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A b s t r a c t Using Melnikov's method to study the appearance of stochastic orbits in 
perturbed Stäckel potentials, a correlation is found between the observed shapes of 
elliptical galaxies and the occurence of mainly regular orbits. Some other potential 
perturbations giving rise to large regions of stochastic orbits, on the other hand, 
appear to be inconsistent with observations. 

M o t i v a t i o n : Most orbits in potentials near those of elliptical galaxies appear 
to be regular box and tube orbits that respect three integrals of motion (Schwarz-
schild 1979). A simple argument why stochastic orbits cannot occur in large num-
bers is that they would make the density contours rounder than the potential con-
tours, while Poisson's equation requires the opposite in cases of interest for elliptical 
galaxies. 

There is a family of completely integrable potentials (Stäckel potentials) in 
which all orbits are regular and belong to the four orbital families that also comprise 
most orbits in Schwarzschild's model (de Zeeuw 1985). While the proximity of these 
integrable potentials must clearly play a role for the dynamics of elliptical galaxies 
(i.e. for the apparent regularity of their phase-spaces, by the KAM-theoremi, the 
fact that the overwhelming majority of potentials near those of elliptical galaxies 
are non-integrable implies that these galaxies are very unlikely to have an exactly 
separable potential. 

Hence it is important to study perturbations of Stäckel potentials. Some 
questions of interest are: (i) Is the regular orbital structure of the Stäckel potentials 
stable to perturbations, i.e. is the region of stochastic orbits thess introduce small? 
(ii) For which types of perturbations - if not for all - is this true, and what can be 
learned from this for elliptical galaxies? 

M e t h o d : In integrable potentials which support several orbit families, small 
perturbations generally destroy the non-classical integrals of motion because the 
surfaces on which the different families of orbits touch (the so-called homoclinic 
surfaces) become infinitely tightly wrapped by the perturbation. In this way, layers 
of stochastic orbits are introduced in the vicinity of these surfaces. This pheno-
menon may be shown to occur by Melnikov's method, in which one follows the 
wrapping and intersection of the perturbed homoclinic surfaces to first order in 
the perturbation. A new, canonically invariant formulation of Melnikov's method 
has been derived, which makes application to three-dimensional galaxy potentials 
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possible. In this case, the homoclinic surface is, like any other torus, a three-
dimensional phase-space surface, and generally contains a two-parameter family of 
orbits asymptotic to a one-parameter family of unstable quasi-periodic orbits. Then 
one has to evaluate a 2-vector of Melnikov integrals along, and as a function of, the 
unperturbed homoclinic orbits. With the aid of these integrals one may estimate 
the importance of the resulting stochastic layer, i.e. its width in phase-space. For 
details see Gerhard (1985, 1986). 

A p p l i c a t i o n s t o Stäckel po ten t ia l s : We consider perturbations of Stäckel 
potentials, which are separable in ellipsoidal coordinates λ , μ , Ζ Λ The commonly 
studied cases correspond to inhomogeneous mass models with homogeneous cores; 
they then contain the following unstable periodic orbits: z-axial and closed y-loop 
orbits (for energy Ε > Ει) and y-axial orbits (Ε > E2 > Εχ) (de Zeeuw 1985). 
Only the z-axial orbits are doubly unstable; for them the theory has to be slightly 
modified. The y-axial and closed y-loop orbits sire one-dimensional families of 
unstable quasi-periodic orbits on two-dimensional tori, and the Melnikov integrals 
must be evaluated as functions of the two-parameter families of orbits asymptotic 
to them. To this end the equations of motion must be solved and the integrals 
evaluated alongside. Since this is a difficult numerical problem the computations 
have sofar been restricted to two-dimensional potentials (describing motion in the 
equatorial plane of a triaxial galaxy). Then the only unstable periodic orbits are 
the y-axial orbits, and the Melnikov vector reduces to a single integral. The results 
of these calculations (Gerhard 1985) are summarized next. 

Resu l t s : For a particular planar Stäckel potential with density ρ oc r~~2 at 
large radii, several classes of perturbations were studied. The main result is that 
those perturbations that are consistent with observations of early-type galaxies 
approximately preserve the regular orbital structure of the integrable potential and 
lead to only small stochastic layers. Specifically, this was found for (i) cos τηφ 
perturbations with m = 0 ,2 ,1 ,4 (axisymmetric, elliptic, lopsided, box-shaped) in 
order of the importance of the resulting stochastic layer, (ii) potential perturbations 
with moderate ellipticity gradients, and (iii) small figure rotation. 

In contrast, other perturbations lead to large stochastic regions and a rapid 
breakdown of the regular structure of phase-space; e.g. cos τηφ perturbations with 
m = 3 or > 5. These results suggest that (i) the integrable Stäckel potentials are 
sufficiently close to galaxy potentials in the studied energy range that the latter may 
be considered as perturbations of the former, and (ii) that the triaxial-symmetric 
shapes of ellipticals are determined by the requirement that self-consistent equili-
brium models exist rather than by special initial conditions. 
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