susceptible population) per generation time (i.e. the
duration of infectiousness) of the infection.

The basic reproductive rate is of major epidemiological significance since the
condition Ro = 1 defines a threshold below which the generation of secondary
cases is insufficient to maintain the infection within the human community. For
values equal to or greater than one the infection will persist. The threshold defines
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the problem of control by mass vaccination. To block transmission, sufficient
numbers of susceptible people must be immunized such that on average each
primary case of infection generates less than one secondary case.

The magnitude of Ro not only defines the difficulty of the control problem but
also determines the rapidity with which the proportion of individuals in an age
class who have experienced infection rises as age increases. The magnitude of the
transmission potential is therefore related to the average age, A, at which an
individual typically experiences infection; the larger the magnitude of Ro the
smaller the value of A. The relationship is given by

Ro =s B/(A-F), (2)

where B is the reciprocal of the finite birth rate of the population (which is usually
expressed as births per year per head of population) and F is the average duration
of protection in infants provided by maternally derived antibodies (Anderson &
May, 1985a). In developed countries, with stable populations, the quantity B can
be replaced by life expectancy from birth, L (life expectancy = 1/birth rate). The
magnitude of the average age at infection, A, can be determined from horizontal
(or longitudinal) age-stratified serological surveys that record age related changes
in the force of infection (FOI) (see Grenfell & Anderson, 1985) prior to the
introduction of mass vaccination (Nokes, Anderson & Anderson, 1986; Nokes,
Anderson & Jennings, 1987). It is important to remember here that changes in the
proportion of the population seropositive for a particular infection roughly
mirrors the changes one would observe in the proportion of a cohort of individuals
infected as time passes, when monitored from birth. The rate at which the
proportion who have experienced the infection rises with time (= age) (i.e. the
steepness of an age-serological profile) is an indication of the magnitude of
transmission of the infection in the population, which as we have seen is inversely
related to the average age at infection, A. Estimates of F can also be determined
from serological surveys of infants and young children, while the magnitude of B
or L can be obtained from demographic data.

Herd immunity
In a population in which an infection is persisting stably, such that the net rate

at which new cases of infection arise is exactly balanced by the net rate of recovery
from infection, the effective reproductive rate of the infection, R, is unity in value.
In practice, for many common viral and bacterial infections the incidence of
infection fluctuates both on a seasonal and longer-term cycle (see next section).
The effective reproductive rate therefore fluctuates below and above unity in
value as the incidence of infection, and hence the density of susceptibles, change.
However, the average value over a series of incidence cycles (both seasonal and
longer term) will be approximately equal to unity in the absence of control
intervention or changing social and demographic patterns. The effective
reproductive rate, R, is related to the basic reproductive rate, Ro (the potential to
generate secondary cases in a totally susceptible population) by the simple

equation
R = Rox. (3)

Here, x is the equilibrium fraction of susceptibles in the population. The
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Fig. 4. Relationship between the critical proportion of a population required to be
vaccinated (as near to birth as possible) for eradication of an infection and the basic
reproductive rate of the infectious agent. Two example infections for the United
Kingdom are illustrated; measles is shown to be more difficult to control than
rubella.

magnitude of x can be determined from cross-sectional serological surveys given
data on the age structure of a population (if x4 is the proportion susceptible in age
class i and pi is the proportion of the population in the same age class then x =
SjLjX^j in a population with n age classes). Thus at equilibrium where R = 1, the
basic reproductive rate is equal to the reciprocal of the proportion susceptible;

Ro s l/x. (4)

To eradicate an infection (or block transmission) by mass vaccination it is
necessary to reduce the magnitude of Rg to less than unity in value. If we
immunize a proportion p of the population then the new reproductive rate is equal
to Ro (l—p). Since this quantity must be less than unity in value in order to
prevent the spread of the infection in the community, this gives a condition for the
critical proportion of the population that must be immunized to eradicate the
infection, pc, where

pe>[l-l/Rol (5)

The relationship is depicted diagrammatically in Fig. 4; the larger the
magnitude of Ro the greater the proportion that must be immunized to block
transmission. Note that this relationship shows it is not necessary to vaccinate
everyone in the community to prevent the spread of infection (as for the examples
of rubella and measles in Fig. 4). This result is the manifestation of what is known
as the principle of herd immunity, in which the protection of the individual is
achieved by the protection (= vaccination) of the population. The mechanism
underlying this concept is that of a critical density of susceptibles required to
maintain the value of Ro at or above unity (i.e. one or more secondary cases per
primary case of infection). Although derived by theoretical study its validity is
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5. Predicted equilibrium proportion of infected individuals in a population as a
function of the basic reproductive rate, Ro (the transmission potential), of the
infectious agent. Note (i) that as a fraction of the total population, the proportion
infected is very small, for all values of Ro, and (ii) how the greatest changes in this
proportion occur over the first few increments of Ro above unity.

confirmed by empirical studies (e.g. Bartlett, 1960; Black 1966; Anderson & May,
1986).

Another epidemiological feature generated by the requirement of a critical
density of susceptibles to maintain infections concerns the relationship between
the magnitude of the basic reproductive rate and the equilibrium prevalence of
infection (latent plus infectious individuals), or the equilibrium incidence of
infection. Theory predicts that this relationship is non-linear as depicted in Fig. 5.
Thus, marked reductions in the endemic prevalence or incidence of infection will
only occur as the transmission potential is reduced to an extent where it
approaches the threshold level of Ro = 1. The practical implication of this
observation is that we should not expect the decline in the incidence of infection
induced by mass vaccination to be directly proportional to the level of vaccination
coverage. The greatest changes will occur when coverage attains high levels.

In practice, immunization programmes are introduced by focussing on cohorts
of children such that the level of immunization coverage is built up over many
years of cohort vaccination. In these circumstances the pc of eq (5) must be
interpreted as the proportion of each cohort vaccinated as soon after birth as is
practically feasible (taking account of the need to immunize after the decay in
maternally derived specific antibody). It will clearly take many years of cohort
immunization to achieve the desired level of artificially induced herd immunity.
A further complication is introduced by the problem of vaccinating a series of age
classes. In this case, if V is the average age at which vaccine is administered, then
the critical level of cohort immunization required to prevent transmission is given
approximately by:

(6)
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Table 1. Summary epidemiological parameters for a number of viral and bacterial
infections in the UK (based on various sources - see text for details)

Infection
Measles
Pertussis
Mumps
Rubella

Average age
of infection

prior to
immunization

(years)

4-5
4-5
6-7
9-10

Inter-
epidemic

period
(years)

2
3-4
3
4-5

Vaccination
coverage for
elimination

(%)

90-95
90-95
85-90
80-85

Basic
reproductive

rate

16-21
16-21
11-14
7-9

where A is the average age at infection prior to the introduction of mass
vaccination and L is life expectancy (Anderson & May, 1982, 1983). It is clear from
this expression that transmission cannot be interrupted unless the average age at
vaccination, V, is less than the average age at infection, A, prior to control. In
other words, no matter what the coverage, if immunization occurs at any age
above the pre-vaccination average for infection sufficient transmission for the
perpetuation of the infection in the population can occur in those too young to
have received the vaccine.

As noted earlier, estimates of Ro and pc can be obtained from age-stratified
serological data recording changes in the proportion seropositive with age. Table 1
records a series of estimates of A, Ro and the level of cohort vaccination required
to eradicate infection, for various common childhood infections. Note the high
levels of immunization required to block transmission. Unfortunately, in the
United Kingdom today we are some way from achieving the optimal levels of
immunization for the majority of these infections. Legislation in the United
States, that requires immunization for school entry, has resulted in the virtual
elimination of common childhood infections such as measles, mumps, rubella and
pertussis. This example, and the calculations displayed in Table 1, set a target for
public health authorities in the United Kingdom.

A final point to stress in this issue of mass vaccination is the importance of
heterogeneity within populations of the host (spatial, age-related, and genetic)
and the parasite (different strains of the same infectious organism with differing
infectivities) (Anderson & May, 1986). One example relates to spatial distribution
of vaccination uptake. Levels of measles and rubella vaccine coverage in the
United Kingdom, for example, vary widely between different regions (see Fig. 6).
To effectively block transmission countrywide it is necessary to ensure that the
targets laid out in Table 1 are attained in each area. Otherwise, pockets of
infection in regions with poor vaccination coverage will continually trigger small
epidemics in other areas.

A second example is that of age-related variation in the rate of transmission.
The preceding arguments based upon the principle of mass-action assume a
homogeneously mixing host population and, therefore, one in which mixing does
not vary with age. One consequence of this premise is that the rate of transmission
of infection is assumed constant across all ages. In reality, however, we see various
degrees of mixing between individuals according to the age class to which they
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Fig. 6. Vaccination against diptheria, pertussis and measles. Regional variations in
uptake from the average coverages in England in 1986 (source DHSS, Research and
Statistics Division).

belong. Analyses of horizontal cross-sectional serology and case notification data
have confirmed this observation, revealing a consistent pattern of change in the
force of infection, with increasing age, for a number of common childhood
infections (e.g. measles, rubella, mumps, chickenpox, scarlet fever and pertussis)
in developed countries. The rate of infection is seen to be low for the younger age
classes, high in those of school age and low again in adulthood (Anderson &
May, 1985a; Nokes, Anderson & Anderson, 1986; Anderson, Crombie & Grenfell,
1987). The implications of this age-related variation in the force of infection to
vaccination policy are realised as a result of the rise in the age-distribution of
susceptibility in a population under mass vaccination (see later section). The main
issue here is that as a consequence of the changes in the FOI, susceptibles who
avoid vaccination may move from an age class with a high rate of transmission
into an older age class with a lower FOI, and a concomitant lower chance of
becoming infected. As a consequence, theoretical studies which have taken into
account the age-dependent nature of the FOI predict somewhat lower rates of
vaccination needed for the eradication of infection than those shown in Table 1.
However, it should be emphasised that the values indicated in Table 1 provide a
good first apporoximation on which to base vaccination policy.

Inter-epidemic period, T
Many viral and bacterial infections that induce lasting immunity to re-infection

on recovery and which have high transmission potentials (Ro large) tend to exhibit
oscillatory flutuations in incidence. A typical example is that of measles, which in
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the United Kingdom prior to the introduction of mass vaccination oscillated on a
seasonal basis (due to the aggregation and disaggregation of children for school
term and holiday periods) and a longer term 2 year cycle with years of high
incidence separated by years of low incidence (Anderson, Grenfell & May, 1984).
Time series analyses reveal that these longer term cycles for infections such as
measles, mumps, rubella and pertussis, are not due to chance fluctuations but arise
from the dynamic interaction between populations of susceptible and infected
persons.

Simple theory, based on the cornerstone of the mass-action principle of
transmission, suggests that the inter-epidemic period, T, of the longer-term (non-
seasonal) cycles is determined by the generation time of the infection, K, defined
as the sum of the latent and infectious phases, and the transmission potential of
the infection inversely measured by the average age at infection, A, where

T s 2n(AK)*. (7)

This simple prediction well matches observation for a variety of common
childhood infections prior to mass vaccination (i.e. the 2-year cycles of measles,
the 3-year cycles of mumps, the 4- to 5-year cycles of rubella and the 3-4 year
cycles of pertussis). Non-seasonal oscillations arise as a consequence of the
exhaustion of the supply of susceptibles as an epidemic passes through a
population plus the time lag that arises before new births replenish the pool of
susceptibles to once again trigger a new epidemic. As such, the inter-epidemic
period is influenced by the birth rate of a community and also by mass vaccination
which acts to reduce the transmission potential of the infection (see next section).
Note that the parameter A can be replaced in equation (7) by (B/Ro) + F where B
and F are the average birth rate and duration of maternally derived antibodies,
respectively (see equation 2). For example, in developing countries such as Kenya,
with high birth rates, measles tends to cycle on a 1-year time scale as opposed
to 2 years in the United Kingdom (McLean & Anderson 1988).

THE IMPACT OF MASS VACCINATION

Incidence of infection
When viewed in practical terms the level of vaccination coverage in a given

community or country is determined by a variety of economic and logistic
problems (developing countries) or motivational or legislative issues (industri-
alized countries). What changes in the epidemiology of an infection are we
likely to observe as cohort vaccination is introduced and how are these changes
dependent on the level of coverage attained in a particular country ? Models
provide an ideal framework for examining these questions, and their predictions
are now supported by a growing body of empirical evidence.

Childhood immunization has the direct effect of reducing the number of cases of
infection as a result of protection conferred by vaccination. Since this reduces the
number of infectious individuals in the vaccinated population (see Fig. 2 where
vaccination transfers susceptibles, X, to the immune class, Z, thus avoiding H and
Y, the infected classes), an indirect effect is a reduction in the net rate of
transmission of the virus or bacterium. This is the principle of herd immunity in
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Fig. 7. Changes observed in the age-distribution of cases of three vaccine-preventable
infections in Bangkok, following the WHO Expanded Programme on Immunization
initiative. These are proportions; the total number of reported cases of each infection
have significantly declined in the population over the period indicated (Report,
1987).

action, where susceptible individuals gain protection from the vaccinated
proportion of the population. Two consequences arise from a lowering of the rate
of transmission and the concomitant reduction in the reproductive rate of the
infection.

First, the age at which susceptibles typically acquire infection will rise such that
there is an upward shift in the age distribution of susceptibility in the population.
Figure 7 records a number of examples in which the average age at infection has
risen following introduction of mass vaccination. Most interestingly, however,
following the initial perturbation created by the introduction of cohort
vaccination, the reduction in transmission will result in the total proportion of the
population susceptible to infection remaining approximately equal to that
pertaining prior to immunization. It is simply the age distribution of susceptibility
which is altered by vaccination. This concept is represented diagrammatically in
Fig. 8.

Provided the infection is able to persist endemically (i.e. the level of coverage
is less than that required for eradication), the equilibrium proportion of
susceptibles in the population will remain constant irrespective of the level of
coverage below the critical point for eradication. An illustration of this point is
provided in Fig. 9 where longitudinal changes in the age profile of seropositivity
for antibodies to rubella virus are recorded, both prior to, and during the
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(a) Before immunization

Adult

(b) After immunization has begun
Vaccination

Adult
Fig. 8. Schematic illustration of the predicted impact of mass immunization (against
a typical childhood viral or bacterial infection) on the distribution of the ages of
susceptible individuals. Before immunization (graph a) there is a 'valley' of
susceptibles (SI) in the young age classes. Attempts to fill in this 'valley' by
vaccination (graph 6) reduces the rate of transmission of the infection in the
population, thus lowering the probability of unvaccinated susceptible individuals
being infected. As a consequence there is an upward shift in the age-distribution of
susceptibles (indicated by the arrows marked *), from that pertaining prior to
vaccination (shown by the dotted line). This gives the surprising result that the
number or proportion of susceptibles after immunization has begun (area S2) is
roughly unchanged from that which existed before immunization (area Si). However,
the average age of the susceptibles has increased.

vaccination programme in England. Vaccination has little effect on the overall
proportion susceptible to infection (Nokes, Anderson & Jennings, 1987). The level
of coverage simply alters the proportions of seropositive individuals who acquired
immunity either artificially or by natural infection. As the level of coverage
approaches the critical point, the proportion possessing vaccine-induced immunity
approaches unity.

The second consequence of a reduced rate of transmission in the vaccinated
community is that the inter-epidemic period tends to lengthen when compared
with the pre-control state. This trend is widely observed (Anderson & May,
1983).
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Fig. 9. Cross-sectional serological profiles of rubella antibodies in South Yorkshire,
1969-85. Little change can be seen in the age-serological profiles when observed
longitudinally, from pre-vaccination 1969 through a number of post-vaccination years.
(Note that sample sets for each of the years are independent.)

Practical problems may arise from both of these consequences. Changes in the
age distribution of susceptibility and incidence of infection can influence the
incidence of disease arising from infection if older people differ in their
vulnerability to complications from infection when compared with younger
people. Long inter-epidemic periods can create problems in motivating parents to
vaccinate their children when the incidence of infection is very low during the
period between epidemics, particularly if there is some small but measurable risk
associated with vaccination.

Incidence of disease

The morbidity induced by many common viral and bacterial infections is often
associated with the age of the infected person. A good example is rubella where
disease in infants results from trans-placental transmission of the rubella virus
from infected mother to foetus (particularly during the first trimester of
pregnancy) (Gregg, 1941; Knox, 1980; Anderson & May, 1983; Anderson &
Grenfell, 1986). The likelihood of an infected female being pregnant is clearly age
dependent. Other examples include encephalitis resulting from infection with the
measles virus and orchitis resulting from mumps (CDC, 1982; Anderson, Crombie
& Grenfell; 1987). If the risk of disease resulting from infection rises with age, then
mass vaccination, which raises the mean age at infection, may increase the
incidence of disease over that which pertained prior to control.

The critical issue in this problem is whether the rise in the proportion of cases
that occur in older people as a result of vaccination (see Figs 7 and 8) results in an
increase in the absolute numbers of cases of serious disease or case complications.
The answer to this question is crucially dependent on the change with age in the
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force of infection (i.e. how the rate of transmission varies from one age class to
another) and in the case complication rate, plus the rate or extent of vaccination
in each age class (Anderson & May, 1983; 19856; Anderson & Grenfell, 1986;
Anderson, Crombie & Grenfell, 1987). The quantitative detail of these parameters
is central to the outcome. Data records for complications arising from common
viral and bacterial infections are often misleading in that the majority of case-
complications occur in the young, in spite of an associated low risk of disease,
because the vast majority of cases of infection occur in the young. To obtain a
reliable estimate of the relative risk of complications it is necessary to divide the
number of reports of case-related illness within a particular age class by the
number of infections (complicated and benign) that occur in that age class
(Anderson, Crombie & Grenfell, 1987). The latter is best estimated from serological
data as opposed to reports of infection.

A related problem in this issue concerns the aim of mass vaccination. Should a
policy aim to reduce the incidence of infection, or the incidence of serious disease
resulting from infection or both ? If the risk of serious disease rises steeply with
age, these aims may be in conflict. Under such circumstances it may be better to
target immunization to those most at risk of disease. This approach has been
adopted in the United Kingdom for the control of congenital rubella by
vaccinating girls, and girls only, just before they enter the reproductive age classes
(i.e. 12-15 years of age).

Recent mathematical studies of these problems have revealed that in the case
of measles, mumps and rubella, the likelihood of increasing the incidence of disease
by mass vaccination can be minimized by immunizing a high proportion of
children as early as is practically feasible (Anderson & May, 1983, 19856;
Anderson & Grenfell, 1986; Nokes & Anderson, 1987; Anderson, Crombie &
Grenfell, 1987). These studies, which are based on the available epidemiological
data, suggest that for rubella and mumps the target should be to immunize in
excess of 60-70 % by the age of 2 years. If vaccine uptake is less than this level,
mass immunization is predicted to increase the incidence of case complications
over that pertaining prior to control. In this summary we have omitted much
detail to prevent confusion and the interested reader is urged to consult the source
references.

Patterns of change in the incidence of infection and disease become much more
complex under the impact of multi-stage vaccination programmes. An example is
rubella, where in the United Kingdom a change is about to occur from a policy
which targets immunization at teenage girls and susceptible women of childbearing
age, to one in which the measles-mumps-rubella (MMR) vaccine will be
administered en masse to young male and female children. With this change in
policy an important question arises. Can we cease immunizing teenage girls once
the cohort vaccination of children is introduced ? Mathematical models provide a
framework for examining this problem. In brief the answer again depends
critically on the quantitative details, such as what proportions of children are
immunized at what age. The general conclusion to emerge from extensive analyses
is that a mixed policy must be continued for many years, perhaps decades, if one is
to realise the full benefits of the mass immunization of young children (Nokes &
Anderson, 1987).
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Fig. 10. The incidence of reported mumps cases in the State of Tennesse, USA, between
1968 (the year of mumps vaccine introduction) and 1986. The recent rise in cases is
probably all the more alarming because it follows a decade of relatively low incidence
(an explanation is given in text). (Source of data: Tennesse Department of Health and
Environment.)

Mathematical models also provide a means of assessing how the incidence and
age distribution of infection and disease will change through time after the
introduction of mass vaccination or after a change in vaccination policy. One
important prediction to emerge from such studies is the lengthening of the inter-
epidemic period under high levels of mass vaccination. It will often be the case
that as vaccination coverage rises to high levels, the interval between epidemics
may extend to many years or even decades. Such trends have been observed in the
United States in the incidences of rubella (Bart et al. 1985) and mumps (illustrated
in Fig. 10). An epidemic after a long period of low incidence induced by
vaccination should not be interpreted as a failure in vaccination coverage or of a
particular policy. These dynamic changes are a simple and direct consequence of
the impact of vaccination on the dynamic (and oscillatory) interaction between
host and infectious agent populations. What matters in assessing the impact of
vaccination is the long-term average in the incidence of infection, not short-term
peaks.

CONCLUSIONS

We have glossed over much detail in this short review and ignored many
complications that arise from heterogeneities in transmission generated by
genetic, social, behavioural, spatial and demographic factors (Anderson & May,
1986). Our aim has been to define, as simply as possible, the central concepts
underpinning the transmission dynamics of directly transmitted viral and
bacterial disease agents, and to illustrate the application of mathematical models
that embody these concepts in the design of vaccination programmes.
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The recent convergence of mathematical theory and observation in epidemi-
ology has created a powerful set of tools for the creation and evaluation of
community-based programmes of infection and disease control, provided they are
used sensibly. At present the potential value of these techniques is not widely
appreciated amongst public and community health personnel, and epidemio-
logists. We believe there is a good case for the introduction of taught courses on
the transmission dynamics of infectious diseases (employing some mathematical
content) in the training of doctors and others associated with public health in the
United Kingdom. One of the best illustrations, in our view, of the advantages of
model construction lies in the design of vaccination programmes and the
interpretation of their impact. Simple models can define target levels of cohort
vaccination (Table 1) while more complex formulations can discriminate between
the potential implications of various multi-stage programmes on the incidence of
infection and disease in a population. These studies show clearly that the outcome
of a given policy depends implicitly on the quantitative detail of the problem, with
respect to levels of vaccination coverage by age class, the typical course of
infection in an individual, and age-related changes in the rates of infection and
case complications. In our view it would be difficult, if not impossible, to decide
on the relative merits of different multi-stage vaccination programmes in the
absence of some formal framework to guide scientific assessment.

An additional, but important, role of mathematical models is to guide the
collection of epidemiological data to aid understanding and interpretation. Aside
from the obvious need for epidemiological surveillance which focuses on
longitudinal trends in the incidence of infection and disease (stratified by age, sex,
geographical location), and accurate records of vaccine uptake, models highlight
the need for detailed serological data. Such information should be collected by
horizontal age-stratified (fine divisions by age in regions where the proportion
seropositive changes rapidly with age) surveys and longitudinal cohort surveys
both before and during the implementation of a vaccination programme. The need
for data prior to the introduction of control centres on the estimation of age-
specific rates of infection and risks of case complications by age. These parameters
are central to the quantitative assessment of the likely impacts of different
vaccination programmes. Insufficient detailed survey work of this nature has been
undertaken in the United Kingdom (Nokes, Anderson & Anderson, 1986; Nokes,
Anderson & Jennings, 1987). With changes in the vaccination policies imminent
(e.g. the introduction of the MMR vaccine) it is important to plan for immediate
and continued serological surveillance. The development of tests for antibodies to
viral and bacterial antigens in human saliva would greatly facilitate sampling in
the general population (Parry, Perry & Mortimer, 1987).

To conclude we return to the predictions that high levels of cohort vaccination
are required to interrupt the transmission of many common childhood viral and
bacterial infections. With the introduction of the triple MMR vaccine, target
levels should be in the region of 95 % or more around the ages of 2-3 years, with
uniform coverage in different regions of the country a major priority. Past trends
in vaccine uptake in the United Kingdom do not encourage the belief that
publicity aimed at the general public and the medical professions will achieve the
desired goals. We hope it will, but believe there is a strong argument for a more
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central approach to the problem, perhaps by legal enforcement of immunization
as a requirement for school entry in Britain.
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