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Abstract

We consider a random trial-based telegraph process, which describes a motion on the
real line with two constant velocities along opposite directions. At each epoch of the
underlying counting process the new velocity is determined by the outcome of a random
trial. Two schemes are taken into account: Bernoulli trials and classical Pólya urn trials.
We investigate the probability law of the process and the mean of the velocity of the
moving particle. We finally discuss two cases of interest: (i) the case of Bernoulli trials
and intertimes having exponential distributions with linear rates (in which, interestingly,
the process exhibits a logistic stationary density with nonzero mean), and (ii) the case
of Pólya trials and intertimes having first gamma and then exponential distributions with
constant rates.
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1. Introduction

Since the 1950s several authors have investigated the (integrated) telegraph process as a
realistic model of random motion (see [4], [20], and [23]). Such a process describes the motion
of a particle on the real line characterized by a constant speed, the direction being reversed
at the random epochs of a Poisson process. The probability density of the particle’s position
satisfies a hyperbolic differential equation, whose probabilistic properties have been studied
by, for instance, Orsingher [26], [27], Foong and Kanno [19], and, more recently, Beghin et al.
[5]. See also the book of Pinsky [28], in which many results on the telegraph process and its
generalizations were given, and many applications were discussed. Certain one-dimensional
generalizations of the telegraph process focus on cases in which the intertimes between two
consecutive changes of direction are characterized by a variety of distributions. We recall the
cases of the Erlang distribution (see [14]), the gamma distribution (see [15]), and the exponential
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distribution with linearly increasing rate (see [17]). Moreover, a generalized telegraph process
governed by an alternating renewal process was studied by Zacks [33], whereas Iacus [22] gave
a rare example where an explicit probability law is obtained for an inhomogeneous telegraph
process.

In this paper we aim to study the telegraph model subject to a further source of randomness,
by assuming that the velocity of the moving particle is driven by random trials. Specifically, we
deal with a two-velocity random motion on the real line where, differently from the classical
telegraph process whose positive and negative velocities are alternating, at each time epoch the
new velocity is determined by the outcome of a random trial. The latter follows one out of two
schemes: the Bernoulli scheme, which acts with independence, and the classical Pólya scheme
(cf. [24] and [29]), where the outcome of each trial depends on the outcomes of the previous
trials. We note that the inclusion of random trials in finite-velocity random evolutions allows us
to describe some real situations of interest, such as the motions of particles subject to collisions,
whose effects may produce direction changes.

Some novelties with respect to various finite-velocity random motions are mentioned in
Section 2, with special reference to models with random velocities. We recall that investigations
on the telegraph process with random velocities have been performed recently by Stadje and
Zacks [31] and De Gregorio [11]. Moreover, some recent contributions on multidimensional
motions characterized by a finite speed and randomly distributed directions are given in De
Gregorio [12] and De Gregorio and Orsingher [13].

The paper is organized as follows. In Section 2 we describe in detail the mathematical
model of the motion. In Section 3 we investigate the probability law and the conditional mean
velocity of the process. Then, in Section 4, for the Bernoulli scheme, we discuss the case
in which the random intertimes between consecutive trials are exponentially distributed with
linearly increasing rates. In this case we obtain the probability density of the process in closed
form, we show that it possesses a logistic stationary density, and then we express the conditional
mean velocity of the process in terms of hypergeometric functions. Finally, in Section 5, for
the Pólya scheme, we discuss the case in which the first random intertimes in both directions
are gamma distributed, whereas all remaining intertimes are exponentially distributed. We
obtain the probability density in closed form and the conditional mean velocity as a series of
Gauss hypergeometric functions. For the reader’s convenience, the paper is enriched by two
appendices containing definitions and formulae used in the proofs.

2. Stochastic model

Let {(St , Vt ); t ≥ 0} be a continuous-time stochastic process, where St and Vt respectively
denote the position and velocity at time t of the moving particle. The motion is characterized
by two velocities, c and −v with c, v > 0, and its direction is specified by the sign of the
velocity. At time T0 = 0 the particle starts from the origin; thus, S0 = 0. The initial velocity
V0 is determined by the outcome X1 of the first random trial. At the random time T1 > 0 the
particle is subject to an event, whose effect potentially changes the velocity according to the
outcome X2 of the second random trial. This behavior is repeated cyclically at every instant of
a sequence of random epochs T0 = 0 < T1 < T2 < T3 < · · · . We assume that the time interval
durations [Tn, Tn+1), n = 0, 1, 2, . . ., constitute a sequence of nonnegative random variables.
More precisely, let Uk and Dk denote the random durations of the kth time period during
which the particle moves forward with velocity c and, respectively, backward with velocity −v.
Furthermore, {Uk; k ≥ 1} and {Dk; k ≥ 1} are mutually independent sequences of nonnegative
and absolutely continuous independent random variables. Denoting by Zn the velocity of the
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particle during the interval [Tn, Tn+1), we assume that {Zn; n ≥ 0} is a sequence of random
variables governed by the sequence {Xn; n ≥ 1} of random trial outcomes. Moreover, we
assume that the collection {Uk,Dk; n ≥ 1} is independent of {Xn; n ≥ 1}.

In this paper we focus on the case in which the random trials {Xn; n ≥ 1} are the outcomes
of a sequence of indicator functions such that

P{Z0 = c} = P{X1 = 1} = b

b + r
, P{Z0 = −v} = P{X1 = 0} = r

b + r
, (1)

and, for n ≥ 1,

P{Zn = c | Gn} = P{Xn+1 = 1 | Gn} = b + A
∑n
k=1Xk

b + r + An
,

P{Zn = −v | Gn} = P{Xn+1 = 0 | Gn} = r + A
∑n
k=1(1 −Xk)

b + r + An
,

(2)

where b and r are positive constants, A is a nonnegative constant, G0 = {∅, �}, and Gn =
σ(X1, . . . , Xn) for n ≥ 1.

We can distinguish two cases.

Case (i): A = 0. In this case the random trials {Xn; n ≥ 1} are independent, i.e. they are a
Bernoulli scheme with parameter

p = b

b + r
. (3)

Case (ii): A > 0. In this case {Xn; n ≥ 1} is a sequence of outcomes of drawing balls from
an urn that initially contains b black balls and r red balls, and that is updated according
to the classical Pólya urn scheme: the drawn ball is returned to the urn together with
A > 0 balls of the same color. (We recall that, from a mathematical point of view, in this
case the parameters b, r, and A of the model can be real, not necessarily integer.) The
outcome X1 = 1 means that the drawn ball is black; otherwise, we have X1 = 0. In this
case the random trials {Xn; n ≥ 1} are not independent, but only exchangeable (see [2]).
We recall that urn schemes are used in many applications in order to model the so-called
preferential attachment principle, which is a key feature governing the dynamics of many
economic, social, and biological systems. It can be formulated as follows: the greater
the number of times we observe a certain event, the higher the probability of occurrence
of that event the next time.

In Section 5.1 we discuss an extension of the above setting to the case in which
{Xn; n ≥ 1} is the sequence of outcomes of drawings from a randomly reinforced urn.

We note that Stadje and Zacks [31] studied a telegraph process with random velocities, where
at each epoch of a homogeneous Poisson process the new velocity of the motion is chosen
according to a common density, independently of the previous velocities and of the Poisson
process. Hence, in particular, the velocities are a sequence of independent and identically
distributed (i.i.d.) random variables and, in Section 5 of [31], the first-exit time of the process
through a positive constant is investigated in the special case of two-valued random velocities.
This schema corresponds to our case (i), where at each random epoch a Bernoulli trial occurs.
However, there is a significant difference: whereas in [31] the random durations are independent
of the random velocities, our model is based on more general assumptions, which involve
nonidentically distributed durations of random intervals [Tn, Tn+1), depending on the values
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Figure 1: Sample paths of St with (a) V0 = c and (b) V0 = −v.

taken by the velocities. Moreover, our model includes the case of nonindependent random
velocities (case (ii)). These two facts are also novelties with respect to [11], where, as in [31],
a homogeneous Poisson process governs the velocity changes that form a sequence of i.i.d.
random variables, independent of the Poisson process.

LetMt be the stochastic process which counts the number of epochsTi (with i ≥ 1) occurring
before t , i.e.

Mt = max{i ≥ 1 : Ti ≤ t}, t > 0. (4)

It is worth noting that the position and velocity of the particle at time t can thus be formally
expressed as

Vt = ZMt , St =
∫ t

0
Vs ds, t > 0. (5)

In Figure 1 we present two sample path examples ofSt , with indications of the random intertimes
Uk andDk , where the sequence {Xn; n ≥ 1} takes values {1, 1, 0, 0, 1, 0, 1, . . .} (left-hand plot)
and {0, 1, 1, 0, 1, 1, . . .} (right-hand plot).

The following stochastic equation holds:

STk+1 = STk +Wk, k ≥ 0.

Here {Wk; k ≥ 0} is the sequence of random variables defined by

W0 =
{
cU1 if Z0 = c,

−vD1 if Z0 = −v,
and, for k ≥ 1 and 1 ≤ j ≤ k + 1,

Wk =
{
cUj if Zk = c and X1 +Nk−1 = j − 1,

−vDj if Zk = −v and X1 +Nk−1 = k − j + 1,

where Nk−1 is the random variable that counts the number of random trials yielding velocity c
among the trials going from the second to the kth trial, i.e.

Nk−1 =
k−1∑
i=1

1{Zi=c} =
k−1∑
i=1

Xi+1 =
k∑
h=2

Xh, k ≥ 2. (6)
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For convenience, we also set N0 = 0. In Appendix A we give some useful formulae for the
probability distribution ofNk−1 conditioned on the initial velocity for the two different schemes.

Throughout the paper, we denote by fUk , FUk , and F̄Uk the probability densities, cumulative
distribution functions, and tail distribution functions of Uk, respectively, and, similarly, fDk ,
FDk , and F̄Dk the probability densities, cumulative distribution functions, and tail distribution
functions ofDk , respectively. Moreover, f (k)U , f

(k)
D , F (k)U , F

(k)
D , and F̄ (k)U , F̄ (k)D will respectively

denote the probability densities, cumulative distribution functions, and tail distribution functions
of the partial sums

U(k) = U1 + U2 + · · · + Uk, D(k) = D1 +D2 + · · · +Dk, k ≥ 1.

3. Probability law and mean velocity

At time t = 0 we assume that S0 = 0, so that at time t > 0 the particle is located in the
domain [−vt, ct]. The probability law of St , t > 0, thus possesses a discrete component on
the points −vt and ct , and an absolutely continuous component over (−vt, ct), which will be
investigated in the sequel.

Proposition 1. For all t > 0, we have

P{St = ct} = b

b + r
F̄U1(t)+

+∞∑
k=1

P{Z0 = c, Nk = k}[F (k)U (t)− F
(k+1)
U (t)], (7)

where

P{Z0 = c, Nk = k} =

⎧⎪⎨
⎪⎩
pk+1 if A = 0,
b

b + r

(
b + A

A

)
k

[(
b + A+ r

A

)
k

]−1

if A > 0.

Similarly, we have

P{St = −vt} = r

b + r
F̄D1(t)+

+∞∑
k=1

P{Z0 = −v, Nk = 0}[F (k)D (t)− F
(k+1)
D (t)], (8)

where

P{Z0 = −v, Nk = 0} =

⎧⎪⎨
⎪⎩
(1 − p)k+1 if A = 0,
r

b + r

(
r + A

A

)
k

[(
b + A+ r

A

)
k

]−1

if A > 0.

Proof. First, note that, for y ∈ {−v, c}, the condition St = yt implies that V0 = y and
Vt = y almost surely. Conditioning on Mt = k and recalling (6), we have

P{St = ct} = P{St = ct, Vt = c, V0 = c}

=
+∞∑
k=0

P{Z0 = c, Nk = k}P{Mt = k | Z0 = c, Nk = k}.

Equation (7) thus easily follows from (1) and from (45) and (50) below for j = k − 1. In
the same way, (8) follows from (1) and from (48) and (53) below.
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Let us now define the probability density of St , t > 0, conditional on the initial velocity
y ∈ {−v, c}:

p(x, t | y) = ∂

∂x
P{St ≤ x | V0 = y}, x ∈ (−vt, ct). (9)

We remark that, for t > 0,

P{St = yt | V0 = y} +
∫ ct

−vt
p(x, t | y) dx = 1, y ∈ {−v, c}.

The density of the particle position is

p(x, t) = ∂

∂x
P{St ≤ x} = b

b + r
p(x, t | c)+ r

b + r
p(x, t | − v), (10)

where p(x, t | y), defined in (9), can be expressed as

p(x, t | y) = f (x, t | y)+ b(x, t | y). (11)

Here f and b denote the densities of the particle’s position when the motion at time t is
characterized by forward and backward velocities, respectively, i.e.

f (x, t | y) = ∂

∂x
P{St ≤ x, Vt = c | V0 = y},

b(x, t | y) = ∂

∂x
P{St ≤ x, Vt = −v | V0 = y},

for x in (−vt, ct). Then, for y ∈ {−v, c}, we can write

f (x, t | y) =
+∞∑
k=1

fk(x, t | y), b(x, t | y) =
+∞∑
k=1

bk(x, t | y), (12)

where, for x in (−vt, ct),

fk(x, t | y) = ∂

∂x
P{St ≤ x, Vt = c, Mt = k | V0 = y}, (13)

bk(x, t | y) = ∂

∂x
P{St ≤ x, Vt = −v, Mt = k | V0 = y}, (14)

with Mt defined in (4). It is worth recalling that, in the case of a telegraph process driven by
i.i.d. random velocities and an independent homogeneous Poisson process, a two-dimensional
renewal equation for p(x, t) is given in [31, Equation (2.5)]. However, as pointed out by the
authors, it is quite difficult to solve analytically. In our case, hereafter we develop a different
approach, based on suitable conditioning. We first give expressions for the densities fk and bk
conditioned by V0 = c. Note that f1(x, t | c) = 0.

Theorem 1. For t > 0 and −vt < x < ct , densities (13) and (14) can be expressed as

fk(x, t | c) = 1

c + v

k−2∑
j=0

P{Nk−1 = j, Zk = c | Z0 = c}

× f
(k−j−1)
D (t − τ∗)

∫ t

t−τ∗
f
(j+1)
U (s − t + τ∗)F̄Uj+2(t − s) ds, k ≥ 2, (15)
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and

bk(x, t | c)
= 1

c + v

{
P{Nk−1 = k − 1, Zk = −v | Z0 = c}f (k)U (τ∗)F̄D1(t − τ∗)

+ 1{k≥2}
k−2∑
j=0

P{Nk−1 = j, Zk = −v | Z0 = c}f (j+1)
U (τ∗)

×
∫ t

τ∗
f
(k−j−1)
D (s − τ∗)F̄Dk−j (t − s) ds

}
, k ≥ 1, (16)

where

τ∗ = τ∗(x, t) = vt + x

c + v
, (17)

and where P{Nk−1 = j, Zk = c | Z0 = c} and P{Nk−1 = j, Zk = −v | Z0 = c} are given
respectively by (45) and (46) below if A = 0, and by (50) and (51) below if A > 0.

Proof. Recalling (13), for t > 0, −vt < x < ct , and k ≥ 2, we have

fk(x, t | c) dx =
∫ t

0
P{Tk ∈ ds, Zk = c, Ss + c(t − s) ∈ dx, Tk+1 − Tk > t − s,

0 ≤ Nk−1 ≤ k − 2 | Z0 = c}.
(The k = 1 case does not give an absolutely continuous component.) Conditioning on Nk−1,
and taking into account the number of time periods during which the particle moved forward
and backward, we obtain

fk(x, t | c) dx

=
k−2∑
j=0

∫ t

0
P{U(j+1) +D(k−j−1) ∈ ds, cU(j+1) − vD(k−j−1) + c(t − s) ∈ dx}

× P{Uj+2 > t − s}P{Nk−1 = j, Zk = c | Z0 = c}.
Note that the conditions Ss + c(t − s) = x and Ss ≥ −vs yield s ≥ (ct − x)/(c+ v) = t − τ∗.
This inequality and the independence of U(k) and D(k) thus give

fk(x, t | c) =
k−2∑
j=0

P{Nk−1 = j, Zk = c | Z0 = c}

×
∫ t

t−τ∗
h(s, x − c(t − s))P{Uj+2 > t − s} ds,

where h(·, ·) is the joint probability density of (U(j+1) +D(k−j−1), cU(j+1) − vD(k−j−1)).
Since

h(s, x − c(t − s)) = 1

c + v
f
(j+1)
U

(
s − ct − x

c + v

)
f
(k−j−1)
D

(
ct − x

c + v

)
,

(15) now follows by recalling (17). Equation (16) can be obtained in a similar way. Indeed, for
k ≥ 1,

bk(x, t | c) dx =
∫ t

0
P{Tk ∈ ds, Zk = −v, Ss − v(t − s) ∈ dx, Tk+1 − Tk > t − s,

0 ≤ Nk−1 ≤ k − 1 | Z0 = c}.
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Conditioning on Nk−1, and taking into account the number of time periods during which the
particle moved forward and backward, we obtain, for k ≥ 1,

bk(x, t | c) dx

=
∫ t

0
P{U(k) ∈ ds, cU(k) − v(t − s) ∈ dx}

× P{D1 > t − s}P{Nk−1 = k − 1, Zk = −v | Z0 = c}

+
k−2∑
j=0

∫ t

0
P{U(j+1) +D(k−j−1) ∈ ds, cU(j+1) − vD(k−j−1) − v(t − s) ∈ dx}

× P{Dk−j > t − s}P{Nk−1 = j, Zk = −v | Z0 = c}.
(Note that, for k = 1, the term P{Nk−1 = k − 1, Zk = −v | Z0 = c} reduces to P{Z1 =
−v | Z0 = c} and the sum on j is equal to 0.) For the first integral, the conditionsU(k) = s and
cU(k) − v(t − s) = x imply that s = τ∗; for the second integral, the conditionsSs−v(t−s) = x

and Ss ≤ cs yield s ≥ (x + vt)/(c + v) = τ∗. This inequality and the independence of U(k)

and D(k) thus give, for the above sum on j,

k−2∑
j=0

P{Nk−1 = j, Zk = −v | Z0 = c}
∫ t

τ∗
h(s, x + v(t − s))P{Dk−j > t − s} ds,

where, as above, h(·, ·) is the joint probability density of (U(j+1) +D(k−j−1), cU(j+1) −
vD(k−j−1)). Since

h(s, x + v(t − s)) = 1

c + v
f
(j+1)
U (τ∗)f (k−j−1)

D (s − τ∗),

we obtain (16).

Remark 1. Similarly to (15) and (16), when the initial velocity is negative, for all t > 0 and
−vt < x < ct , densities (13) and (14) are expressed as

fk(x, t | − v)

= 1

c + v

{
P{Nk−1 = 0, Zk = c | Z0 = −v}f (k)D (t − τ∗)F̄U1(τ∗)

+ 1{k≥2}
k−2∑
j=0

P{Nk−1 = k − 1 − j, Zk = c | Z0 = −v}f (j+1)
D (t − τ∗)

×
∫ t

t−τ∗
f
(k−j−1)
U (s − t + τ∗)F̄Uk−j (t − s) ds

}
, k ≥ 1,

bk(x, t | − v) = 1

c + v

k−2∑
j=0

P{Nk−1 = k − 1 − j, Zk = −v | Z0 = −v}f (k−j−1)
U (τ∗)

×
∫ t

τ∗
f
(j+1)
D (s − τ∗)F̄Dj+2(t − s) ds, k ≥ 2,

where τ∗ is defined in (17), and where P{Nk−1 = k − 1 − j, Zk = c | Z0 = −v} and
P{Nk−1 = k − 1 − j, Zk = −v | Z0 = −v} are respectively given by (47) and (48) below if
A = 0, and by (52) and (53) below if A > 0.
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In the following proposition, conditional on a positive initial velocity, the mean of the process
Vt is expressed in terms of the cumulative distribution function of Tk . (Obviously, we can obtain
a similar expression conditioning on a negative initial velocity.) We note that, by conditioning
on the value of Nk−1 and using the independence of U(j+1) and D(k−j−1), it follows that

FTk |Z0(t | c) =
k−1∑
j=0

P{Nk−1 = j | Z0 = c}P{U(j+1) +D(k−j−1) ≤ t}, (18)

where

P{U(j+1) +D(k−j−1) ≤ t} =
∫ t

0
F
(k−j−1)
D (t − s)f

(j+1)
U (s) ds

=
∫ t

0
F
(j+1)
U (t − s)f

(k−j−1)
D (s) ds. (19)

Proposition 2. For all t > 0, we have

E[Vt | V0 = c] = cF̄U1(t)+ cπA

+∞∑
k=1

φk(t | c)+ (−v)(1 − πA)

+∞∑
k=1

ψk(t | c), (20)

where πA = (b + A)/(b + A+ r) and

φk(t | c) = FTk |Z0(t | c)−
∫ t

0
FTk |Z0(t − s | c)fUk+1(s) ds,

ψk(t | c) = FTk |Z0(t | c)−
∫ t

0
FTk |Z0(t − s | c)fDk+1(s) ds.

(21)

Proof. We recall that in both cases (by independence in the Bernoulli scheme and by
exchangeability in the Pólya scheme), we have, for each n ≥ 2,

P{Xn = 1 | X1 = 1} = πA, P{Xn = 0 | X1 = 1} = 1 − πA. (22)

Hence, for every positive integer k ≥ 1, recalling (4) and the first equation of (5), we have

E[Vt | V0 = c] = E[ZMt | Z0 = c] = cF̄U1(t)+
+∞∑
k=1

E[Zk1{Tk≤t<Tk+1} | Z0 = c].

Since, for k ≥ 1,

E[Zk1{Tk≤t<Tk+1} | Z0 = c]
= cP{Zk = c | Z0 = c}E[1{Tk≤t<Tk+1} | Z0 = c, Zk = c]

+ (−v)P{Zk = −v | Z0 = c}E[1{Tk≤t<Tk+1} | Z0 = c, Zk = −v]
= cP{Xk+1 = 1 | X1 = 1}P{Tk ≤ t < Tk+1 | Z0 = c, Zk = c}

+ (−v)P{Xk+1 = 0 | X1 = 1}P{Tk ≤ t < Tk+1 | Z0 = c, Zk = −v}
= cπA

∫ ∞

0
P{t − s < Tk ≤ t | Z0 = c}fUk+1(s) ds

+ (−v)(1 − πA)

∫ ∞

0
P{t − s < Tk ≤ t | Z0 = c}fDk+1(s) ds

= cπAφk(t | c)+ (−v)(1 − πA)ψk(t | c).
Equation (20) now follows by using (21).
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The following remark turns out to be useful in some particular cases.

Remark 2. It is worth noting that, using (18) and (19), (21) can be rewritten as

φk(t | c) =
k−1∑
j=0

P{Nk−1 = j | Z0 = c}

×
∫ t

0
F
(k−j−1)
D (t − y)[f (j+1)

U (y)− fU(j+1)+Uk+1
(y)] dy,

ψk(t | c) =
k−1∑
j=0

P{Nk−1 = j | Z0 = c}

×
∫ t

0
F
(j+1)
U (t − y)[f (k−j−1)

D (y)− fD(k−j−1)+Dk+1
(y)] dy.

The above quantities can be easily computed when the random variables Uk (and Dk) are
gamma distributed with the same scale parameter, since it is well known that, by independence,
the sums of the involved random variables are still gamma distributed.

Remark 3. In the special case in which (Zk)k and (Tk+1 − Tk)k are independent, we have U1
and D1 identically distributed and

φk(t | c) = ψk(t | c) = P{Tk ≤ t < Tk+1},
so we can write (20) as

E[Vt | V0 = c] = cF̄T1(t)+ E[Z1 | Z0 = c]FT1(t).

Similarly, we have

E[Vt | V0 = −v] = −vF̄T1(t)+ E[Z1 | Z0 = −v]FT1(t),

and so we find that

E[Vt ] = (cP{Z0 = c} − vP{Z0 = −v})F̄T1(t)

+ (E[Z1 | Z0 = c]P{Z0 = c} + E[Z1 | Z0 = −v]P{Z0 = −v})FT1(t)

= E[Z0]F̄T1(t)+ E[Z1]FT1(t)

= E[Z0].
The last equality is due to the fact that the random variables Xk , and so Zk , are identically
distributed in both the A = 0 and A �= 0 cases. As a consequence, we obtain

E[St ] = tE[Z0].
This is the same formula found in [31] for the telegraph process driven by i.i.d. random velocities
and an independent homogeneous Poisson process.

In the following sections we discuss some special cases arising in the two different schemes
of Bernoulli and Pólya trials, and leading to closed forms for the probability law of St .
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4. Particular case for the Bernoulli scheme (A = 0)

The classical telegraph process is characterized by exponentially distributed times separating
consecutive velocity changes. The extension of such a model to the case of velocities driven
by Bernoulli trials can be performed in a simple and natural way. Indeed, if we consider a
simple telegraph process S̃t with alternating velocities c and −v, and with alternating switching
intensities λ̃ := (1 − p)λ and μ̃ := pμ, then it can be proved that the marginal distributions of
S̃t , t ≥ 0, and St , t ≥ 0, are identical (where St is a telegraph process with switching intensities
λ and μ and the same velocities as S̃t , governed by Bernoulli trials with parameter p). Hence,
in this case results for St can be immediately obtained from those for S̃t . Other results relating
to this case, when λ = μ, can be found in [31].

With the aim of discussing a nontrivial case, and motivated by previous studies (see [17]
and [18]) involving finite-velocity random motions with stochastically decreasing random
intertimes, in the following we assume that the random variables Uk and Dk have exponential
distributions with linear rates λk and μk. Hence, the tail distribution functions are

F̄Uk (t) = e−λkt , F̄Dk (t) = e−μkt , t ≥ 0, (23)

with λ,μ > 0. In Figure 2 we present some simulations of St in the present case, where
the particle exhibits a kind of damped motion. This special case belongs to a more general
framework in which counting processes with increasing intensity functions are employed in
applied fields. A typical example in this respect is the nonhomogeneous Poisson process with
increasing intensity function, which deserves interest in reliability contexts involving repairable
systems (see, for instance, [9], or [16] for a power-law process). In other cases, as in the
present model, the effect of an increasing intensity function can also be obtained by assuming
increasing arrival rates (see [8]). Another example of random motion with shrinking steps is the
two-dimensional Pearson walk studied in [30]. In [30] the step size decreases deterministically
with a geometric rule, whereas in the present model the step length decreases stochastically,
according to the tail distribution functions specified in (23).

Due to assumption (23), U(k) and D(k), k ≥ 1, have generalized exponential densities

f
(k)
U (t) = k(1 − e−λt )k−1λe−λt , f

(k)
D (t) = k(1 − e−μt )k−1μe−μt , t > 0, (24)

St

p= 0.5

p= 0.1

p= 0.9

−2

−4

2

t
2 4 6 8 10 12 14

Figure 2: Simulated sample paths of St in the Bernoulli scheme, exponential damped case, with
λ = μ = 1 and c = v = 1 for various choices of p.
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with corresponding cumulative distribution functions

F
(k)
U (t) = (1 − e−λt )k, F

(k)
D (t) = (1 − e−μt )k, t ≥ 0. (25)

Hence, U(k) and D(k) are distributed as the maximum of k i.i.d. random variables having
exponential distributions with rates λ and μ, respectively.

By making use of the results in the previous section, in the following we obtain the probability
law of St . We start by providing the discrete component.

Proposition 3. LetUk andDk be exponentially distributed with rates λk andμk, k = 1, 2, . . .,
respectively. For all t > 0, we have

P{St = ct} = pe−λt

1 − p(1 − e−λt )
, P{St = −vt} = (1 − p)e−μt

1 − (1 − p)(1 − e−μt )
.

Proof. The proof immediately follows from Proposition 1 and (25).

The following theorem and corollary give the absolutely continuous component of the
probability law of St .

Theorem 2. Under the assumptions of Proposition 3, for all t > 0 and −vt < x < ct , we
have

f (x, t | c) = (1 − p)pμeμ(t+τ∗)(eλτ∗ − 1)

(c + v)[peμt + (1 − p)e(λ+μ)τ∗ ]2
, (26)

b(x, t | c) = (1 − p)[λpeλτ∗+μ(t+τ∗) + λ(1 − p)eλτ∗+2μτ∗ ]
(c + v)[peμt + (1 − p)e(λ+μ)τ∗ ]2

, (27)

where τ∗ is defined in (17).

Proof. Since U1 and Uk+1 are exponentially distributed with parameters λ and λ(k + 1),
respectively, from (12), (15), and (45) below, recalling (23) and (24), we obtain

f (x, t | c)

= μ

c + v

+∞∑
k=2

k−2∑
j=0

(
k − 1

j

)
pj+1(1 − p)k−1−j (k − j − 1)e−μ(t−τ∗)[1 − e−μ(t−τ∗)]k−2−j

×
∫ t

t−τ∗
λ(j + 1)e−λ(s−t+τ∗)[1 − e−λ(s−t+τ∗)]j e−λ(t−s)(j+2) ds

= μp(1 − p)

c + v
e−μ(t−τ∗)

+∞∑
k=2

(k − 1)
k−2∑
j=0

(
k − 2

j

)
pj (1 − p)k−2−j [1 − e−μ(t−τ∗)]k−2−j

× e−λτ∗
∫ t

t−τ∗
λ(j + 1)e−λ(t−s)[e−λ(t−s) − e−λτ∗ ]j ds

= μp(1 − p)

c + v
e−μ(t−τ∗)−2λτ∗(eλτ∗ − 1)

×
+∞∑
k=2

(k − 1)
k−2∑
j=0

(
k − 2

j

)
[p(1 − e−λτ∗)]j [(1 − p)(1 − e−μ(t−τ∗))]k−j−2

= μp(1 − p)

c + v
e−μ(t−τ∗)−2λτ∗(eλτ∗ − 1)

e2μt+2λτ∗

[(1 − p)e(λ+μ)τ∗ + peμt ]2
.
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This yields density (26). Equation (27) can be obtained from (12), (16), and (46) below in a
similar way. Indeed, for k = 1, we have

b1(x, t | c) = λ(1 − p)

c + v
e−λτ∗−μ(t−τ∗)

and, for k ≥ 2,

bk(x, t | c)
= 1

c + v

{
pk−1(1 − p)k(1 − e−λτ∗)k−1λe−λτ∗−μ(t−τ∗)

+
k−2∑
j=0

(
k − 1

j

)
pj (1 − p)k−j (j + 1)(1 − e−λτ∗)jλe−λτ∗

×
∫ t

τ∗
(k − j − 1)(1 − e−μ(s−τ∗))k−j−2μe−μ(s−τ∗)−μ(k−j)(t−s) ds

}

= λ

c + v

{
e−λτ∗−μ(t−τ∗)(1 − p)k[p(1 − e−λτ∗)]k−1

+ e−λτ∗
k−2∑
j=0

(
k − 1

j

)
[p(1 − e−λτ∗)]j (1 − p)k−j (j + 1)

× e−μ(t−τ∗)
∫ t

τ∗
(k − j − 1)[e−μ(t−s) − e−μ(t−τ∗)]k−j−2μe−μ(t−s) ds

}

= λe−λτ∗−μ(t−τ∗)(1 − p)

c + v

{
kαk−1 +

k−2∑
j=0

(
k − 1

j

)
(j + 1)αjβk−1−j

}
,

where we have set

α = α(x, t) = p(1 − e−λτ∗) and β = β(x, t) = (1 − p)(1 − e−μ(t−τ∗)).

Hence, recalling that (due to the binomial theorem)

k−2∑
j=0

(
k − 1

j

)
(j + 1)αjβk−1−j = (α + β)k−1 + (k − 1)α(α + β)k−2 − kαk−1,

from the second equation of (12) we finally obtain

b(x, t | c) = λe−λτ∗−μ(t−τ∗)(1 − p)

c + v

{
1 +

+∞∑
k=2

(α + β)k−1 + α

+∞∑
k=2

(k − 1)(α + β)k−2
}

= λe−λτ∗−μ(t−τ∗)(1 − p)

c + v

1 − β

[1 − (α + β)]2 ,

which coincides with (27).

We are now able to determine the probability density of St in closed form.

Corollary 1. Under the assumptions of Proposition 3, for all t > 0 and −vt < x < ct , we
have

p(x, t | c) = 1 − p

c + v

λ(1 − p)e(λ+2μ)τ∗ + peμ(t+τ∗)[(λ+ μ)eλτ∗ − μ]
[peμt + (1 − p)e(λ+μ)τ∗ ]2

(28)
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and

p(x, t | − v) = p

c + v

eμ(t+τ∗)[(λ+ μ)eλτ∗(1 − p)+ μp] − λ(1 − p)e(λ+2μ)τ∗

[peμt + (1 − p)e(λ+μ)τ∗ ]2
, (29)

where τ∗ is defined in (17). Hence, for −vt < x < ct, we have

p(x, t) = p

1 − p

1

s

exp{(μ− v/s)t − x/s}
[1 + p(1 − p)−1 exp{(μ− v/s)t − x/s}]2 , (30)

where s := (c + v)/(λ+ μ).

Proof. Recalling (11), from densities (26) and (27) we obtain (28). By symmetry, density
(29) can be expressed from (28) by replacing τ∗ by t − τ∗ and interchanging λ with μ and p
with 1 − p. Therefore, we finally obtain

p(x, t) = p(1 − p)(λ+ μ)eμt+(λ+μ)τ∗
(c + v)[(1 − p)e(λ+μ)τ∗ + peμt ]2

, −vt < x < ct,

and then (30) easily follows.

Some plots of density (30) are given in Figures 3, 4, and 5 for various choices of the involved
parameters.

Remark 4. We can analyse the behavior of density (30) when x tends to the endpoints of the
state space [−vt, ct]. For t > 0, we have

lim
x↓−vt p(x, t) = p

1 − p

1

s

eμt

[1 + peμt/(1 − p)]2 ,

lim
x↑ct p(x, t) = p

1 − p

1

s

e−λt

[1 + pe−λt /(1 − p)]2 .

Straightforward calculations yield the following special case.

Corollary 2. Under the assumptions of Proposition 3, if λ v = μc then density (30) becomes
the truncated logistic density given by

p(x, t) = e−(x−m)/s

s[1 + e−(x−m)/s]2
, −vt < x < ct, t > 0,

m = s ln

(
p

1 − p

)
, s = v

μ
= c

λ
.

Hence, in this case St admits the stationary density

lim
t→+∞p(x, t) = e−(x−m)/s

s[1 + e−(x−m)/s]2
, x ∈ R. (31)

We note that the right-hand side of (31) is a logistic density with meanm and varianceπ2s2/3.
In addition, if p = 1

2 then the mean m vanishes, and the density identifies with the stationary
probability density function of a damped telegraph process, as obtained in Corollary 3.3 of [17].
We note that if λv �= μc then

lim
t→+∞p(x, t) = 0, x ∈ R.

Finally, let us obtain the mean velocity conditioned by a positive initial velocity.
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Figure 3: Density (30), with t = 1, c = v = 1, λ = 1, and p = 0.1, 0.2, 0.3, 0.4, 0.5 (bottom to top
near x = 1) for μ = 1 (left) and μ = 2 (right).
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Figure 4: Density (30), with t = 10, c = v = 1, λ = 1, and p = 0.1, 0.3, 0.5, 0.7, 0.9 (left to right in
both plots) for μ = 1 (left) and μ = 2 (right).
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Figure 5: Density (30), with t = 10, c = v = 1, λ = 1, and μ = 1, 2, 3, 4 (left to right in both plots) for
p = 0.1 (left) and p = 0.5 (right).

Proposition 4. Under the assumptions of Proposition 3, for all t > 0, we have

E[Vt | V0 = c] = ce−λt + cπA

+∞∑
k=1

φk(t | c)+ (−v)(1 − πA)

+∞∑
k=1

ψk(t | c),
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where

φk(t | c) = λ

k−1∑
j=0

(j + 1)

(
k − 1

j

)
pj (1 − p)k−1−j

k−j−1∑
�=0

j∑
h=0

(
k − j − 1

�

)(
j

h

)
(−1)�+h

× [te−μ�t
1F1(1, 2; [μ�− λ(h+ 1)]t)

− λ(k + 1)e−λ(h+1)tH(μ�− λ(h+ 1), λ(k − h); t)],

ψk(t | c) = λ

k−1∑
j=0

(j + 1)

(
k − 1

j

)
pj (1 − p)k−1−j

k−j−1∑
�=0

j∑
h=0

(
k − j − 1

�

)(
j

h

)
(−1)�+h

× [te−μ�t
1F1(1, 2; [μ�− λ(h+ 1)]t)

− μ(k + 1)e−λ(h+1)tH(μ�− λ(h+ 1), μ(k + 1)− λ(h+ 1); t)],

and where the function H is defined by (59) in Appendix B.

Proof. The above formulae easily follow from Theorem 2. Indeed, after some calculations,
from (18) and (19), we obtain the cumulative distribution function

FTk |Z0(t | c) = λ

k−1∑
j=0

(j + 1)

(
k − 1

j

)
pj (1 − p)k−1−j

k−j−1∑
�=0

j∑
h=0

(
k − j − 1

�

)(
j

h

)
(−1)�+h

× te−μ�t
1F1(1, 2; [μ�− λ(h+ 1)]t),

where 1F1(1, 2; 0) = 1 and 1F1(1, 2; z) = (ez − 1)/z for z �= 0. Moreover, the thesis follows
by computing the two integrals which appear on the right-hand sides of the equations in (21).

5. Particular case for the Pólya scheme (A > 0)

In this section we consider a special case in which the velocity changes are governed by the
Pólya urn scheme. Let us assume that the distributions of U1 and D1 are 
(b/A + 1, λ) and

(r/A+ 1, μ), respectively, and that the intertimes Uk and Dk for k ≥ 2 are exponential with
parameters λ and μ, respectively. Therefore, U(k) has gamma distribution 
(b/A+ k, λ) and
D(k) has gamma distribution 
(r/A+ k, μ), so

f
(k)
U (t) = λb/A+k tb/A+k−1e−λt


(b/A+ k)
, f

(k)
D (t) = μr/A+k tr/A+k−1e−μt


(r/A+ k)
, t > 0. (32)

Note that U1 is stochastically larger than Uk and D1 is stochastically larger than Dk for k ≥ 2.
Hence, the first time interval along both directions is stochastically greater than the other time
intervals in the same direction. This is not an unusual assumption, since in renewal theory
the distribution of the first interarrival time is often supposed different from that of the other
interarrival times (see Chapter 2 of [32] for instance), as for the delayed renewal processes.
Moreover, differently from the case treated in the previous section, U1 and D1 respectively
depend on b, A and r, A, which are the same parameters involved in the Pólya urn scheme
described in Section 2.

Under the above assumptions, we are able to explicitly obtain the probability law of St in
terms of the hypergeometric function 1F1(u, v; z) (see (54) in Appendix B). We first provide
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the tail distribution functions of U(k) and D(k) (see (57) in Appendix B):

F̄
(k)
U (t) = 1 − (λt)b/A+ke−λt


(b/A+ k + 1)
1F1

(
1,
b

A
+ k + 1; λt

)
, t ≥ 0, (33)

F̄
(k)
D (t) = 1 − (μt)r/A+ke−μt


(r/A+ k + 1)
1F1

(
1,
r

A
+ k + 1;μt

)
, t ≥ 0. (34)

In the following proposition we give the discrete component of the probability law of St .

Proposition 5. LetU1 andD1 be gamma distributed with parameters (b/A+1, λ) and (r/A+
1, μ), respectively, and let Uk and Dk for k ≥ 2 be exponentially distributed with parameters
λ and μ, respectively. For all t > 0, we have

P{St = ct} = b

b + r
F̄U1(t)+ b(λt)b/Ae−λt

(b + r)
((b + A)/A)

[
1F1

(
1,
b + A+ r

A
; λt

)
− 1

]
, (35)

where F̄U1(t) is given by (33) for k = 1. Similarly,

P{St = −vt} = r

b + r
F̄D1(t)+

r(μt)r/Ae−μt

(b + r)
((r + A)/A)

[
1F1

(
1,
b + A+ r

A
;μt

)
− 1

]
, (36)

where F̄D1(t) is given by (34) for k = 1.

Proof. Equation (35) follows from (7) using (32). Indeed, since

F
(k)
U (t)− F

(k+1)
U (t) =

∫ t

0
f
(k)
U (s)F̄Uk+1(t − s) ds,

we obtain

P{St = ct} = b

b + r
F̄U1(t)+

+∞∑
k=1

P{Z0 = c, Nk = k}
∫ t

0
λb/A+k sb/A+k−1e−λs


(b/A+ k)
e−λ(t−s) ds

= b

b + r
F̄U1(t)+ be−λt (λt)b/A

(b + r)
((b + A)/A)

+∞∑
k=1

(1)k
((b + A+ r)/A)k

(λt)k

k!

= b

b + r
F̄U1(t)+ be−λt (λt)b/A

(b + r)
((b + A)/A)

[
1F1

(
1,
b + A+ r

A
; λt

)
− 1

]
.

By interchanging λ with μ, b with r , and U with D in (35), we immediately obtain (36).

For the absolutely continuous component of the probability law of St ,we have the following
results.

Theorem 3. Under the assumptions of Proposition 5, for all t > 0 and −vt < x < ct , we
have

f (x, t | c) = ξ(τ∗, t)η(τ∗, t)
t − τ∗

(37)

and

b(x, t | c) = rλ(λτ∗)b/A−1e−λτ∗
(c + v)A
((b + A)/A)

F̄D1(t − τ∗)
[

1F1

(
1,
b + A+ r

A
; λτ∗

)
− 1

]

+ ξ(τ∗, t)η(τ∗, t)
τ∗

, (38)
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where τ∗ is defined in (17), and where

ξ(τ∗, t) := exp{−λτ∗ − μ(t − τ∗)} (λτ∗)b/A+1[μ(t − τ∗)]r/A
(c + v)
((b + A)/A)
(r/A)

, (39)

η(τ∗, t) := [λτ∗ + μ(t − τ∗)]−1

×
[

1F1

(
1,
b + A+ r

A
; λτ∗ + μ(t − τ∗)

)
− 1 − A[λτ∗ + μ(t − τ∗)]

b + A+ r

]

− (λτ∗)−1
[

1F1

(
1,
b + A+ r

A
; λτ∗

)
− 1 − Aλτ∗

b + A+ r

]
. (40)

Proof. Owing to (12), (16), and (50) below, and recalling (32), under the given assumptions,
we have

f (x, t | c) = 1

c + v

+∞∑
k=2

k−2∑
j=0

P{Nk−1 = j, Zk = c | Z0 = c}

×
∫ t

t−τ∗
λb/A+j+1(s − t + τ∗)b/A+j


(b/A+ j + 1)
e−λ(s−t+τ∗) μ

r/A+k−j−1(t − τ∗)r/A+k−j−2


(r/A+ k − j − 1)

× e−μ(t−τ∗)e−λ(t−s) ds

= ξ(τ∗, t)
t − τ∗

+∞∑
k=2

1

((b + A+ r)/A)k

k−2∑
j=0

(
k − 1

j

)
(λτ∗)j [μ(t − τ∗)]k−1−j

= ξ(τ∗, t)
t − τ∗

+∞∑
k=2

(1)k
((b + A+ r)/A)k

1

k! {[λτ∗ + μ(t − τ∗)]k−1 − (λτ∗)k−1}

= ξ(τ∗, t)
t − τ∗

{
[λτ∗ + μ(t − τ∗)]−1

[
1F1

(
1,
b + A+ r

A
; λτ∗ + μ(t − τ∗)

)
− 1

− A[λτ∗ + μ(t − τ∗)]
b + A+ r

]

− (λτ∗)−1
[

1F1

(
1,
b + A+ r

A
; λτ∗

)
− 1 − Aλτ∗

b + A+ r

]}
.

Similarly, (12), (16), and (51) below give

b(x, t | c) = 1

c + v

{+∞∑
k=1

P{Nk−1 = k − 1, Zk = −v | Z0 = c}

× λb/A+kτ b/A+k−1∗ e−λτ∗

(b/A+ k)

F̄D1(t − τ∗)

+
+∞∑
k=2

k−2∑
j=0

P{Nk−1 = j, Zk = −v | Z0 = c}

× λb/A+j+1τ
b/A+j∗ μr/A+k−j−1e−λτ∗−μ(t−τ∗)


(b/A+ j + 1)
(r/A+ k − j − 1)

×
∫ t

τ∗
(s − τ∗)r/A+k−j−2 ds

}
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= r(λτ∗)b/A

A
((b + A)/A)τ∗(c + v)
e−λτ∗ F̄D1(t − τ∗)

+∞∑
k=1

(1)k
((b + A+ r)/A)k

(λτ∗)k

k!

+ ξ(τ∗, t)
τ∗

+∞∑
k=2

1

((b + A+ r)/A)k

k−2∑
j=0

(
k − 1

j

)
(λτ∗)j [μ(t − τ∗)]k−1−j

= r(λτ∗)b/A

A
((b + A)/A)τ∗(c + v)
e−λτ∗ F̄D1(t − τ∗)

[
1F1

(
1,
b + A+ r

A
; λτ∗

)
− 1

]

+ ξ(τ∗, t)
τ∗

+∞∑
k=2

(1)k
((b + A+ r)/A)k

1

k! [[λτ∗ + μ(t − τ∗)]k−1 − (λτ∗)k−1]

= r(λτ∗)b/A

A
((b + A)/A)τ∗(c + v)
e−λτ∗ F̄D1(t − τ∗)

[
1F1

(
1,
b + A+ r

A
; λτ∗

)
− 1

]

+ ξ(τ∗, t)
τ∗

{
[λτ∗ + μ(t − τ∗)]−1

[
1F1

(
1,
b + A+ r

A
; λτ∗ + μ(t − τ∗)

)
− 1

− A[λτ∗ + μ(t − τ∗)]
b + A+ r

]

− (λτ∗)−1
[

1F1

(
1,
b + A+ r

A
; λτ∗

)
− 1 − A(λτ∗)

b + A+ r

]}
.

This completes the proof.

Corollary 3. Under the assumptions of Theorem 3, for all t > 0 and −vt < x < ct , the
probability density of St is given by (10), where

p(x, t | c) = rλ(λτ∗)b/A−1e−λτ∗
(c + v)A
((b + A)/A)

F̄D1(t − τ∗)
[

1F1

(
1,
b + A+ r

A
; λτ∗

)
− 1

]

+ ξ(τ∗, t)η(τ∗, t)t
τ∗(t − τ∗)

, (41)

p(x, t | − v) = bμ[μ(t − τ∗)]r/A−1e−μ(t−τ∗)

(c + v)A
((r + A)/A)
F̄U1(τ∗)

[
1F1

(
1,
b + A+ r

A
;μ(t − τ∗)

)
− 1

]

+ ξ̃ (τ∗, t)η̃(τ∗, t)t
τ∗(t − τ∗)

, (42)

where τ∗, ξ, and η are respectively defined in (17), (39), and (40), and where

ξ̃ (τ∗, t) := exp{−λτ∗ − μ(t − τ∗)} (λτ∗)b/A
[
μ(t − τ∗)

]r/A+1

(c + v)
((r + A)/A)
(b/A)
,

η̃(τ∗, t) := [λτ∗ + μ(t − τ∗)]−1

×
[

1F1

(
1,
b + A+ r

A
; λτ∗ + μ(t − τ∗)

)
− 1 − A[λτ∗ + μ(t − τ∗)]

b + A+ r

]

− [μ(t − τ∗)]−1
[

1F1

(
1,
b + A+ r

A
;μ(t − τ∗)

)
− 1 − Aμ(t − τ∗)

b + A+ r

]
.

Proof. Equation (41) immediately follows from (11). From Remark 1, by interchanging
μ with λ, t − τ∗ with τ∗, b with r , and D with U in b(x, t | c), given in (38), we obtain the
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following density:

f (x, t | − v) = bμ[μ(t − τ∗)]r/A−1e−μ(t−τ∗)

(c + v)A
((r + A)/A)
F̄U1(τ∗)

[
1F1

(
1,
b + A+ r

A
;μ(t − τ∗)

)
− 1

]

+ ξ̃ (τ∗, t)η̃(τ∗, t)
t − τ∗

.

Similarly, we obtain the density b(x, t | − v) by interchanging μwith λ, t − τ∗ with τ∗, b with
r, and D with U in f (x, t | c), given in (37), so that

b(x, t | − v) = ξ̃ (τ∗, t)η̃(τ∗, t)
τ∗

.

Hence, (42) now follows from (11).

Various plots of the density p(x, t) given in Corollary 3 are shown by Figures 6, 7, and 8.

Remark 5. From the formulae given in Theorem 3 we have

lim
τ∗→0

ξ(τ∗, t)η(τ∗, t)
t − τ∗

= 0, lim
τ∗→t

ξ(τ∗, t)η(τ∗, t)
t − τ∗

= 0,

lim
τ∗→0

ξ(τ∗, t)η(τ∗, t)
τ∗

= 0, lim
τ∗→t

ξ(τ∗, t)η(τ∗, t)
τ∗

= 0.

p x t,( ) p x t,( )
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0.06

0.04

0.02

0.08

0.06

0.04

0.02

−1.0 1.0−0.5 0.0 0.5 −1.0 1.0−0.5 0.0 0.5
x x

Figure 6: The density p(x, t) for the Pólya scheme with densities (32), t = 1, c = v = 1, λ = μ = 1,
A = 2, and r = 1, 2, 3, 4 (bottom to top near x = 0) for b = 1 (left) and b = 2 (right).

p x t,( ) p x t,( )
0.06

0.04

0.02

0.03

0.01

0.05

0.06

0.04

0.02

0.03

0.01

0.05

−1.0 1.0−0.5 0.0 0.5 −1.0 1.0−0.5 0.0 0.5
x x

Figure 7: The density p(x, t) for the Pólya scheme with densities (32), t = 1, c = v = 1, λ = μ = 1,
r = 1, and A = 0.4, 0.6, 0.8, 1 (bottom to top near x = 0) for b = 1 (left) and b = 2 (right).
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p x t,( ) p x t,( )
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0.07
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0.07
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0.01
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−10 10−5 0 5 −10 10−5 0 5
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Figure 8: The density p(x, t) for the Pólya scheme with densities (32), t = 10, c = v = 1, λ = μ = 1,
A = 2, and r = 1, 2, 3, 4 (bottom to top near x = −8) for b = 1 (left) and b = 2 (right).

Hence, some calculations allow us to study the behavior of the density p(x, t) in proximity of
the endpoints −vt and ct . We have

lim
x↑−vt p(x, t) = brμ(μt)r/A−1e−μt

(b + r)(c + v)A
(r/A+ 1)

[
1F1

(
1,
b + A+ r

A
;μt

)
− 1

]
and

lim
x↑ct p(x, t) = brλ(λt)b/A−1e−λt

(b + r)(c + v)A
(b/A+ 1)

[
1F1

(
1,
b + A+ r

A
; λt

)
− 1

]
.

Note that in this case a stationary distribution does not exist. Indeed,

lim
t→+∞ P{St = ct} = 0, lim

t→+∞ P{St = −vt} = 0, lim
t→+∞p(x, t) = 0,

since (see Equation 13.1.4 of [1]), as |z| → +∞,

1F1(a, b; z) = 
(b)


(a)
ezza−b[1 +O(|z|−1)] for Re(z) > 0.

Finally, the mean velocity subordinated to the positive initial velocity can be expressed in
the following form.

Proposition 6. Under the assumptions of Theorem 3, for all t > 0, we have

E[Vt | V0 = c] = cF̄U1(t)+ cπA

+∞∑
k=1

φk(t | c)+ (−v)(1 − πA)

+∞∑
k=1

ψk(t | c) (43)

with

φk(t | c) =
k−1∑
j=0

P{Nk−1 = j | Z0 = c}
[
G

(
r

A
+ k − j − 1, μ,

b

A
+ j + 1, λ; t

)

−G

(
r

A
+ k − j − 1, μ,

b

A
+ j + 2, λ; t

)]
, (44a)

ψk(t | c) =
k−1∑
j=0

P{Nk−1 = j | Z0 = c}
[
G

(
b

A
+ j + 1, λ,

r

A
+ k − j − 1, μ; t

)

−G

(
b

A
+ j + 1, λ,

r

A
+ k − j, μ; t

)]
, (44b)

where P{Nk−1 = j | Z0 = c} is given by (49) and the function G is defined by (58) in
Appendix B.

https://doi.org/10.1239/aap/1386857860 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1386857860


1132 I. CRIMALDI ET AL.

Proof. Equations (43) and (44) easily follow from Proposition 2, Remark 2, and (58) since,
for k ≥ 1, Uk+1 andDk+1 are exponential with parameters λ and μ, respectively, and U(k) and
D(k) are gamma distributed with parameters (b/A+ k, λ) and (r/A+ k, μ), respectively.

5.1. A suitable extension

In this section we propose a suitable extension of the model based on the Pólya scheme by
replacing the classical Pólya urn with the following randomly reinforced urn (cf. [3], [6], [7],
and [10]). An urn contains b > 0 black balls and r > 0 red balls. At each epoch n ≥ 1, a ball
is drawn and then replaced together with a random number of balls of the same color. Say that
Bn ≥ 0 black balls or Rn ≥ 0 red balls are added to the urn according to whether Xn = 1 or
Xn = 0, whereXn is the indicator function of the event {black ball at time n}. We assume that,
for each n ≥ 1,

(Bn, Rn) is independent of (X1, B1, R1, X2, . . . , Bn−1, Rn−1, Xn).

According to this new model, (2) must be replaced by

P{Zn = c | Gn} = P{Xn+1 = 1 | Gn} = b + ∑n
k=1 BkXk

b + r + ∑n
k=1(BkXk + Rk(1 −Xk))

,

P{Zn = −v | Gn} = P{Xn+1 = 0 | Gn} = r + ∑n
k=1 Rk(1 −Xk)

b + r + ∑n
k=1(BkXk + Rk(1 −Xk))

,

where
G0 = {∅, �}, Gn = σ(X1, B1, R1, . . . , Xn, Bn, Rn).

It has been proven that, if Bn = Rn for each n (cf. [6] and [10]), or, more generally, if Bn
d= Rn

for each n (cf. [7, p. 538]), where
d= denotes equality in distribution, then (Xn)n≥1 is a sequence

of conditionally, identically distributed random variables (which cannot be exchangeable) and
so we have, for n ≥ 2,

P{Xn = 1 | X1 = 1} = E

[
b + B1

b + B1 + r

]
, P{Xn = 0 | X1 = 1} = E

[
r

b + B1 + r

]
.

Using the above equalities, instead of (22), we can obtain a formula for the mean velocity similar
to (20). However, in this case the computation of the conditional probability distribution of
Nk−1 needed in (18) is not an easy task, and is likely to be the object of future investigations.

Appendix A. The conditional probability distribution of Nk−1

A.1. Bernoulli scheme (A = 0)

Using the independence of {Xn; n ≥ 1} and setting p as in (3), we have, for k ≥ 1 and
0 ≤ j ≤ k − 1,

P{Nk−1 = j | Z0 = c} = P

{ k∑
h=2

Xh = j

∣∣∣∣ X1 = 1

}
=

(
k − 1

j

)
pj (1 − p)k−1−j ,

and so

P{Nk−1 = j, Zk = c | Z0 = c} =
(
k − 1

j

)
pj+1(1 − p)k−1−j , (45)
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which simply becomes P{Z1 = c | Z0 = c} = p for k = 1 and j = 0. Similarly, we have

P{Nk−1 = j, Zk = −v | Z0 = c} =
(
k − 1

j

)
pj (1 − p)k−j . (46)

Conditioning on Z0 = −v, we obtain

P{Nk−1 = k − 1 − j, Zk = c | Z0 = −v} =
(
k − 1

j

)
pk−j (1 − p)j (47)

and

P{Nk−1 = k − 1 − j, Zk = −v | Z0 = −v} =
(
k − 1

j

)
pk−1−j (1 − p)j+1. (48)

A.2. Pólya scheme (A > 0)

Using the exchangeability of {Xn; n ≥ 1}, we have, for k ≥ 1 and 0 ≤ j ≤ k − 1,

P{Nk−1 = j | Z0 = c}
=

(
k − 1

j

)

((b + A+ r)/A)


((b + A)/A)
(r/A)


(j + (b + A)/A)
(k − 1 − j + r/A)


(k − 1 + (b + A+ r)/A)

=
(
k − 1

j

)(
b + A

A

)
j

(
r

A

)
k−j−1

[(
b + A+ r

A

)
k−1

]−1

, (49)

where (α)0 = 1 and (α)j = α(α+1) · · · (α+j−1) = 
(α+j)/
(α) (the ascending factorial).
For k ≥ 2, the above formula corresponds to the quantity P{∑k

h=2Xh = j | X1 = 1}, i.e. the
probability of obtaining j black balls in k − 1 drawings in a Pólya urn scheme starting from r

red balls and b + A black balls. Hence, we obtain

P{Nk−1 = j, Zk = c | Z0 = c}
= P{Xk+1 = 1 | Nk−1 = j, X1 = 1}P{Nk−1 = j | Z0 = c}
= b + A(j + 1)

b + r + Ak
P{Nk−1 = j | Z0 = c}

=
(
k − 1

j

)

((b + A+ r)/A)
(j + 1 + (b + A)/A)
(k − 1 − j + r/A)


((b + A)/A)
(r/A)
(k + (b + A+ r)/A)

=
(
k − 1

j

)(
b + A

A

)
j+1

(
r

A

)
k−j−1

[(
b + A+ r

A

)
k

]−1

, (50)

which simply becomes P{Z1 = c | Z0 = c} = (b + A)/(b + r + A) for k = 1 and j = 0.
Similarly, we have

P{Nk−1 = j, Zk = −v | Z0 = c}
= P{Xk+1 = 0 | Nk−1 = j, X1 = 1}P{Nk−1 = j | Z0 = c}
= r + A(k − j − 1)

b + r + Ak
P{Nk−1 = j | Z0 = c}

=
(
k − 1

j

)

((b + A+ r)/A)
(j + (b + A)/A)
(k − j + r/A)


((b + A)/A)
(r/A)
(k + (b + A+ r)/A)

=
(
k − 1

j

)(
b + A

A

)
j

(
r

A

)
k−j

[(
b + A+ r

A

)
k

]−1

. (51)
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Conditioning on Z0 = −v, we obtain

P{Nk−1 = k − 1 − j, Zk = c | Z0 = −v}

=
(
k − 1

j

)(
r + A

A

)
j

(
b

A

)
k−j

[(
b + A+ r

A

)
k

]−1

(52)

and
P{Nk−1 = k − 1 − j, Zk = −v | Z0 = −v}

=
(
k − 1

j

)(
r + A

A

)
j+1

(
b

A

)
k−j−1

[(
b + A+ r

A

)
k

]−1

. (53)

Appendix B. Auxiliary functions

For the reader’s convenience, we now provide some formulae used in the proofs.
The confluent hypergeometric function (or Kummer’s function) used throughout the paper

is defined as (see [1] for details)

1F1(u, v; z) =
∞∑
k=0

(u)k

(v)k

zk

k! . (54)

We start by recalling the relation

1F1(a, b; z) = ez 1F1(b − a, b; −z)
or, equivalently, 1F1(a, b; −z) = e−z

1F1(b − a, b; z). (55)

A useful integration formula is Equation 3.383.1 of [21]:∫ t

0
yν−1(t − y)μ−1eβy dy = 
(μ)
(ν)


(μ+ ν)
tμ+ν−1

1F1(ν, μ+ ν;βt) (56)

when Re(μ) > 0 and Re(ν) > 0.
Let X and Y be independent gamma-distributed random variables with parameters (α, μ)

and (β, λ), respectively. By (55) and the integration formula (56), we find that

FX(t) = (μt)α


(α + 1)
e−μt

1F1(1, α + 1;μt), μ > 0, t ≥ 0, (57)

and so, for α, β, μ, λ > 0 and t ≥ 0,

G(α,μ, β, λ; t) := P(X + Y ≤ t)

=
∫ t

0
FX(t − y)fY (y) dy

= μαλβtα+βe−μt
+∞∑
h=0

(μt)h


(α + β + h+ 1)
1F1(β, α + β + h+ 1; (μ− λ)t).

(58)

Note that an alternative expression of G was given in [25] as a series of suitable integrals.
Analogously to (58), by (56) we can express the function

H(α, β; t) :=
∫ t

0
(t − y)1F1(1, 2;α(t − y))e−α(t−y)e−βy dy, α, β ∈ R, t ≥ 0, (59)
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in terms of the hypergeometric function as

H(α, β; t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t

α
[1F1(1, 2; −βt)− e−αt

1F1(1, 2; (α − β)t)], α �= 0, β ∈ R,

t

β
[e−βt − 1F1(1, 2; −βt)], α = 0, β �= 0,

t2

2
, α = 0, β = 0,

where we recall that 1F1(1, 2; z) reduces to 1 when z = 0 and to (ez − 1)/z when z �= 0.
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