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It is a matter of common knowledge that during the past few years very
great progress has been made towards the development of a satisfactory theory
of aerofoils. In Germany, where the main work of developing the " Vortex "
theory has been carried on, the theory has rapidly been applied to practical
purposes, and modern text books on aircraft design are to be found showing
the application of that theory.

In this country, despite the fact that the Vortex theory was actually
originated by Mr. F. W. Lanchester as far back as 1908, and that the general
principles of its application to aircraft design were laid down by him in his
volumes on Aerial Flight (1911), I have not been able to discover any published
material dealing with the practical application of modern knowledge to the
design of aircraft.

This does not of course imply that British designers fail to use that know-
ledge—the contrary is the case—but it does seem to indicate that a simplified
statement of the methods of using the theory in its practical applications
might prove useful and interesting.

I have no intention of making this paper a general guide to the theory itself.
Those who desire to study it for its own sake must be referred to the fairly
voluminous literature on the subject already in existence. At the same time
some elementary outline does seem essential, but it must necessarily be of a
very sketchy and incomplete nature.

The Vortex theory itself does not account for all the qualities of an aerofoil.
It deals only with effects into which the viscosity of the air does not enter.
In other words it accounts only for such part of the behaviour of aerofoils as
would occur in the hypothetical inviscid fluid of hydrodynamics. Other
effects which result from viscous forces occur with the real aerofoil, but the
theory permits of the separation of these two classes of effects.
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AND ITS APPLICATION TO AEBOPLANE DESIGN. 39

For many years hydrodynamic theory failed dismally to account for any
resistance phenomena except such as could be traced to viscous forces. The
idea of a circulatory flow round an aerofoil or other body as a mechanism which
would produce a lateral force of the " lift " type has long been familiar, but
it appeared that such a lift would not be accompanied by resistance or drag

It has now been shown that this is true only for the case of a lifting element
of infinite span and that if the conditions at the ends of a real lifting element—
such as a wing—are considered, a definite drag must accompany this lift.
The drag is not dependent on viscosity—it would occur in the ideal fluid of
hydrodynamics.

The " circulation " round the wing which leads to the development of
lift cannot cease suddenly at the tip of the wing. Actually it forms part of a
vortex system which is completed by a pair of trailing vortices passing off
from the tips down stream—to infinity in the case of a fluid possessing no
viscosity, or to decay gradually in the real fluid. In either case the wing may
be regarded as a vortex producer producing two feet of vortex for every foot
which it advances through the air.

A vortex is fluid in motion of a very definite type. It therefore represents
kinetic energy, and if the length of vortex produced per unit of time and the
amount of motion involved in the vortex are both known, the rate at which
energy in this form is being dissipated is also known. Energy so dissipated
necessarily implies resistance, and this resistance is known if the energy rate
is known.

The lift of a wing per unit of span is proportional to the product of the
air speed and the " strength " of the circulation or vortex system associated
with it. (That the lift of a given wing at a given incidence varies as the square
of the air speed results from the fact that all other conditions being the same
the circulation is proportional to the speed.) The " strength " of the circulation
is a measure of the amount of motion in unit length of vortex, therefore of
the energy loss per unit of motion of the wing.

Thus any wing canying the same load per unit of span at the same speed
has the same strength of circulation and the same total energy loss, and con-
sequently the same drag due to this energy loss. This drag—which has been
termed the " induced " drag—is therefore entirely independent of the actual
dimensions of the wing or of its section—it depends only on the loading per
unit of span.

This would be strictly true if the circulation over the whole span of any
wing were uniform and the whole of the energy lost were carried off in a pair
of single vortices from each wing tip. Actually the circulation, and consequently
the lift, is not uniform over the span. The circulation alters from point to
point, and there is a sheet of vortices along the whole trailing edge. The
total energy loss, and consequently the induced drag, depends on the dis-
tribution of these vortices along the span, and this in turn governs the lift
distribution along the span.

Provided that the lift distribution is always similar, however, the above
statement holds, and fortunately for normal rectangular wings the lift distribu-
tion varies so little that the rule may be taken to hold for all practical purposes,
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40 THE MODEBN THEORY OF AEROFOILS

and the induced drag of all similarly shaped wings with equal loadings per
unit of span has the same value at the same speed.

Given the total weight and the span, therefore, one can calculate for a
given machine the value of induced drag at any speed, and this drag is entirely
independent of such questions as the actual area or section of the wing employed.
(The induced drag will vary with certain other qualities—it will not be the
same for a biplane as for a monoplane—and for a tapered or twisted wing
will differ from the induced drag of a straight rectangular wing, but as will
be shown later, for most practical cases the induced drag can be written down
straight away for any type of machine once the span and weight, etc., are known.)

Over and above this " induced " drag a real aerofoil in real air has an
additional resistance which is due to viscous forces. The drag—known as
" profile " drag—can easily be evaluated from the results of ordinary model
tests by calculating the induced drag, and subtracting from the total drag.
"Profile" drag, unlike "induced drag," is characteristic of particular wing
sections. It can properly be expressed in terms of a profile drag coefficient,
and the value of this profile drag coefficient, for any section, is independent
of span, or air speed. That is, for the given section and at the same lift
coefficient, total profile drag varies with wing area and the- square of the speed.

If therefore one takes the normal test results of total drag coefficient (Kd),
calculates for the appropriate conditions the induced drag coefficient (Kdi),
and subtracts this from Kd, one is left with a profile drag coefficient (Kdp).

Knowing the total weight and the desired landing speed of any aeroplane,
the wing area necessary (for a given wing section) can be calculated from
the maximum lift coefficient. Then, using the values of profile drag coefficient
obtained by the above method, the profile drag curve for the wings can at
once be obtained. This profile drag will not be affected by span, aspect ratio,
or whether the machine is a mono, bi ortri-plane. It depends only on total
area, wing section and speed.

The induced drag, for any span or wing arrangement, can be calculated
separately and without reference to the section which is used.

The sum of these two drags is the total drag of the wings.
In this way one separates wing drag into two components—one of which

is purely and entirely governed by the qualities of the section employed, and
the other by the details of the wing arrangement (particularly the span) em-
ployed.

The method is much simpler and more elastic than the method of computing
wing resistance from the usual total drag coefficient, for the value of this
coefficient is largely dependent on aspect ratio. If one compares two wings
of markedly different maximum lift coefficient on the basis of equal aspect
ratio, say from the direct results of N.P.L. model tests, the wing with the
higher maximum lift will appear to have a much higher drag. If one were
to use these wings at constant aspect ratio, the smaller surface needed with
the high lift wing wculd involve a smaller span. In fact'it is the small span
which accounts for the high drag, and usually speaking one will increase the
aspect ratio of the higher lift wing, which will reduce the induced drag. Dealing
with total drag coefficients, it will be necessary to recompute these for each
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AND ITS APPLICATION TO AEROPLANE DESIGN. 41

wing for every value of aspect ratio which may have to be considered.
The alternative method involves the reduction of the model figures for

drag to figures for profile drag alone, once and for all. These figures are a
true index of the characteristic of the section itself and can be used for that
section irrespective of span, aspect ratio or wing arrangement.

The precise mechanism by which the energy dissipated in the trailing
vortices is converted into a drag force is both interesting and important. In
fact the whole wing works in tht. field of these vortices and the effect is to
produce a downward inclination of the airstream at the wing itself. The
" lift " force produced on the wing is at right angles to the stream direction
at the wing, and, owing to the "downwash," rlns direction is inclined downwards
and backwards. The lift force is inclined to the same extent, and therefore
has a horiontal component—which is the induced drag.

It is obvious that the effect of this downwash is to reduce the real incidence
of the wing. The incidence given in the model test results is measured from
the horizontal (or the direction of the undisturbed air stream), whereas the
wing is actually working in a down current, and its real incidence is less than
the apparent incidence by the angle of downwash. The lift coefficient of a
particular section depends on the real incidence, and as the angle of downwash
at a given lift coefficient varies with aspect ratio, two wings of the same section
but different aspect ratio give the same lift coefficients at different apparent
incidences.

The curve of lift of a given section plotted against apparent incidence
therefore changes in slope with change c f aspect ratio, and this is important
in practical design as it affects tail settings and so forth.

The real incidence, however, is constant for the same Kl for any one section.
The downwash angle depends only on total lift, span and speed (or on Kl
and aspect ratio) and the value of this angle for any aspect ratio can be computed
as a function of Kl once and for all. This angle is then subtracted from the
apparent incidence of the model wing to give the real incidence for that section
or to plot a lift against the incidence curve, which is characteristic of that
section.

When the span and general disposition of the wing have been settled,
the incidence corrections for that wing can once more be calculated from figures
for span and weight, and the apparent angle for each lift coefficient is obtained
from the curve by simple addition.

The alternative method of working is that of correcting for aspect ratio
and drawing new Kl against incidence curves for each wing section and each
aspect ratio—a much more laborious process than the one I have suggested.

When dealing with rectangular monoplanes, the estimation of total wing
drag thus becomes exceedingly simple.

In the case of a biplane the trailing vortices of one wing produce a down-
wash at the other wing and vice versa. The induced drag of a biplane is
therefore not the same as that of a monoplane of the same span, load and
speed being equal. The effect of the difference depends practically entirely

en the ratio between gap and span, but the correction to both induced drag
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42 TEE MODERN THEORY OF AEROFOILS

and angle of incidence for a given Kl to within limits of accuracy sufficient
for practical purposes is a very simple matter. In the case of the biplane also
the interference of one wing with another modifies the C.P. or the moment
coefficient characteristics of the section.

The case of tapered or twisted wings involves a more complicated procedure,
as the distribution of lift along the span will vary in each case. It is, however,
quite possible to calculate with a high order of accuracy the aerodynamic
qualities of a tapered or twisted wing from the result of tests on rectangular
models of the section or sections used.

For triplanes or other multiplanes, methods analogous to those applicable
to the biplane could be applied, but so far as I am aware, no computations
of the various corrections have yet been published. In general the induced
drag of a multiplane is less than that of a monoplane by an amount increasing
with increasing number of planes, but the improvement possible in practice
must be of decreasing value with increase in the number of wings.

In the appendix, details of the methods which may be used for practical
purposes with some illustrations of their application are given, and I hope
that these will be found sufficiently simple and straightforward for everyday
use.

APPENDIX.
LIST OF SYMBOLS.

Symbol. Meaning. Units or dimensions.

A Total Wing Area sq.ft.
a Aspect ratio \Span '

f Area.
C Chord ft.
D Drag lbs.
Di Induced drag lbs.
Dp Profile drag lbs.
F \ Biplane correction for induced down-

/ wash and drag no dimension
g Gap ft.
i Angle of incidence ... ... ... radians.
i° Angle of incidence ... ... ... degrees
i°o Angle of incidence at infinite aspect ratio degrees
L Lift lbs.
M Pitching moment ... ... ... lbs., ft
N \ Downwash and induced drag correction

J factor for rectangular wings ... No dimensions.
S Span ... ... ... ... ... feet.
V Airspeed ... ... ... ... ft. p. sec. or m.p.h.
W Weight lbs.
a Angle of induced downwash ... ... Radians.
a° Angle of induced downwash ... ... Degrees.
/? Biplane incidence correction ... ... Radians.
/J° Biplane incidence correction Degrees.
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AND ITS APPLICATION TO AEROPLANE DESIGN. 43

COEFFICIENTS :—

Kd = Coefficient of total drag ... ... ... =

Km == Coefficient of pitching moment

EQUATIONS.

(A) Fundamental forms.
For monoplanes elliptically loaded :—

2 1 L

Kl

For monoplanes not elliptically loaded :—

N J i

PAV»
DiKdi = Coefficient of induced drag ... ... =

Kdp = Coefficient of profile drag... ... ... = — T V J ~

Kl = Coefficient of Lift = L

pAV»

also —

tt = _ 2 _ Kl — i 3
ir a

Kdi = -^— KP ^ 4
7T a

Hence —
Di Kdi

5

a = N ^ — Kl. — 3a
JT a

Kdi = N —2— KP —i— 4a
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44 THE MODEBN THEOBY OF AEBOFOILS

Biplanes.
Wings of equal loading :—

„ 2 1 L
. = F _ — - - ^ - 1b

O I T 2Di - F 4 - - r s^
a = F ——. Kl —!— 3b

IT a
Kdi ' = F —— Kl2 — — 4b

•c a

Wings of unequal loading :—
Let the wings have spans Si and S,, carrying loads Li and L2, then:—

Li + L2 ~~"J. v"

Incidence correction for biplanes :—
Total incidence ... i = i o - f a + l8 (6)

where :

d ) " K 1 <7)
Moment correction for biplanes :—

AKm = , —|Li ^ (8)

, EXPRESSIONS FOR PRACTICAL USE.
In theseangles are given in degrees, and the numerical values of coefficients

are given for the direct application to British units.
For the reduction of model results :—

Elliptically loaded wings :-— "fbli

• x
 a ° = 36-5 Kl —1— (3c)

• Kdi : = -637 Kl« -^— (4c)
a - .

Rectangular wings :—
Values of N, the correction factor for rectangular wings are given in Table

I. for aspect ratios from 4 to 10. From expressions (3) and (3a) above, it is
obvious that the difference between the downwash of a rectangular and of an
elliptically loaded wing may be written :—

Aa = ^ - J - Kl

Similarly from (4) and (4a)....
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TABLE I.

Correction Factor for Induced Downwash and Drag Rectangular Wings.
Aspect Ratio = a.

4
5
6
7
8
9

10

N.

1032
1-042
1-053
1-065
1-075
1-085
1-092

N-1

a

•008
•0084
•0088
•0093
•0094
•0095
•0092

N-1
Values of given in Table I. vary only between -008 and -0095 between

a
a = 4 & a = 10. The effect of this variation is to alter the value of A Kdi
by less than the probable error of measurement of Kd in the channel. It is

N-1

therefore permissible to assume for practical purposes constant and

equal to -0088. Expressions (3a) and (4a) can then be written,

a = —— Kl - i — + .0088—^- Kl
7T a TT

Kdi Kl '
IT a

These become for practical purposes—
l= 36-5 Kl

Kdi = •637 Kl'
a

a

•0088-

+ -322 Kl

+ -0056 Kl'

Kl '

(3d)

(4d)

As Ao° = -301 Kl and AKdi =-0056 Kl* for rectangular wings are inde-
pendent of aspect ratio, the change in a and Kdi, with change of aspect ratio
is the same as that for elliptic wings.

;o ;o o ir\\
1 o = X — a \V)

Kdp = Kd — Kdi (10)
For computing Downwash angle and Induced Drag.

Rectangular monoplanes:—
a° = 7162

a° = 1 5 3 5 6

Di = 125

Di =i 268

W

W

(ft*
(!)•-

I
V
1

for

for

for

for V

V

V

V

=

=. M.P.H.

= ft. P.S.

= M.P.H.

ft. P.S.

(Id)

(le)

(2d)

(2e)
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46 ; THE MODERN THEOBY OF AEROFOILS

also :—

a" = 5 7 . 3 _^L_ (5a)

- i° = i°i + a° (U)
D = Dp + Di (12)

[Note.— (Id), (le) and (2d), (2e), are strictly correct for elliptical loading
only. But aspointed out above the change of a and Di with span or aspect
ratio is the same for rectangular and elliptically loaded wings. If Aaand
A Kdi have been neglected in reducing model figures, use of these exprcssoir.s
leads to no error. If' Aa and A Kdi have been used to reduce model results,
it is best to add Aa to i°o and A Kdi to Kdp as though they were scciion
characteristics, otherwise the process of computation is unnecessarily torn
plicated. Thus (11) becomes i° = (i°o + Aa°) + a and (12) D = (Dp
+ ADi) + Di. .
Rectangular Biplane:—

Equally or nearly equally loaded wings:—•

: Di = 125 F y ^ P ^ - f o r V = M>.H. (2f)

Di •= ***• F{i&Tsj} ^ for v = ft-P-S' (2g)

Where Si and S2 are the spans of the two wings :
: la°

 : = 57.3_5i_ ; __. (5a)
Unequally loaded biplane.

»- m m ©i
for V = M.P.H.

for V ^ Ft.P.Sec.
Where Li is load on wing cf Span Si,

L2 is load on wing of Span S8,
F is factor obtained from Fig. 5 for the appropriate values of,

Si -G
r*. and

a° = 57-3 - ^ — (5a)

• Incidence cortection for biplane :—
'• 1° = (1° + a0 + /3°) (6a)

2-28 \^J Kl (7a)

R C
Fig. 6 also gives valued of ^ , in terms of G.
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' Moment correction for biplane :—

AKm = 5 ^ 3 - x - / 8 ° = -0137,8°

APPLICATION TO PRACTICAL PURPOSES/.

(8a)

REDUCTION OF MODEL RESULTS.
Model results are given in terms of Kl and Kd against incidence, generally

for a monoplane, and for a definite aspect ratio. From these we proceed to:
extract the values of io and Kdp, for each value of Kl, thus obtaining the
essential characteristics of the section, independent of the induced drag and;
downwash which depend on aspect ratio. For this purpose tabulated values
of A and Kdi at standard aspect ratios may be computed once and for,all.

This has been done in Tables II. and III., using expressions (3d) and (4d).

TABLE II.

a° = Induced Downwash angle for monoplane model test reduction. *

Kl

•05
•10
•15
•20
•25
•30
•35
•40
•45
•50
•55
•CO
•65
•70
•75
•80

(1)

322 Kl.

o

•016
•032
•048
>064
•080
•096
•112
•128
•144
•161
•176
•193
•209
•225
•241
•257

(2);

36-5'Kl.

... p

1-82
3-65
5-47
7-30
9-12

10-95
12-77
14<C0
16-42
18-25
20-07
21-90
23-72
25-55
27-37
29-20

(3) — ^
a

a0 for elliptic loading.

a = 5.

O

0-36
0-73
1-09
1-46
1-82
2-19
2-55
2-92 -
3-28
3-65
4-01
4-38
4-74
5-11
5-47
5-84

a = 6.

0-30
0-61
0-91
1-22
1-52
1-82
2-13
2-43
2-73
3-04
3-34
3-65
3-95
4-26
4-56
4-87

(4) = (3)-)-(
a° for rectangular

wings.

a = 5.

O

0-38
0-76
1-14
1-52
1-90
2-29
2-66
3-05
3-42
3-81
4-19
4-57
4-95
5-33
5-71 •
6-10

a = 6.

0 , „

0-32
0-64
0-96
1-28
1-60
1-92
2-24
2-56
2-S7
3-20'
3-52
3-84
4-i6
4-48
4-80
5-13

In Table II., Column 1 gives values of the correction to a° for rectangular
wings. This may be neglected if the results are afterwards only to be used
for rectangular wings.

Column 2 (36-2 Kl) gives the value of a° for aspect ratio 1 and elliptic
lift distribution. For any other aspect ratio, divide column 2 by the aspect
ratio in question. In column 3 this has been done for a = 5 and a = 6.
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48 TEE MODEBN THEOBY OF AEBOFOILS

These figures may be used to compute change of incidence due to aspect
ratio for rectangular wings, without reference to column 1. To arrive at true
values of i°0 and Kdp for research purposes, or to compute tapered, etc., wings,
Column 1 must be added to the elliptic loading values. This has been done
in Column 3 for a = 5 and a = 6 again.

TABLE III .

Kdi =

Kl
XVI •

•05
•10
•15
•20
•25
•30
•35
•40
•45
•50
•55
•60
•65
•70
•75
•80

Induced Drag Coefficients for

K1»
rvx .

•0025
•010
•0225
•040
•0625
•09
•1225
•16
•2025
•25
•3025
•36
•4225
•49
•5625
•64

(1)

•0056 Kl

•000014
•000056
•000126
•000224
•00035
•000504
•00069
•00090
•00134
;00140
•00170
•0020
•0024
•0027
•00315
•0036

(2)

•637 Kl»

•00159
•00637
•01432
•0255
•0398
•0573
•0780
•1019
•1275
•1591
•1911
•2291 "
•2675
•3129
•3566
•4074

Monoplane for Model test reductions.
i

(3) = (2) + -±- =
Kdi, elliptic.

a = 5

•00032
•00127
•0029
•0051
•0080
•0115
•0156
•0204
•0255
•0318
•0382
•0458
•0535
•0626
•0713
•0815

a = 6

•00026
•0011
•0024
•0042
•0066
•00955
•0130
•0170
•0212
•0265
•0319
•0382
•0449
•0522
•0594
•0679

(4) = (1)+ (3) =
Kdi rectangular.

a = 5

•00033
•00133
•0030
•0053

'•0083
•0120
•0163
•0213
•0266
•0333
•0399
•047b
•0560
•0653
•0745
•0851

a = 6

•00028
•00112
•0025
•0045
•0070
•0100
•0140
•0180
•0224
•0280
•0335
•0400
•0470
•0550
•0630
•0715

In Table III., Column I is again -the correction for rectangular wings and
may be neglected if only rectangular wings are to be considered. Column 2
is Kdi lor aspect ratio = 1 and elliptic distribution and divided by the aspect
ratio gives Kdi for that aspect ratio. Column 3 gives Kdi for a = 5 and 6,
for elliptic loading, and Column 4 for a = 5 and 6 corrected for rectangular
wings.

To reduce a given set of model results, subtract from i°, the model incidence,
at each value of Kl the value of a° at the same Kl for the correct aspect ratio
—using Column 2 divided by a (or Column 3 if a = 5 or 6). If accurate
values of a0 are necessary, Column 1 should be added. This gives at each
value of Kl the value of i°o which is the " real" incidence of the section for
that Kl. .

At each of the same values of Kl, compute Kdi for the aspect ratio of the
model, using Table III. precisely as above and subtract Kdi from the model
Kd at the correct value of Kl giving values of Kdp against Kl.
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The most convenient method of performing these operations is graphical.
Plot a° and Kdi against Kl for the model aspect ratio. On the same chart
plot angle of incidence and Kd from the model. Measure (i°—a°) = i°o
and replot to give the " real " or infinite aspect ratio lift incidence curve.
Measure Kd—Kdi and replot to give Kdp against Kl. This process has been
carried out (Figs. 2 and 3) for RAF 15 using the results for VL = 100 of R. & M.
888. The results may alternatively be tabulated as Table IV.

TABLE IV.
R.A.F. 15. Infinite Aspect Ratio Characteristics.

From R & M 888, VI = 100.
Kl.

•05
•10
•15
•20
•25
•30
•35
•40
•45
•50
•55
•575

i°o-

— 1-4°
— 0-22°
+ 0-82°

1-9°
2-6
4-1°
5-2°
6-2°
7-3°
8-4°
9-6°

10-7°

Kdp.

•0052
•0052
•0053
0053
•0054
•0054
•0060
•0065
•0075
•009
•0125
—

C.P.

•90
•41
•36
•33
•315
•305
•30
•296
•286
•282
•278
—Max.

The lift-incidence and profile drag-lift curves, together with the curve of
Km (or of C.P.) against lift are the essential characteristics of the section
and no other information concerning the qualities of a section are required—
except information which in many cases is only available as the result of trial
and error concerning the so-called " scale effect " on maximum lift, etc.

APPLICATION OF REDUCED SECTION CHARACTERISTICS.
Subject to structural considerations—which may be very largely influenced

by such matters as the range of C.P. movement and the possibility of including
spars of adequate depth within the section the designer's chief interest in
any section is centred in its drag, and " profile " drag alone is affected by
the scciion used.

In the most general case the total weight of machine and the maximum
permissible landing speed are among.the initial data of design.

For any section of known characteristics the total wing area can at once
be computed from the value of Kl max., and thence the total profile drag using
that section can be computed for all speeds above the fixed minimum. As an
example the profile drag for R.A.F. 15 section, for a total weight of 5,000 lbs.
and a landing speed of 50 m.p.h. has been computed in Table V. The results
apply to the stated conditions entirely irrespective of how the total wing area
may be arranged. Similar profile drag figures may be. computed for any other
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50 THE MODERN THEORY OF AEROFOILS

section, and the section which gives the lowest profile drag will also give the
lowest total drag if a similar wing arrangement of the same span, gap, etc.,
is used in each case.

TABLE V.
Computation of Profile Drag.

Weight loaded, 5,000 lbs. Landing speed (V. min.), 50 m.p.h.
Section :—R.A.F. 15, Kl Max. = -575.

Wing loading = (Vmin.)2 X Kl max. x p.
= 502 X -575 X -0051 = 7-34 lbs./sq. ft.

1°Total area. ' . =
7-34

= 682 sq. ft.

= Klmax.
Vminy

At any speed V, Kl

= -575 (^\ (a)

Dp = p.A.V.2 Kdp = -0051 x 682 X (V2 Kdp) or

^ î  * ^ *-r f \j \s v

V. m.p.h.

170
150
130
110
90
70
50

KL

Kl (from (a) )

•05
•064
•087
•119
•177
•294
•575

Kdp(l) .

•0052
•0052
•0052
•0053
•0055
•0059
•023*

Kdp

Kl

0-104
0-0813
0-0597
0-0446
0-0322
0-0201
0-044

Dp (from (b) )

lbs.
520
406
300
223
161
100
218*

(1) Kdp here has been taken from Fig. 3, but A Kdi of Fig. l.has been
added as suggested in the text on the assumption that only rectangular wings
are to be considered, and that only change in induced drag due to span there-
fore need be treated as induced.

*These figures for drag at Kl max. are not reliable.

THE INDUCED DRAG.
To fix the induced drag for a given load and speed it is necessary first of

all to fix all the dimensions of the wing system which can be seen in an outline
front elevation. For a monoplane tuis involves span only, but for a biplane,
both span and gap are required. (In the case of biplanes chord and stagger
produce secondary effects of minor and negligible size so" far as drag is con-
cerned, and may usually be neglected. In the case of wings with marked
taper, plan form does have an effect, and heavily tapered wings together
with wings of compound or twisted section require special treatment. For
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practical purposes wings with rounded, or normally tapered, tips can be treated
as rectangular.)

THE MONOPLANE.
For monoplanes expression (Id) or (le) may be applied, and it is obvious

that the effect of variation in span over any possible range is very easily
computed. In Table VI. the induced drag in lbs. for a machine of 5,000 lbs.
weight have been computed for speeds from 50 to 170 m.p.h., on spans of 50,
60 and 70 ft. If these figures are combined with those of Table V. for the
profile drag of R.A.F. 15, we have total wing drag for R.A.F. 15 carrying
5,000 lbs. load, landing at 50 m.p.h. for each of these spans. Moreover, these
induced drag characteristics can be combined with the profile drag character-
istics of any other section.

Di =

Di = 126-4

TABLE VI.
Induced Drag for
Weight, 5,000 lbs.
Span Case (1)

., (2)
» (3)

/ W \ 2

Monoplane.

50
60
70
1

ft.
ft.
ft.

(2d)

For case (1) Di = 126-4

(II.) Di = 126-4

(III.) Di = 126-4

/5000\ •'

V >̂o /
/5000\ '

vw)
/5000\ :

1,264,000
V»

877,216

V»
644,640

[NOTE. The numerical coeficient 126-4 used above in the expression for
Di is a slide rule approximation and a more accurate value is 124-9. In the
text the round figure 125 has been used and it is suggested that this should
be used in practice. The tables ( VI, VII, VIII) however were computed
using the first named figure, and as the error so introduced (about 1%) in
no way detracts from their value for illustrative purposes it has not been
thought necessary to alter them.]

V. (m.p.h.)

170
150
130
110
90
70
50

Di (lbs.)

Case I.

43-5
56
75

104
156
268
506

Case II.

30-2
39
52

' 72
108
186
351

Case III.

22-2
28-5
380
53
80

137
258
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THE BIPLANE.

R.A.F. 15 is not really a suitable section for a 5,000 lb. monoplane. To
arrive at the total drag characteristics for a R.A.F. 15 biplane for the load and
landing speed already assumed we have no further concern with the specific
characteristics of the section ; we have only to compute induced drags for
an appropriate biplane arrangement and add to these the same profile drag
results as have already been computed. For this purpose we assume suitable
span and gap figures and refer to figure 5 for the appropriate value of F, the
biplane factor for induced drag. If the biplane has wings of equal span,

Si = S2 and the upper curve is used at the approprate value of

Then the induced drag is the induced drag of a monoplane of equal span
multiplied by F.

For our 5,000 lb. case we may take 60 ft. span 6 ft. gap. (This with 682
sq. ft. which we need in R.A.F. 15 gives a chord of 5-7 ft., so with this section
we shall have a more or less normal gap-chord ratio). In this case we have

Si = S,, -^-= -1, and from Fig. 5 F = -8775.

The induced drag is, therefore, -8775 of the induced drag of a monoplane
of equal span (as shown in 2f and 2g.). (Specially note that as the area is
fixed by the section characteristic of Kl max., and the landing speed, the
" aspect ratio " of the biplane as usually understood is twice as great as that

/ L \ 2 1
of the monoplane of equal span. By computing induced drag on the 1 — 1 —

base we are enabled to treat it independently of section characteristics. If
we consider induced drag in terms of Kdi, each section—even on the same
span—will have a different aspect ratio and it will be necessary to compute
Di for each case separately.)

Expressions 2f and 2g are rigorously accurate only if the loading per unit
span of both wings is the same, but where the two spans are nearly equal
quite large variations in the loading have but very little effect on the total
induced drag, and this simple expression may safely be used.

TABLE VII.

Di = Induced drag for equal winged biplane
Wt = 5,000 lbs.

c
Span = 60 ft. ~S~~ = °'1

Gap = 6ft. F. = -8775
Di =.8775X1264 ( ^ ) ' ±

(That is, Di is Di for 60 ft. span monoplane X -8775.)
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V. m.p.h.

170
150
130
110
90
70
50

Di monoplane.
(From Table VI.)

Case II.
30-2
39
52
72
108
186
351

Di, lbs.

26-5
34-2
45-6
63
95
163
309

The computation of Di for the case of 5,000 lbs. weight 60 ft. span and
6 ft. gap by this method has been carried out in Table VII. It may be well
to indicate the legitimacy of using the simplified expressions for this case,
by assuming that the loading on the lower wing is in fact only 80% of that
on the top wing, and applying the more accurate expression (2h) or (2g) to

this case. On these assumptions we have g- = 1, '-T-T^—Te""T = "1> a n ( i
b, 2(^1+^2)

F = -8775 as before. Also Li = 2,222 lbs. L2 = 2,778 lbs.
Instead of (s)' -

we

= 6093

L2>-<£!;) + (I)1

/2222\»

Vlo"/ 1-51
2222x2778 /2778\*

+ ( - ) - 6151
60 X 60

The variation in Di is proportioned to the variation between these two

quantities, and the simpler expression thus gives an induced drag
6151 or

about -99 of the more accurate value.

If either spans or values of ^ for the two separate wings differ widely, it

is desirable to use the more accurate expression. The difficulty here is to

determine appropriate values to give to =-' and ~-2 but fortunately the total
01 02

induced drag changes relatively slowly for changes in these values. And,
consequently, quite a rough approximation to the relative loadings is sufficient
to give fairly close estimates of Di.

If for the same load we substitute for an equal winged biplane of 60 ft.

span one with Si = 45 ft, S2 = 75 ft., | i= -6 . If the gap is still 6 f t . . , c . G
o v

is = -lbut, from the curve Fig 5 1 — = -6 j we have F = >742. If we apply

the simple equation 2h or 2g assuming equal-^- for the two wings, the value
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— I becomes -742
5000

or 5,153. If the more accurate factor

Li

/Li \ 2

KsJ
used and it is assumed that— = -8—

Si S,
/ I632\a

V 45

it will be seen that Li = 1,632 lbs., L2 = 3,378 lbs. and we have ( ~ I

o-968
/1632_X3378\ / 3 3 7 8 \ 2 . . o_p .
1 I + I I which is 4,876. The simpler expres-
V 45 X 75 / . V 75 /

ion thus over-estimates the induced drag for this case by a little over 4J%.
But even the assumption that the lower wing carried no load, which is
equivalent to treating the machine as a monoplane of 75 ft. span, only gives a
value for Di about 10% too low, so that extreme accuracy in the apportion-
ment of loading is not essential.

Di for this last case of loading and span has been computed in Table VIII.
TABLE VIII.

Di for Biplane with unequal Wings unequally loaded.
Wt. = 5,000 lbs

Li = 1,532 lbs.
L2 = 3,378 lbs.

Si
S2
G

45 ft.
75 ft.
6ft.

S,

Di =

= 0-6. = 0-1. F = 0-742.

= 126-4 {4920}

= 621.888

V. m.p.h.

170
150
130
110
90
70
50

Di, lbs.

21-5
27-5
36-8
51-4
77
127
249

We have now seen how to compute profile drag for any section and the
induced drag of any arrangement of rectangular monoplane or biplane. The
case of the triplane has not so far as I can discover yet been reduced to tractable
terms. Tapered, warped or compound wings can be computed from the
model characteristics of Ihe sections composing them by a process cf integration.
For this I refer you to R. & M. Nos. 806 and 824. Such wings cannot be dealt
with by the general method outlined above.
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INCIDENCE CORRECTIONS.

The reduced model results for profile characteristics give the values of i°o
for each value of Kl. The total incidence of the real wing will be greater than
i°o by a° the induced downwash angle. The designer is generally more
directly interested in the first place by drag than by incidence variations,
so that he will usually have the induced drag figures for the particular arrange-
ment of wings to be used before he need concern himself with this matter,
Therefore the simplest method of arriving at a° is to use the relation a =

^ o r « ° = 57-3 - 5 ! (5a).

Ttiis gives a° for each value of speed, and to correct the incidence curve
of a given section speed must be expressed in terms of Kl for that section and
the loading employed. This has, however, necessarily been done for the
computation of profile drag. The method of computing i° = (i°o + «°)
is shown in Table IX. for a monoplane, and here the whole wing characteristics
for the particular case have been tabulated.

TABLE IX.

Total Wing characteristics.
Monoplane, Wt. — 5,000 lbs. Span = 50 ft.
Section, R.A.F. 15. 682 sq. ft. Landing speed 50 m.p.h.

V.
m.p.h.

170
150
130
110
90
70
50

Kl.

•05
•064
•087
•119
•177
•294
•575

(1)
i%.

— 1-4°
— 1-1°
— 0-1
+ 0-2°
+ 1-4°
+ 3-9°
+10-8°*

(2)
o

a .

+ -50°
+ -64°
+ -86°
+ 1-19°
+ 1-79°
+ 3-08°
+ 5-82°

i° =
;o i o1 o~ra

— -90°
— -46°
+ -76°
+ 1-39°
+ 3-19°
+ 6-98°

16-62°

(3)
C.P.

•59
•50
•44
•39
•34
•30
•28

(4)
Dp.
lbs.

520
406
300
223
161
100
218*

(5)
Di.
lbs.

43-5
56
75

104
156
268
506

Total
Drag
lbs.

563
462
375
327
317
368
724*

Di
(5a).

(1) From Section characteristics. Fig 2.

(2) From Kl and Table II., or from a° = 57-3

(3) From Section characteristics, Fig. 3.
(4) From Table V.
(5) From Table VI. case (1).
* These figures at Kl max. are not very reliable.

For a biplane o° is computed in the same way using (5a) above, but the
total incidence is not i°0 + a° for this case. This is because the flow round
each wing curves the streamlines passing the other wing, and has precisely
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the same effect as would a slight reduction in the curvature of the section.
Strictly speaking this means that the characteristics of the section char.ge to
those of one of a slightly reduced camber. The most important effect of a
change of camber is to increase the angle of no lift, end as the slope of the
lift curve remains constant, the value of i° for every value of Kl is increased.
There will also be a small change in profile drag characteristics, but this is
for practical conditions very small indeed and can be neglected. The only
corrections that need be considered as the result of the change in effective
camber are the increase of the total incidence by a correction (1 and a reduction
in the range of C.P. travel, or of the value of Km. This latter is not very
important and could usually safely be neglected.

Thus the total incidence of a biplane is i°o + ac + y6°. (5° may be computed
from 7a, or the value of (1°/Kl taken from Fig. 7. It will be noticed that /3
depends on the ratio of chord to gap and therefore its value in a particular
case depends on the section used. The computation of total incidence for a
biplane is given in Table X.

Weight =
Wings, R..

m
.p

.h
.

>
170
150
130
110
90
70
50

3•05
•064
•087
•119
•177
•295
•575

(1)

(2)

(3)

(4)
(5)
(6)

(8)
*

TABLE X.

Total Wing Characteristics,
5,000 lbs. Span = CO ft.
A.F. 15,

(1)
i°o-

— 1-4°
— 1-1°
—0-1
+0-2
+ 1-4
+3-9

6S2 sq. ft. CCL

O

(2) (3) ? /
a . j3 • p^
•30° -11° —0-99°
•39° -14°—0-57°
•52° -19° +0-61°
•72° -26° +1-18°

1-09' -38 +2-87°
1-87° -64° +6-41°

+ 10-8* 3-55° 1-24° 15-59°*

From

From

o

From
From

Characteristic, Fig.
o « . o D i

a — 01 o »

° IB Kl for

Table V.
Table VII.

Gap

d,
Q

(4)
lbs.
520
406
300
223
161
100

—
, Biplane.
60 ft.

Q

(5)
lbs
26
34
45'
63
95

163
218*309

2.

(5a)

1-05

Section Characteristic, Fig. 3.
AKm.

C.P. =

. = -0137 /3°.
Km
K l

Unreliable.

•5
•2
•6

>t
al

 D
ra

g.

546
440
346
285
256
263
527*

Chord

I
Is
(6)

•029 •
•032 •
•037 •
•044 •
•059 •
•089 •
•16* •

5-7 ft

A
 K

m
.

(7)
0015
0019
0026
0035
0052
0088
017

K
m

.(
bi

p)

•028
•030
•034
•040
•054
•080
•143

C
.P

(8
)

•56
•47

•39
•34
•30
•27
•25
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The correction to C.P. in the case of a biplane is best affected by the use
of Km, the moment coefficient. The value of Kmo (Km at Kl = 0) is unaltered
and is taken directly from the model figures.

The value of AKm. = -0137 /?" (5a) is computed at a fairly high value
of Kl say for R.A.F. 15 at Kl = -5. A Km. is then subtracted from the
monoplane value of Km at the chosen value of Kl, and a line is drawn from
Kmo through to the new value of Km, and produced if necessary. Those
who prefer to deal in C.P. as a fraction of chord can then obtain C.P. from

CP - —

For the case of the 60 ft. span biplane dealt with in Table X. -p— = 1-05
and/?" = 2-16 Kl. At Kl. = -5, /}" = 1-08, and A Km. = -014. From Fig. 3 Km.
for R.A.F. 15 monoplane at Kl = -5 is -139. Km. at Kl = -5 for this biplane
is therefore (-139 — -014) or -125. Kmo monoplane is -017 and remains so. A
new Km curve is drawn by joining Kmo at -017 with Km. = -125 at Kl = 0.5.

The values of /J° given here apply strictly only to an equally loaded biplane
of zero stagger. The effect of departure from these conditions is not large,
and the corrections themselves are relatively small, and for practical purposes
it is safe to treat all biplanes of normal stagger as unstaggered, and of normal
loading inequality as though they were equally loaded using mean values
for span, loading, and Kl.
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