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Throughout, R denotes a commutative domain with 1, and Q {¥=R) its field of
quotients, which is viewed here as an /?-module. The symbol K will stand for the
i?-module Q/R, while R* denotes the multiplicative monoid R\0.

As customary, RP will denote the localization of R at the prime ideal P, and
MP = RP®RM the localization of the /?-module M at P. More generally, for a submonoid
5 of /?*, let Rs denote the localization of the domain R at 5 and M5 = RS®RM the
localization of the /?-module M at 5. Note that Ms is an S-torsion-free 7?-module (i.e. no
non-zero element of M is annihilated by any s e 5) which is S-divisible in the sense that
sMs = Ms for each s e S. Moreover, Ms is an /?s-module in the natural way.

We are interested in the 5-torsion modules: M is S-torsion if every x s M is
annihilated by some s e 5. For an /?-module M, S(M) will denote the set of elements of M
annihilated by some 5 e 5; it is a submodule of the torsion submodule of M. From the
definition it is evident that S(M/S(M)) = 0, i.e. M/S(M) is 5-torsion-free. We will say
that the 5-torsion modules admit primary decompositions if every 5-torsion module M is
the direct sum of its "P-components" MP where P runs over the maximal ideals of R,
M - ®PMp. Matlis [2] has shown that all torsion i?-modules admit primary decomposi-
tions if and only if R is an /i-local domain.

Recall that a domain R is said to be h-local if it satisfies the following two conditions
(Matlis [2]):

(i) each non-zero element of R is contained but in a finite number of maximal ideals
of R;

(ii) each non-zero prime ideal of R is contained in only one maximal ideal;
equivalently, RP®RRP- = Q for every pair P, P' of distinct maximal ideals of R.

The aim of this note is to generalize the mentioned result of Matlis by characterizing,
for arbitrary domains R, the submonoids 5 of R* for which the 5-torsion modules admit
primary decompositions. We shall show that a necessary and sufficient condition for this is
that the following two conditions (analogous to (i) and (ii)) are satisfied by 5:

(i*) each element of 5 is contained but in a finite number of maximal ideals of R, and
(ii*) each prime ideal of R which contains an element of 5 is contained in only one

maximal ideal of R.
We shall see that, for every domain R, there is a largest monoid Tin R* which enjoys

properties (i*) and (ii*). This T is uniquely determined by R and is distinguished by the
property that, for a submonoid 5 of R*, the 5-torsion /?-modules admit primary
decompositions if and only if 5 is contained in T. Consequently, in every domain there is
always a unique largest 5-torsion theory which admits primary decompositions.

1. Monoids satisfying condition (i*). A submonoid 5 of R* defines a torsion theory
in the category of ^-modules where the torsion class consists of all 5-torsion modules and
the torsion-free class consists of the 5-torsion-free modules (as defined above). It is clear
that there is no loss of generality in assuming that 5 is saturated in the sense that

Glasgow Math. J. 38 (1996) 321-326.

https://doi.org/10.1017/S0017089500031748 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031748


322 LASZLO FUCHS AND SANG BUM LEE

ab e S(a, b e R) implies a, b E S. Then S will contain all the units of R. The complement
R\S is the set union of those prime ideals of R that are disjoint from 5.

The following lemma is well known, we prove it for the sake of completeness and
easy reference. Note that S(K) = Rs/R; in fact, only the inclusion ^ requires a proof. If
x + R E S(K) for x e Q, then sx - r E R for some s s S, and so x = r/s e /?5.

LEMMA 1. If M is a torsion R-module, then

S(M) = Tor?(S(K),M) and Ms = RS®RM = Tor?(K/S(K), M).

Proof. The exact sequence 0—> R —»Rs —* Rs/R —» 0 induces the exact sequence

M->0 (I)

for every fl-module M. Similarly, from the exact sequence 0—>S(K)-*K^>K/S(K)-^Q
we derive the exactness of the sequence

. . . -* Torf (S(K), M) -+ Torf (K, M)

provided M is a torsion /?-module. The maps are natural everywhere, so a simple
comparison shows that MS = RS®RM = TOT?(K/S(K), M). AS S(M) is the kernel of the
localization map M^>MS = RS®RM, we obtain Torf(Rs/R, M) = S(M). D

We continue with an easy (and basically well-known) lemma.

LEMMA 2. For any R-module M, there is an embedding of M in the direct product
M* = UpMp of the localizations of M where P runs over all maximal ideals of R.

Proof. There is a homomorphism <j>:M -+YlP MP acting as <j>(x) = ( . . . , I ® * , . . . )
(x s M) where the coordinate 1 ® x at the place corresponding to the maximal ideal P is
computed in RP®RM. It is well known (and easy to see) that <j> is monic. •

We can now verify the following lemma.

LEMMA 3. For a monoid S the following hypotheses are equivalent:
(a) S(K) embeds in the direct sum ®P S(K)P of its localizations at maximal ideals P\
(b) for every R-module M, S(M) can be embedded in the direct sum ®PS(M)P;
(c) 5 satisfies condition (i*).

Proof. Let (f> be defined as in the preceding proof with M = K. Note that the Pth
coordinate of (j>(x) (x E S(K)) vanishes if and only if Ann* <£ P. In fact, if Annx (£ P,
then the Pth coordinate of 4>(x) is zero, because a + RP = a + 1/r + RP = (ra + l)/r + Rp

= RP for any representative a E Q of the coset x and for any r e Ann (A: + R)\P.
Furthermore, a + RP = RP means a e RP, so there is a t$P with ta E R; thus te
Ann x <£ P. Thus it is evident that the image of an element x e K under <j> belongs to the
direct sum S(K)* = ®P S(K)P if and only if its annihilator ideal Ann x = {r E R \ rx = 0}
is contained but in a finite number of maximal ideals. Since Ann(s-1 + R) = sR, it follows
that (a) and (c) are equivalent.

Clearly, (a) is a special case of (b). But (a) implies (b), since if (a) holds, then
by Lemma 1 we have S(M) < ®P Torf(S(K)P, M) where the summands are the
P-components S{M)P. In fact, the exact sequence 0-•/?->/?5-» 5(K)~*0 implies
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0—>RP—* (Rs)p—*S(K)P—»0 whence we obtain the exact sequence
0->Torf (S(K)P, M)^>MP^>(RS)P ®RM = (MP)S-*S(K)P 0* A/-> 0. D

It is straightforward to check that the set

7i = {t e R* | r is contained but in a finite number of maximal ideals of R}

is a submonoid of /?*. Consequently, a monoid 5 < /?* satisfies (i*) if and only if it is a
submonoid of 7J.

2. Monoids satisfying (ii*). Next we wish to concentrate on submonoids S^R*
satisfying condition (ii*). We start with the following lemma.

LEMMA 4. The following conditions on a submonoid S of R* are equivalent:
(a) for every pair P, P' of distinct maximal ideals, the tensor product RP ®RRP, is

S-divisible;
(b) for every pair P, P' of distinct maximal ideals, we have Rs < RP ®RRP',
(c) for every pair P, P' of distinct maximal ideals, the prime ideals contained in

P(~\P' are disjoint from S;
(d) 5 satisfies condition (ii*).

Proof. (a)O(b) Clearly, RP ®RRP. is 5-divisible if and only if RP ®RRP^ ®RRS =
RP ®RRP' which holds exactly if Rs < RP ®RRP-, here we have identified RP ®RRP' with a
submodule of Q.

(a)O(c) The tensor product RP®RRP' is the localization of R at the saturated
semigroup S(P, P') generated by R\P U R\P' = R\(P n P'). Thus it is 5-divisible exactly
if 5 g 5 ( P , P')\ equivalently, exactly if every prime ideal of R disjoint from S(P,P') is
disjoint from S. But a prime ideal is disjoint from S(P, P') if and only if it is contained in
PC\P'.

(c) <=> (d) This equivalence is obvious. D

It is now easy to verify:

COROLLARY 5. The set

T2 = {t e R* | any prime ideal of R containing t is contained in only one maximal ideal}

is a multiplicative submonoid in R*.

Proof. (By default, the units of R belong to T2.) By definition, T2 satisfies condition
(d) of Lemma 4 stated for S. From the proof of this lemma it is evident that T2 £ S(P, P')
for every pair P, P' of maximal ideals, thus T2 c n S(P, P'). Since every element in this

PI&P1

intersection belongs to T2, we have T2= n S(P,P'). This proves that T2 is indeed a
monoid. D p"p '

LEMMA 6. If S is a submonoid of T2, then
1) for every S-torsion module M and maximal ideal P, the localization map M-+MP

is surjective;
2) for every pair of S-torsion modules M, N, and for distinct maximal ideals P, P' we

have
HomR(MP, NP.) = 0.
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Proof. 1) In view of the sequence (1) with S = R\P, it suffices to show that under
the stated hypotheses RP/R®R M = 0 holds. We prove that localizations of RP/R<S>R M
vanish. Clearly, RP. ®RRPIR®RM = (RP<8>RRP)/Rr ®RM which is obviously 0 whenever
P' = P. If P' ¥= P, then the first module in the last tensor product is 5-divisible by Lemma
4, so it annihilates the 5-torsion module M.

2) H = HomR(Mp,NP) is both an RP- and an i?P-module, so it is an RP <8>RRP-
module, and hence 5-divisible by Lemma 4. An 5-divisible homomorphism annihilates
5-torsion modules, and since by part 1) MP is 5-torsion, we must have H = 0. •

COROLLARY 7. If 5 is a submonoid of T2, then every S-torsion module M is a subdirect
product of its P-components MP.

Proof. This is an immediate consequence of Lemmas 2 and 6. •

3. Monoids satisfying conditions (i*) and (ii*). Set 2(P) = n RP< for a maximal
Pi*p

ideal P of R where P' runs over all maximal ideals distinct from P.

LEMMA 8. Let S be a monoid satisfying both (i*) and (ii*). Then for every maximal
ideal P of R the following direct decomposition holds:

(RS)P/R = RPIR 0 ((RS)P n £ (P))/R.

Proof. For the sake of brevity, we will write A = Rs. For a maximal ideal P,
consider the homomorphism 4>p:AplR^®P¥,P(APIR)p. defined similarly as in the
proof of Lemma 2; we could replace the direct product by the direct sum as a result
of condition (i*) (cf. Lemma 3). Evidently, an element of AP/R is mapped upon 0
if and only if it belongs to Rr for every P'^P. Thus Ker<f>P = (APr\'Z(P))/R,
and so AP/(APD2 (P)) is isomorphic to a submodule of ®P-*p(A/R)P'. From con-
dition (ii*) we obtain RP®R(AP/R)P=0 whence RP ®R(®p.*P(Ap/R)P') = 0, and so
RP ®R (AP/(A n £ (P)) = 0. This implies RP ®R (AP D 2 (P)) = AP whence we derive that
the submodules RP/R and (AP D S (P))/R generate AP/R. As the intersection of the last
two submodules is obviously R/R, we arrive at the desired conclusion that AP/R is the
direct sum of its submodules RP/R and (AP D 2 (P))/R- •

THEOREM 9. If the monoid S^R* satisfies conditions both (i*) and (ii*), then there is
a direct decomposition

(2)

Proof. In view of the preceding lemma, (Ap n £ (P))/R is a summand of AP/R.
Manifestly, it is isomorphic to AP/RP = (A/R)P, where as before, A = Rs- We can now
imitate the proof of the implication 2) 4> 3) in Matlis [2, Thm 8.5] to argue that for every
finite set {Pu... ,Pn} of maximal ideals the submodules (AP.n'2(Pi))/R generate their
direct sum in AIR, and this direct sum is a summand of AIR. It then follows that
AIR = @P (Ap D 2 (P))/R where the summands are nothing else than (A/R)P. •

The decomposition of the preceding theorem yields:
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COROLLARY 10. / / the monoid S^R* satisfies conditions (i*) and (ii*), then every
S-torsion R-module M decomposes as

M = @P MP.

Proof. Let M be an 5-torsion /?-module. Because of Lemma 1, we have M =
TorfG4//?,M) which is—by Theorem 9—equal to @PTor^{AIR)P,M). The exact
sequence 0-*RP —*AP —*AP/RP —*0 implies the exactness of the induced sequence
0 = Torf(AP,M)^>Torf(AP/RP,M)^MP^AP®RM = 0 whence TOT?((A/R)P,M) =
MP, proving the assertion. •

Note that if (2) holds, then by Lemma 3, S satisfies (i*). Furthermore, the localization
of (RS/R)P at any maximal ideal P'^P must be 0, thus RP®RRP®KRS = RP®RRP,
which implies Rs ^ /?P. <8>RRP. Hence, by Lemma 4, S satisfies (ii*). It is now clear that a
monoid S^ R* satisfies both (i*) and (ii*) if and only if it is contained in the monoid
T = 7i D T2. Consequently, we obtain our main result:

THEOREM 11. In every domain R, there is a unique maximal monoid T < R* such that
the T-torsion R-modules admit primary decompositions.

Furthermore, for a {saturated) submonoid S of R*, the following conditions are
equivalent:

(a) the S-torsion R-modules admit primary decompositions;
(b) 5 satisfies conditions (i*) and (ii*);
(c) S is contained in T. •

4. The case p.d.Rs = 1. If R is a Dedekind domain (i.e. a domain of global
dimension 1), then the P-components of K are indecomposable. In the general case, this
need not be true, but this favorable situation occurs when the projective dimension of the
localization Rs (as an ^-module) is 1. Indeed, we have:

THEOREM 12. / / 5 is a submonoid of T such that p.d.Rs ^ 1, then Rs/R is the direct
sum of its P-components which are all indecomposable and countably generated.

Proof. In view of Theorem 11, only the claims concerning indecomposability and
countable generation require proofs.

Let B/R be a summand of Rs/R where R<B<RS. Because of [1, Thm 4.2], B must
be a flat overring of R which is the intersection of the localizations RP at maximal ideals P
with PB ¥= B. In the primary decomposition (2), the submodule RP/R is the direct sum of
the components (RS/R)P- with P'¥>P. Therefore, B/R is the direct sum of certain
P-components. We conclude that the P-components of Rs/R must be indecomposable.

In view of [1, Thm 3.2], p.d.Rs < 1 implies that Rs/R is a direct sum of countably
generated submodules. By [1, Prop. 4.1] all submodules of Rs/R are fully invariant, so the
P-components must be direct sums of countably generated submodules. By indecom-
posability, they are themselves countably generated. •

The following examples exhibit various situations for the semigroup T.

EXAMPLE 1. If R is an /i-local domain (in particular, a Dedekind domain), then the
semigroup T is all of R*.

EXAMPLE 2. In the polynomial ring R = I[x] over the integers, every non-zero prime
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ideal which is not maximal is contained in infinitely many maximal ideals. No maximal
ideal of ?̂ is principal whence it follows that the monoid T consists of the units of R.

EXAMPLE 3. (See McAdam [3]) Let Ro be a complete discrete valuation domain with
maximal ideal P. The ideals / = PRX + xRt and / = PRt + (x + 1)/?, are maximal ideals of
the polynomial ring Rt = R0[x] over Ro. The localization R of /?] with respect to the
semigroup 5 = /?i\(/U7) is a domain with precisely two maximal ideals, viz. Is and Js-
The only other non-zero prime ideal of R is PR which is contained in both Is and Js- In
this case, T of R is nothing else than R\PR.

EXAMPLE 4. Let R be a domain of Krull dimension 1. Then the monoid T consists of
all the elements of R that are contained only in a finite number of maximal ideals.
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