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Abstract. We study a skew product transformation associated to an irrational rotation of
the circle [0, 1]/ ∼. This skew product keeps track of the number of times an orbit of
the rotation lands in the two complementary intervals of {0, 1/2} in the circle. We show
that under certain conditions on the continued fraction expansion of the irrational number
defining the rotation, the skew product transformation has certain dense orbits. This is in
spite of the presence of numerous non-dense orbits. We use this to construct laminations
on infinite type surfaces with exotic properties. In particular, we show that for every infinite
type surface with an isolated planar end, there is an infinite clique of 2-filling rays based at
that end. These 2-filling rays are relevant to Bavard and Walker’s loop graphs.
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1. Introduction
Our goal in this paper is to study skew products over irrational rotations on the circle and to
explore relationships to laminations on infinite type surfaces. In particular, we prove that
specific orbits are dense in a collection of skew product transformations. We use this to
show that certain laminations on infinite type surfaces have dense boundary leaves. Finally,
we use this to construct certain rays on infinite type surfaces with exotic properties, which
are relevant to the study of Bavard and Walker’s loop graphs.

We consider the circle S1 as the closed unit interval [0, 1] with 0 and 1 identified. For a
number α ∈ [0, 1), we define the rotation t = tα : S1 → S1 by t (x) = x + α modulo 1.
We define the function f : S1 → R by f = χ[0,1/2) − χ[1/2,1), where χE denotes the
characteristic function of the set E in question. We define a resulting skew product
transformation T = Tα : S1 × Z → S1 × Z by

T (x, s) := (tx, s + f x) = (x + α, s + f x).

We endow Z with the discrete topology and S1 × Z with the resulting product topology.
We consider the continued fraction expansion for α,
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2 L. Chen and A. J. Rasmussen

α = [0; a1, a2, . . .] = 1

a1 + 1
a2+ 1

a3+···

.

We prove the following theorem.

THEOREM 1.1. Suppose that the continued fraction expansion α = [0; a1, a2, . . .]
satisfies that a1 ≥ 5 is odd and an ≥ 6 is even for every n > 1. Then, for any s ∈ Z,
the (forward) orbit {T n(1/2, s)}∞n=0 is dense in S1 × Z.

Note that for any n ≥ 0, T n(x, s) = (tnx, s + Sn(x)), where Sn(x) = ∑n−1
i=0 f (t ix)

is the nth Birkhoff sum for x. For any m ∈ Z, we consider the set �(x, m) := {n ∈
Z≥0 : Sn(x) = m} of times n at which Sn(x) is equal to m. Denote by k + �(x, m) the
set above translated by k ∈ Z. The following corollary, when k = 0, is a restatement of
Theorem 1.1. The general case, which is useful for our applications, also quickly follows
from Theorem 1.1; see the next section for its proof.

COROLLARY 1.2. Suppose that the continued fraction expansion α = [0; a1, a2, . . .]
satisfies that a1 ≥ 5 is odd and an ≥ 6 is even for every n > 1. Then, for any k, m ∈ Z, the
partial orbit {tn(1/2)}n∈k+�(1/2,m) is dense in S1.

In particular, for any m ∈ Z, there are infinitely many n ≥ 0 with Sn(1/2) = m. In
contrast, it is shown in [6, Theorem 1] (by the characterization of H2) that Sn(1/2) < 0 for
all n ≥ 1 if α = [0; a1, a2, . . .] with ai even for all i odd. In addition, for almost every α,
there is an uncountable set (with Hausdorff dimension equal to some constant c ∈ (0, 1)

independent of α) of initial points x ∈ [0, 1) with Sn(x) ≤ 0 for all n ≥ 1 [8].
We use our results above to construct examples of interesting laminations and rays on

infinite type surfaces. For the first statement, recall that a complete hyperbolic surface
X is of the first kind if it is equal to its convex core. A geodesic lamination � on X is
topologically transitive if it contains a leaf which is dense in �.

THEOREM 1.3. Let S be any orientable infinite type surface with at least one isolated
puncture. Then, there is a hyperbolic surface X of the first kind homeomorphic to S, and
a geodesic lamination � on X, such that � is topologically transitive, with infinitely many
leaves which are not dense in �.

For our second application, we consider the loop graph L(S; p) of an infinite type
surface S with an isolated puncture p, defined by Bavard in [2] and studied further by
Bavard and Walker in [4, 5]. The vertices of L(S; p) are the simple, essential loops on S
asymptotic to p on both ends, considered up to isotopy. Two isotopy classes are joined by an
edge when the corresponding isotopy classes can be realized disjointly. The graph L(S; p)

is Gromov-hyperbolic and of infinite diameter [5]; see also [1]. Bavard and Walker [5]
identified the points on the Gromov boundary of L(S; p) with cliques of the so-called
high-filling rays. As a related notion, a 2-filling ray � on S is a kind of fake boundary point
for L(S; p). Namely, such a ray is asymptotic to p, and intersects every loop on S, so that
it has strong filling properties similar to high-filling rays, but it is not high-filling. See §3
for the precise definitions.
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Irrational rotations and 2-filling rays 3

Bavard and Walker asked in [4, Question 2.7.7] whether 2-filling rays exist, for instance,
when S is the plane minus a Cantor set. This was answered affirmatively by the authors
in [7]. Such 2-filling rays always come organized into families of mutually disjoint 2-filling
rays called cliques. The authors showed that the cliques can have any finite cardinality in [7,
Theorem 5.1], and asked whether such cliques can be infinite [7, Question 5.7]. We answer
this question affirmatively in Theorem 1.4 below for any infinite type surface S with an
isolated puncture. In particular, 2-filling rays exist on all such surfaces. The analogous
problem about the size of cliques of high-filling rays has been solved by methods different
from our dynamical approach: such a clique can be of any finite cardinality on any infinite
type surface S with an isolated puncture by [4, Theorem 8.1.3], and it can also be infinite
at least when S is the plane minus a Cantor set by [3].

THEOREM 1.4. Let S be an orientable infinite type surface with at least one isolated
puncture p. Then, there exists an infinite clique of 2-filling rays on S based at p.

It is an open problem to describe the boundaries of the loop graphs L(S; p) as
spaces of geodesic laminations. The authors believe that solving this problem would
lead to significantly better understanding of the graphs L(S; p). The existence of exotic
laminations and rays as constructed in Theorems 1.3 and 1.4 and in [7] point to the
difficulty of solving this problem and to the complexity of the graphs L(S; p). It would
be interesting to use skew products to construct other interesting laminations and mapping
classes of infinite type surfaces.

2. Proof of Theorem 1.1
We choose α = [0; a1, a2, . . .] satisfying the conditions of Theorem 1.1; that is, a1 ≥ 5 is
odd and ai ≥ 6 is even for every i ≥ 2. Furthermore, we set α1 = α and for i ≥ 2,

αi = [0; ai − 1, ai+1, ai+2, . . .]. (2.1)

Let

G(x) = 1
x

−
⌊

1
x

⌋
be the Gauss transformation. Then, αi+1 = G(αi)/(1 − G(αi)).

Our method of proof considers first return maps to certain subintervals, which shares
some similarity with the renormalization procedure used in related work; see [8] for
instance, which also gives insights about the behavior of other orbits.

We will compute a sequence of nested intervals [0, 1) = I1 ⊃ I2 ⊃ I3 ⊃ · · · each
centered at 1/2 and the first return maps to Ii . Let

ki : Ii → N, ki(x) = inf{k > 0 : tkx ∈ Ii}
be the first return time to Ii and

t i : Ii → Ii , t i (x) = tki (x)(x)

be the first return map. Our construction guarantees the following properties, which we
will verify later.
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4 L. Chen and A. J. Rasmussen

(1) t i is rotation by (−1)i+1αi (rescaled by the length of Ii).
(2) Moreover, we compute the induced Birkhoff sums

f i : Ii → Z, f i(x) =
ki (x)−1∑

j=0

f (tj x);

that is, f i records the Birkhoff sum accumulated before a point in Ii returns to
Ii under iteration of t. Then, by our construction, f i will be equal to +1 on the
sub-interval of points to the left of 1/2 and −1 on the sub-interval of points to the
right of 1/2.

Theorem 1.1 is a consequence of the following, seemingly weaker proposition.

PROPOSITION 2.1. There is a sequence of intervals [0, 1) = I1 ⊃ I2 ⊃ I3 ⊃ · · · such
that:
(1) Ii contains 1/2 for each i and is symmetric about 1/2 for each i;
(2) for each i ≥ 1, the interval Ii+1 has length |Ii+1| ≤ αi |Ii |;
(3) for each i ≥ 2, after rescaling Ii by 1/|Ii |, the function f i(x) is equal to

χ[0,1/2) − χ[1/2,1);
(4) for any i and for any m ∈ Z, there exists an orbit point tk(1/2) ∈ Ii for some k ∈ Z+,

with Sk(1/2) = m.

Proof of Theorem 1.1 assuming Proposition 2.1. First, we improve item (4) to the
following claim: for any m ∈ Z, there exist orbit points tk(1/2) in Ii to the right of 1/2 with
Sk(1/2) = m and similarly there exist points tk(1/2) to the left of 1/2 with Sk(1/2) = m,
k ∈ Z+. We focus on the case of finding points to the right of 1/2, as the other case is
analogous.

Choose i odd, so that the first return to Ii is rotation by αi = [0; ai − 1, ai+1, ai+2, . . .].
For any m ∈ Z, there is some k ∈ Z+ such that tk(1/2) ∈ Ii+1 with Sk(1/2) = m.
If tk(1/2) lies to the right of 1/2, then there is nothing to show. Otherwise, since
ai − 1 ≥ 5, the length of Ii+1 is at most αi |Ii |, and tk(1/2) lies in Ii+1, we have that
t i (t

k(1/2)), t
2
i (t

k(1/2)) ∈ Ii both lie to the right of 1/2. Now we compute the Birkhoff
sum at t

2
i (t

k(1/2)). Let

l = ki(t
k(1/2)) + ki(t i(t

k(1/2)))

be the second return time of tk(1/2) to Ii . Then by item (3), we have

Sk+l(1/2) = Sk(1/2) + f i(t
k(1/2)) + f i(t i(t

k(1/2)))

= Sk(1/2) + 1 + (−1) = Sk(1/2) = m.

That is, the point tk+l(1/2) = t
2
i (t

k(1/2)) ∈ Ii justifies the claim.
Now the theorem follows from this claim. By Proposition 2.1, the closure of the orbit of

(1/2, 0) contains {1/2} × Z. By the claim, for any m ∈ Z, we may choose points tk(1/2)

arbitrarily close to 1/2 and to the right with Sk(1/2) = m. Consider any ε ∈ (0, 1/2) and
a point (x, m) ∈ S1 × Z. We want to show that for any s ∈ Z, the orbit of (1/2, s) contains
a point in [x, x + ε) × {m}. Since α is irrational, the rotation t is minimal and there exists
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k ≥ 0 with tk(1/2) ∈ [x, x + ε/2). Suppose that Sk(1/2) = N . The functions {f ◦ t i}ki=0
are individually constant on a short interval that has 1/2 as its left endpoint, so there
is 0 < δ < ε/2 such that any point y ∈ [1/2, 1/2 + δ) satisfies Sk(y) = Sk(1/2) = N .
By the claim, we can choose l ≥ 0 such that

T l(1/2, s) = (t l(1/2), Sl(1/2)) ∈ [ 1
2 , 1

2 + δ
) × {m − s − N}.

Then,

T l+k(1/2, s) = (t l+k(1/2), s + Sl(1/2) + Sk(t
l(1/2))).

As t l(1/2) ∈ [1/2, 1/2 + δ) and tk(1/2) ∈ [x, x + ε/2), we have

t l+k(1/2) = tk(t l(1/2)) ∈ [tk(1/2), tk(1/2) + δ) ⊂ [x, x + ε).

In addition, Sk(t
l(1/2)) = N by our choice of δ. It follows that s + Sl(1/2) +

Sk(t
l(1/2)) = s + (m − s − N) + N = m and T l+k(1/2, s) ∈ [x, x + ε) × {m}, as

desired.

Now we deduce Corollary 1.2 from Theorem 1.1.

Proof of Corollary 1.2. Theorem 1.1 is equivalent to the following major case of
Corollary 1.2: for any m ∈ Z, the partial orbit {tn(1/2)}n∈�(1/2,m) is dense in S1. For the
general case, for an arbitrary k ∈ Z, we are interested in the density of the orbit points
tn+k(1/2) with n ∈ �(1/2, m), that is, the image of the partial orbit {tn(1/2)}n∈�(1/2,m)

under the rotation tk . Such a partial orbit is also dense in S1.

It remains to find the intervals Ii and prove Proposition 2.1. For this, we proceed by
induction. To construct Ii+1 based on J = Ii and its first return map, the inductive step fits
into the following setup.

Assumption 2.2.
• We have chosen an interval J ⊂ [0, 1) which contains 1/2 and is centered at 1/2.
• After scaling J by 1/|J | to unit length, the first return map to J, which we denote by

tJ , is a rotation by a number β = ±[0; b, . . .] with b ≥ 5 odd (so |β| < 1/5).

We construct a sub-interval J new of J that is centered at 1/2 with well-understood first
return map among other properties. We describe the construction below in Lemmas 2.5
and 2.8, depending on the sign of β.

In the discussion below, we frequently look at different left-closed and right-open
sub-intervals of [0, 1) centered at 1/2 and rescale them to length 1. To avoid confusion
due to different scales, we use the following convention.

Convention 2.3. For a sub-interval J of [0, 1) centered at 1/2, we abuse notation and let
J : [0, 1) → J be the unique affine homeomorphism fixing 1/2. Then, for any x ∈ (0, 1),
J (x) is the point at distance x from the left endpoint of J after rescaling J to unit length.
Similarly, J [a, b) is the sub-interval of J corresponding to the interval [a, b) ⊂ [0, 1) after
rescaling J to unit length.
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6 L. Chen and A. J. Rasmussen

2.1. First case: β > 0. We first consider the case β > 0 and introduce some notation to
state the inductive construction in Lemma 2.5. Note that the first coefficient b = �1/β�.
We partition J into sub-intervals

J0 = J [0, β), J1 = J [β, 2β), . . . , Jb−1 = J [(b − 1)β, bβ), Jb = J [bβ, 1),

each of which has length β|J | except for Jb, which has length βG(β)|J |, where
G(x) = 1/x − �1/x� as before. For a point x ∈ J , we have tJ (x) = tk(x)(x), where
k(x) = inf{k > 0 : tkx ∈ J }, and by our induction hypothesis, tJ (J (x)) = J (x +β mod 1)

and tJ (Ji) = Ji+1 for all 0 ≤ i < b − 1. We consider the orbit of x ∈ J under t before its
first return to J, and record the sequence of values of f along this orbit, namely

F(x) = {f (x), f (t (x)), . . . , f (tk(x)−1(x))}.
This is equivalent to recording the sequence of partial sums S(x) = {Si(x)}k(x)

i=1 with
Si(x) := ∑i−1

j=0 f (tj (x)). The partial sums keep track of the increment in the second
coordinate (compared with (x, m)) along the orbit of (x, m) under T in the skew product:

{(x, m), T (x, m) = (tx, m + f x), . . . , T k(x)(x, m) = (tk(x)x, m + Sk(x)(x))}.
Finally, we set �(x) = Sk(x)(x), which is the total sum of the sequence F(x). We use
F1 · F2 to denote the concatenation of two sequences F1 and F2.

Here are our remaining assumptions for the case β > 0 in addition to Assumption 2.2.

Assumption 2.4. There are sequences F+, F−, and F0 with total sums 1, −1, and 0,
respectively, such that:
• whenever x ∈ J [0, 1/2), we have F(x) = F+;
• whenever x ∈ J [1/2, 1 − β), we have F(x) = F−;
• whenever x ∈ J [1 − β, 1), we have F(x) = F− · F0.
Here, we allow F0 to be an empty sequence.

As a consequence of the assumptions above, the sequence S(x) must be the sequence
of partial sums for F+, F−, or F+ · F0 depending on the location of x as above. Denote
the partial sum sequences of F+ and F− by S+ and S−, and denote the total sums of F+,
F−, F0 as �+, �−, �0. The assumptions above imply �+ = 1, �− = −1, and �0 = 0.

We record the maximum and minimum over each sequence of partial sums, that is,

m+ := min S+, M+ := max S+, m− := min S−, M− := max S−.

Our aim is to find a sub-interval J new ⊂ J containing and centered at 1/2, for
which the first return to J new, rescaled by 1/|J new|, is a rotation by a new number
βnew = −[0; c, . . .] with c ≥ 3 determined by β explicitly as in Lemma 2.5 below.
Moreover, for x ∈ J new, denote the first return time to J new as

knew(x) = inf{k > 0 : tk(x) ∈ J new}
and consider, as before, the sequence of f -values

Fnew(x) := {f (x), f (t (x)), . . . , f (tk
new(x)−1(x))}.
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FIGURE 1. The decomposition of J into intervals Ji when b = 2n + 1 = 5 for n = 2 and the orbit of J new under
iterations of tJ , for β > 0.

Let Snew(x) be the sequence of partial sums associated to Fnew(x), and let
�new(x) = Sknew(x)(x) be the total sum.

The following lemma shows how we construct the sub-interval J new and the nice
properties guaranteed by the construction.

LEMMA 2.5. Suppose there is a sub-interval J ⊂ [0, 1) with first return map tJ satisfying
Assumptions 2.2 and 2.4 with β = [0; b, c + 1, . . .] > 0, where c ≥ 3. Denote b = 2n + 1
with n ≥ 1. Then, the sub-interval J new ⊂ J , given by

J new := J

[
1
2

− 1
2
β(1 − G(β)),

1
2

+ 1
2
β(1 − G(β))

)
,

has the following properties.
(1) J new is symmetric about 1/2 of length β(1 − G(β))|J |.
(2) J new is a sub-interval of Jn, the right endpoints of J new and Jn are the same, and

the left endpoint of J new has distance βG(β)|J | = |Jb| from the left endpoint of Jn.
(3) The image of Jn \ J new under n + 1 iterations of tJ is Jb.
(4) Re-scaling by 1/|J new|, the first return map to J new is rotation by

βnew := −G(β)/(1 − G(β)) = −[0; c, . . .].

(5) There are sequences

Fnew+ := F+ · Fn− · F0 · Fn+, Fnew− := Fn+1− · F0 · Fn+, and

Fnew
0 := F+ · Fn+1− · F0 · Fn+

satisfying:
• whenever x ∈ J new[0, βnew), we have Fnew(x) = Fnew+ Fnew

0 ;
• whenever x ∈ J new[βnew, 1/2), we have Fnew(x) = Fnew+ ;
• whenever x ∈ J new[1/2, 1), we have Fnew(x) = Fnew− .
Moreover, Fnew+ , Fnew− , Fnew

0 have total sums 1, −1, 0, respectively.

Proof. Item (1) is immediate. To see item (2), note that 1/2 lies in the interval
Jn = J [nβ, (n + 1)β) and its distances to the endpoints are( 1

2 − nβ
)|J | = 1

2 (1 − 2nβ)|J | = 1
2β|J |(1 + G(β)) and

(
(n + 1)β − 1

2

)|J |
= 1

2β|J |(1 − G(β)).

Since tJ is rotation by β|J | = |Ji | for i < b and tJ (Ji) = Ji+1 for any i < b − 1, item (3)
easily follows; see Figure 1.
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Now we analyze the first return map. After scaling by 1/|Jn| = 1/β, the first return
map to Jn is rotation by (bβ − 1)/β = −G(β). Therefore, by restricting to the further
sub-interval J new and rescaling by 1/|J new|, one can check that the first return map
to J new is rotation by βnew = −G(β)/(1 − G(β)). This is essentially a simple case
of Rauzy–Veech induction. See the next several paragraphs for more details. A direct
computation verifies item (4), that is,

βnew = −G(β)/(1 − G(β)) = −[0; c, . . .].

Next we compute the sequences Fnew+ , Fnew− , Fnew
0 . Note that by item (2), tkJ (J new) is a

sub-interval of Jn+k sharing its right endpoint for 0 ≤ k ≤ n and tkJ (J new) is a sub-interval
of Jk−(n+1) sharing its left endpoint for n + 1 ≤ k ≤ 3n + 1; see Figure 1.

In particular, t2n+1
J (J new) lies in Jn sharing its left endpoint, and we observe that

this completes the first return to J new by t2n+1
J for x ∈ J new[βnew, 1). Counting for

which 0 ≤ k ≤ 2n, we have tkJ (x) on the left or right of J (1/2), we observe that, for
x ∈ J new[βnew, 1/2), the sequence Fnew(x) is equal to Fnew+ defined as in item (5), that is,

Fnew+ = F+ · Fn− · F0 · Fn+;

and for x ∈ J new[1/2, 1), the sequence Fnew(x) is equal to Fnew− as in item (5), that is,

Fnew− = Fn+1− · F0 · Fn+.

In contrast, any x ∈ J new[0, βnew) also returns to Jn for the first time via t2n+1
J , but

lands in Jn \ J new = t2n+1
J (J new[0, βnew)). After another 2n + 2 iterations of tJ , x finally

returns to J new and the additional sequence of f -values is Fnew
0 as in item (5), that is,

Fnew
0 = F+ · Fn+1− · F0 · Fn+.

Indeed, after the first return to Jn (that is, 2n + 1 iterations of tJ ), x lands to the right
of 1/2 for the next n + 1 iterations of tJ in J rather than n times as before, since
tn+1
J (Jn \ J new) = Jb. Finally, the last n + 1 iterations take such x back to J new and x

stays on the left of 1/2 until it is back.
Therefore, for x ∈ J new[0, βnew), we see that Fnew(x) is the concatenation Fnew+ · Fnew

0
as claimed in item (5). The computations above in these three cases together verify item (5),
where the total sums of the sequences Fnew+ , Fnew− , Fnew

0 are 1, −1, 0, respectively, as an
immediate corollary of the expressions in item (5) and the total sums of F+, F−, F0 given
in Assumption 2.4.

Now, consider the partial sum sequences Snew+ and Snew− for the sequences Fnew+
and Fnew− , respectively. We estimate the upper and lower bounds of these partial sum
sequences:

Mnew+ := max Snew+ , mnew+ := min Snew+ , Mnew− := max Snew− , mnew− := min Snew− .

LEMMA 2.6. For the sequences Fnew+ , Fnew− and the integer n defined as in Lemma 2.5,
assuming the total sums of F+, F−, and F0 to be 1, −1, 0, respectively, as in
Assumption 2.4, and assuming n ≥ 2 (that is, b ≥ 5), we have:
• Mnew+ ≥ M+;
• mnew+ ≤ m− − (n − 2);
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• Mnew− ≥ M−;
• mnew− ≤ m− − n.

Proof. These easily follow by inspection and the fact that �+ = +1, �− = −1. As Fnew+
starts with the sequence F+, we note that S+ is a prefix of the sequence Snew+ , which
verifies the first bullet. The third bullet follows similarly.

For the second bullet, consider the expression

Fnew+ = (F+ · Fn−1− ) · F− · (F0 · Fn+).

The sequence F+ · Fn−1− has total sum �+ + (n − 1)�− = −(n − 2), so for the
subsequence F− after these terms, its partial sum sequence S− shifted by −(n − 2)

appears as a subsequence of Snew− , which implies the second bullet.
The last bullet can be shown analogously, as the sequence Fnew− starts with (F−)n · F−,

where the part in parentheses has total sum n�− = −n.

2.2. Second case: β < 0. We now consider the case β < 0. Denote γ = −β. Then,
the first return map to J is tJ (J (x)) = J (x − γ mod 1). The case here is essentially just
mirroring the case above, as now we are rotating to the left. For clarity, we include some
details below. Define the sequences F(x) and S(x) as before for any x ∈ J and let �(x)

be the total sum of F(x). Here are the remaining assumptions for the case β < 0.

Assumption 2.7. There are sequences F+, F−, F0 with total sums �+ = 1, �− = −1,
�0 = 0, respectively, such that:
• for x ∈ J [0, γ ), we have F(x) = F+ · F0;
• for x ∈ J [γ , 1/2), we have F(x) = F+;
• for x ∈ J [1/2, 1), we have F(x) = F−.

We denote the first coefficient by b = �1/γ �, and express it as b = 2n + 1 for some
n ≥ 2. We again partition J into intervals

J0 = J [1 − γ , 1), J1 = J [1 − 2γ , 1 − γ ), . . . , Jb = J [0, 1 − bγ ),

and we have tJ (Ji) = Ji+1 for 0 ≤ i < b − 1. The interval Jb has length γG(γ ).
Our aim is again to find a sub-interval J new ⊂ J containing 1/2 and symmetric about

1/2, for which the first return to J new inherits nice properties regarding the sequence
Fnew(x) of f -values and the sequence Snew(x) of partial sums, defined just as in the
previous case.

LEMMA 2.8. Suppose there is a sub-interval J ⊂ [0, 1) with first return map tJ satisfying
Assumptions 2.2 and 2.7 with β = −γ = −[0; b, c + 1, . . .] < 0, where c ≥ 3. Denote
b = 2n + 1 with n ≥ 1. Then, with notation as above, the sub-interval J new ⊂ J , given by

J new := J
[ 1

2 − 1
2γ (1 − G(γ )), 1

2 + 1
2γ (1 − G(γ ))

)
,

has the following properties.
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10 L. Chen and A. J. Rasmussen

FIGURE 2. The decomposition of J into intervals Ji when b = 2n + 1 = 5 for n = 2 and the orbit of J new under
iterations of tJ , for β < 0.

(1) J new is symmetric about 1/2 of length γ (1 − G(γ ))|J |.
(2) J new is a sub-interval of Jn, the left endpoints of J new and Jn are the same, and the

right endpoint of J new has distance γG(γ )|J | = |Jb| from the right endpoint of Jn.
(3) The image of Jn \ J new under n + 1 iterations of tJ is Jb.
(4) Re-scaling by 1/|J new|, the first return map to J new is rotation by

βnew := G(γ )/(1 − G(γ )) = [0; c, . . .].

(5) There are sequences

Fnew+ := Fn+1+ · F0 · Fn−, Fnew− := F− · Fn+ · F0 · Fn−, and

Fnew
0 := F− · Fn+1+ · F0 · Fn−

with total sums 1, −1, 0, respectively, satisfying:
• whenever x ∈ J new[0, 1/2), we have Fnew(x) = Fnew+ ;
• whenever x ∈ J new[1/2, 1 − βnew), we have Fnew(x) = Fnew− ;
• whenever x ∈ J new[1 − βnew, 1), we have Fnew(x) = Fnew− Fnew

0 .

Proof. The proof is almost the same as that of Lemma 2.5, by symmetry; see Figure 2.
So we just summarize a few key points below.

Items (1)–(3) are just direct computations as before, noting that 1/2 lies in the interval
Jn, but |Jb|-closer to its left endpoint this time.

As in the previous case, after scaling by 1/|Jn| = 1/γ , the first return map to Jn is
rotation by (1 − bγ )/γ = G(γ ), which is now positive. Thus, by restricting further to the
sub-interval J new and rescaling by 1/|J new| instead, the first return to J new is rotation by
βnew = G(γ )/(1 − G(γ )) as in item (4).

Item (5) follows by an analysis of first returns to J new, which is just mirroring the case
of β > 0: the interval t2n+1

J (J new) lies in Jn sharing the right endpoint, completing the
first return to J new for all x ∈ J new[0, 1 − βnew), and the sequence of f -values depends on
whether x lies on the left or right of 1/2, which only changes the first term (F±) in the
concatenation. For those x ∈ J new[1 − βnew, 1), it takes another 2n + 2 iterations of tJ to
return to J new, resulting in the additional sequence Fnew

0 .

As before, for the partial sum sequences S+ and S−, denote

M+ := max S+, m+ := min S+, M− := max S−, m− := min S−,

and similarly for the partial sum sequences Snew+ and Snew− by adding superscripts
everywhere in the above equations.
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The proof of the following lemma is similar to that of Lemma 2.6, using the expressions
for Fnew+ and Fnew− in Lemma 2.8.

LEMMA 2.9. For the sequences Fnew+ , Fnew− , and the integer n defined as in Lemma 2.8,
assuming the total sums of F+, F−, and F0 to be 1, −1, 0, respectively, as in
Assumption 2.7, and assuming n ≥ 2, we have:
• Mnew+ ≥ M+ + n;
• mnew+ ≤ m+;
• Mnew− ≥ M+ + (n − 2);
• mnew− ≤ m−.

2.3. The end of the proof. Finally, we can prove Proposition 2.1.

Proof of Proposition 2.1. We inductively construct Ii and check the first three items as
follows. For the base case i = 1, set I1 = [0, 1) and β1 = α. Then the three items are
either obvious or vacuous. Since the first coefficient of α is odd, Assumptions 2.2 and 2.4
hold for the rotation tJ = t on J = I1, where F+ = {1}, F− = {−1}, and F0 = ∅ is the
empty sequence. By Lemma 2.5, we have a sub-interval I2 := J new symmetric about 1/2
of length less than α1|I1|, for which the first return map is rotation by βnew = −α2, where
α2 is defined in equation (2.1).

Note that the first return map on I2 with the sequences Fnew+ , Fnew− , and Fnew
0 from

Lemma 2.5 satisfies Assumptions 2.2 and 2.7. Thus, Lemma 2.8 produces a sub-interval
I3 symmetric about 1/2 of length less than α2|I2|, for which the first return map is rotation
by α3, with new sequences of f -values satisfying Assumptions 2.2 and 2.4.

We continue this process to define Ii inductively, alternating between applications of
Lemmas 2.5 and 2.8 to Ii with i odd and even, respectively. Namely, given Ii and αi ,
define Ii+1 = I new

i and αi+1 = αnew
i . Item (5) in Lemmas 2.5 and 2.8 ensures item (3) in

Proposition 2.1.
Define inductively F i+, F i−, F i

0 as the sequences of f -values for first returns to Ii , using
F i+1± = (F i±)new and similarly for F i+1

0 . Let S i± be the sequences of partial sums of F i±.
Let Mi± and mi± be the bounds on the partial sums S i± estimated in Lemmas 2.6 and 2.9.

Finally, we prove item (4). We first prove below that there are points tk(1/2) ∈ I1 in
the forward orbit of 1/2 with Sk(1/2) equal to any given integer m. We will explain at the
end how to find such points in Ij for any j ∈ Z+ instead of I1. Note that the sequence
S i− consists exactly of the Birkhoff sums of 1/2 that occur before 1/2 returns to Ii for
the first time. We have Mi− = max S i− and mi− = min S i−. Thus, it suffices to prove that
Mi− → +∞ and mi− → −∞ as i → ∞.

Since the first coefficient ai − 1 (or a1 when i = 1) of αi is odd and at least 5 by
assumption, ni := (ai − 2)/2 ≥ 2 (and n1 := (a1 − 1)/2 ≥ 2). We have m2i− ≤ m2i−1− −
n2i−1 ≤ m2i−1− − 2 by Lemma 2.6 and m2i+1− ≤ m2i− by Lemma 2.9. It follows that
mi+2− ≤ mi− − 2 for all i and hence lim mi− = −∞. For a similar reason, lim Mi+ = +∞,
which we now use to deduce that lim Mi− = +∞. In fact, we have M2i+2− ≥ M2i+1− ≥
M2i+ + (n2i −2) ≥ M2i+ by Lemmas 2.6 and 2.9. Thus, lim Mi− = + ∞ and lim mi− = − ∞
as claimed.
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The proof above works in the same way after replacing α by αj , I1 by Ij , f by f j , and
t by tj for any j ∈ Z+. That is, there is k ∈ Z+ such that t

k
j (1/2) ∈ Ij with tj -Birkhoff

sum equal to m. As tj is the first return map to Ij , such a point in Ij is also in the forward
orbit of 1/2 under t, and its tj -Birkhoff sum is equal to the corresponding t-Birkhoff sum,
which completes the proof.

The same method can be used to study the Birkhoff sum along other orbits. We give a
sketch for one explicit example below, which we use later to find a leaf that is not dense in
Theorem 1.3.

Example 2.10. Fix m ≥ 2. Let α = [0; 2m+1, 2m+2, 2m+2, . . .] (that is, a1 = 2m + 1
and an = 2m + 2 for all n ≥ 2), which satisfies the assumption of Theorem 1.1. We
consider the orbit of x = (1 + α)/2 and claim that Sn(x) ≤ 0 for all n ∈ Z. Here,
we set S0(x) = 0 and S−n(x) = − ∑n

k=1 f (t−k(x)) for any n > 0 so that T n(x, s) =
(tn(x), s + Sn(x)) for all n ∈ Z. The claim implies that the (forward and backward) orbit
of (x, 0) under iterations of T always has non-positive second coordinate.

We sketch a proof of the claim. First, note that we can take care of the backward orbit
by symmetry. In fact, for our particular x, we have t−(n+1)(x) = 1 − tn(x) for all n > 0,
that is, the backward orbit (starting at t−1(x) = (1 − α)/2) and the forward orbit (starting
at x) are symmetric around 1/2, and thus the sequences of f -values along the forward and
backward orbits differ by a negative sign. It follows that S−n(x) = Sn(x) for all n ∈ Z+.
So it suffices to check that maxn≥1 Sn(x) ≤ 0.

To compute Sn(x) with n > 0, we use the same renormalization procedure with the
nested intervals I1 ⊃ I2 ⊃ · · · as above. Let F i± and F i

0 (respectively S i± and S i
0)

be the sequence of f -values (respectively partial sums) defined inductively as in the
proof above. Let Mi± = max S i± and Mi

0 = max S i
0. A direct computation shows that

tm(x) = 1 − 1
2αG(α) and t2m+1(x) = (m + 1)α − 1

2αG(α), so the forward orbit enters I2

for the first time after 2m + 1 iterations of t. In I2-coordinates, we have t2m+1(x) = I2(y)

with

y = [(m + 1)α − 1/2αG(α)] − [mα + αG(α)]
α(1 − G(α))

= α − 3/2αG(α)

α(1 − G(α))
= 1 − 1

2
β,

where β = G(α)/(1 − G(α)) and the first return map t̄2 : I2 → I2 is rotation by −β in
I2-coordinates by Lemma 2.5. Our choice of α makes β = α. Then, applying the first
return map t̄2 another m times, we arrive at I2(1 − (m + 1/2)β), at which point we land
in I3 for the first time. In I3-coordinates, this is I3(z) with

z = [1 − (m + 1/2)β] − [1 − (m + 1)β]
β(1 − G(β))

= 1
2
(1 + γ ),

where γ = G(β)/(1 − G(β)). Noting that γ = β = α by our choice of α, we see z = x,
so we are now exactly at I3(x), and the first return map to I3 is rotation by γ = α in
I3-coordinates by Lemma 2.8. Thus, from here on, the analysis repeats. It follows that the
sequence of f -values along the forward orbit is given by

[(F1−)m+1 · (F1+)m · (F2−)m] · [(F3−)m+1 · (F3+)m · (F4−)m] · · · (2.2)
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The Birkhoff sums are the partial sums of this sequence, and to analyze them, we
compute Mk± and Mk

0 for all k ≥ 1. The idea of the computation is similar to the proof of
Lemmas 2.6 and 2.9, which yields the following recursive formulas for our particular α:

M2k+ = M2k−1+ , M2k− = M2k−1− , M2k
0 = M2k−1+ ,

and

M2k+1+ = M2k
0 + m + 1, M2k+1− = M2k

0 + m − 1, M2k+1
0 = M2k

0 + m,

for all k ≥ 1. Then, by induction, we have

M2k−1+ = (m + 1)k − m, M2k−1− = (m + 1)k − m − 2, M2k−1
0 = (m + 1)k − m − 1

for all k ≥ 2, and

M2k+ = (m + 1)k − m, M2k− = (m + 1)k − m − 2, M2k
0 = (m + 1)k − m

for all k ≥ 1. Now by examining the sequence in equation (2.2) bracket by bracket, it is
straightforward to check that maxn≥1 Sn(x) = −1.

3. Background on laminations and rays
We recall some background on geodesic laminations and geodesic rays on hyperbolic
surfaces. Let X be a complete oriented hyperbolic surface without boundary. We will
typically consider the case that X is of the first kind. This means that the limit set of π1(X)

acting on the universal cover X̃ ∼= H
2 is the entire Gromov boundary ∂X ∼= S1. A geodesic

lamination � on X is a closed subset of X consisting of pairwise disjoint, simple, complete
geodesics. Each such complete geodesic is called a leaf of �.

In §4, we will construct laminations on hyperbolic surfaces using train tracks, weight
systems, and foliated rectangles. Here is the necessary background. A train track τ on
X is a locally finite graph embedded on X with the following additional structure. At
any vertex v of τ , the set B(v) of edges incident to v has a circular order induced from
the orientation of X. We have a partition of B(v) into a pair of non-empty sets Bi (v)

and Bo(v), which we call incoming and outgoing, respectively, such that the total order
defined by any g ∈ Bo(v) (respectively g ∈ Bi (v)) restricts to the same order on Bi (v)

(respectively Bo(v)) independent of g. For e, f ∈ Bi (v), we write e < f if and only if
(e, f , g) is counterclockwise at v for any g ∈ Bo(v). For e, f ∈ Bo(v), we write e < f

if and only if (e, f , g) is clockwise at v for any g ∈ Bi (v). The edges of τ are called
branches and the vertices of τ are called switches. A train path t on τ is a finite or infinite
path immersed in τ with the property that at every switch v, t enters v through Bi (v) and
exits v through Bo(v), or vice versa.

A weight system on τ is a function w : B(τ ) → R+ satisfying the switch equations: for
any switch v of τ , we have ∑

e∈Bi (v)

w(e) =
∑

f ∈Bo(v)

w(f ).

Associated to the pair (τ , w), we construct the following union of foliated rectangles. For
each b ∈ B(τ ), we assign a rectangle R(b) = [0, w(b)] × [0, 1]. We glue the rectangles
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FIGURE 3. Left, two singular leaves that split after passing through a splitting singularity; middle, two singular
leaves that merge after passing through a merging singularity; right, a singular leaf (indicated by the arrows)

passes through three singularities and always splits to the left and merges from the left.

at each switch v as follows. For any switch v of τ , we consider the interval I (v) = [0, �],
where

� =
∑

b∈Bi (v)

w(b) =
∑

b∈Bo(v)

w(b).

Suppose that b1 < · · · < bn are the outgoing branches at v. Then, I (v) is divided into
consecutive closed intervals I1, . . . , In of lengths w(b1), . . . , w(bn), respectively, where
0 ∈ I1 and the intervals Ii overlap only on their boundaries. Then, we glue [0, w(bi)] ×
{0} ⊂ R(bi) via an orientation-preserving isometry to the interval Ii . Similarly, I (v) is
also divided into intervals J1, . . . , Jm of lengths w(c1), . . . , w(cm), where c1, . . . , cm

are the incoming branches at v. Then, we glue [0, w(cj )] × {1} ⊂ R(cj ) to Jj via an
orientation-preserving isometry. The union of foliated rectangles F for (τ , w) is the
quotient of the disjoint union of the rectangles R(b) and intervals I (v) by these gluing
relations.

Each rectangle R(b) of F is foliated by the vertical segments {v} × [0, 1] for
v ∈ [0, w(b)]. This endows F with the structure of a singular foliation. The singularities
are the points where at least three rectangles of F meet. In fact, at most four rectangles
can meet, in which case, we have two rectangles on both sides of an interval I (v). By
thickening I (v) to a rectangle, we assume exactly three rectangles meet at each singularity.
A leaf � of F is an embedding of R into F that is the union of a sequence

. . . σ−1σ0σ1 . . .

of vertical line segments σi = {vi} × [0, 1] ⊂ R(bi) with consecutive segments meet-
ing at endpoints, and which satisfies the following conditions. First, we require that
. . . b−1b0b1 . . . is a train path of τ . Second, we have an additional requirement when
the leaf contains at least two singularities, which we now describe. Given an orientation of
a leaf �, singularities on � fall into two types, merging or splitting; see Figure 3. Moreover,
singularities along � must alternate between the two types as they arise from gluing of
rectangles. At a merging singularity, there are two possible local pictures of �, namely
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merging from the left or right branch. Similarly, at a splitting singularity, � splits to the left
or right branch. For a leaf � containing at least two singularities, we require a choice of
left or right: either � always merges from the left and splits to the left, or it always merges
from the right and splits to the right; see Figure 3.

A leaf will be called singular if it contains a singularity and non-singular otherwise. We
will use unions of foliated rectangles in §4 to construct geodesic laminations on hyperbolic
surfaces.

Finally, suppose that X has an isolated puncture p. A ray � is any complete simple
geodesic asymptotic to p on at least one end. The ray � is a loop if it is asymptotic to p
on both ends. A ray is filling if it intersects every loop based at p. Denote by R(X; p) the
graph whose vertices are the rays based at p, and whose edges join pairs of rays that are
disjoint. By [5], the graph R(X; p) consists of uncountably many connected components.
Among these components, exactly one is of infinite diameter and Gromov hyperbolic. The
remaining components are cliques of rays. These cliques consist of pairwise disjoint rays,
each of which intersects every ray not lying in the clique. A ray in such a clique connected
component is called high filling. The set of cliques of high-filling rays is identified with the
Gromov boundary ∂R(X; p) [5, Theorem 6.3.1]. If a ray is filling but not high filling, then
it is called 2-filling [5, Lemma 5.6.4]. Thus, there is a trichotomy: a ray is either not filling,
2-filling, or high filling. As such, 2-filling rays can be thought of as fake boundary points
for the graph R(X; p), with properties mimicking those of high-filling rays. Finally, note
that a priori, the graph R(X; p) depends on the particular hyperbolic metric X. However,
if Y is a different complete hyperbolic surface of the first kind homeomorphic to X, then
there is a natural bijection between the rays on X based at p and the rays on Y based at p;
see the end of Part 1 in [5]. This bijection preserves the property of a ray being a loop,
2-filling, high filling, etc. Hence, we may actually define R(S; p) := R(X; p), where S is
the underlying topological surface to X, and the graph R(S; p) is well defined independent
of a particular hyperbolic metric of the first kind on S. When S is the plane minus a Cantor
set, then 2-filling rays exist, and the construction can be applied to many other surfaces
of infinite type [7]. Theorem 1.4 now confirms their existence on any infinite type surface
with at least one isolated puncture.

4. Laminations
We consider the train track τ illustrated in Figure 4. The weights of three branches are
labeled for some α ∈ (0, 1). The weights of the other branches are determined by these via
the switch equations. Associated to these weights on τ , we construct the standard union
of foliated rectangles F. There is a single branch of weight 1 in τ , which gives rise to a
rectangle R of F.

The train track τ has an infinite cyclic cover τ̃ which is pictured in Figure 5. The weights
on τ pull back to weights on τ̃ , some of which are labeled in Figure 5.

We consider the union of foliated rectangles F̃ for τ̃ with the described weights; see
Figure 6. Then, F̃ is an infinite cyclic cover of F. The branches of τ̃ of weight 1 give
rise to a sequence of rectangles . . . , R−1, R0, R1, . . . in F̃ , which are indexed by Z and
cover the rectangle R of F corresponding to the branch of τ with weight 1. We choose the
numbering so that there is a rectangle joining Ri to Ri+1 and a rectangle joining Ri to
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FIGURE 4. A weighted train track τ . The second return map to a horizontal interval in the rectangle R of the
union of foliated rectangles F is a rotation by α.

FIGURE 5. The infinite cyclic cover τ̃ of τ .

FIGURE 6. Part of the union of foliated rectangles F̃ .

Ri−1 for each i, both with width 1/2. For the rectangle of width 1/2 joining Ri and Ri+1,
one of its boundary leaves (the lower boundary in Figure 6) extends to a singular leaf �i

in F̃ passing through the singularities si and si+1. The leaves �i−1 and �i share a ray ri

starting at si . The following consequence of Corollary 1.2 is crucial to our construction of
an infinite clique of 2-filling rays.

LEMMA 4.1. Suppose that α ∈ (0, 1) satisfies the conditions of Theorem 1.1. Then, for
each i, the ray ri of F̃ is dense in F̃ , and hence so is the singular leaf �i .

Proof. To prove this, we parameterize the disjoint union
⋃

i∈Z Ri by [0, 1]2 × Z, where
Ri is isometrically identified with the unit square [0, 1]2 and the leaves of F̃ intersect the
rectangles [0, 1]2 in vertical segments {x} × [0, 1]. We further choose the orientation on
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the vertical segments such that the singularity si is given by (1/2, 0, i) in these coordinates
and each ri starts from si by going upward; see Figure 6.

After ri passes through Ri for the first time, it travels downward in Ri along the vertical
segment with coordinate (1 − α) − 1/2 = 1/2 − α, since α < 1/2 as in Theorem 1.1.
Thus, ri passes through (1/2 − α, 0, i) to exit Ri . At this point, ri will enter Ri−1 since
1/2 − α < 1/2, and it travels upward starting at (1 − 1/2 + α, 0, i − 1) = (1/2 + α,
0, i − 1).

In general, if at some point the ray ri is traveling upward in some Rj along the vertical
segment with coordinate x ∈ (0, 1), it hits the top of Rj and then starts to travel downward
in Rj along {b(x)} × [0, 1], where

b(x) =
{

1 − α − x if x < 1 − α,

2 − α − x if x > 1 − α.

Note that b(x) = 1 − t (x), where t = tα is the rotation by α as in §1, that is, t (x) ∈ (0, 1)

is the fractional part of x + α. At this point, ri exits Rj at (b(x), 0, j) and enters Rj ′ with
j ′ = j + 1 if b(x) > 1/2 and j ′ = j − 1 if b(x) < 1/2. That is, j ′ = j + f (t (x)) for the
function f = χ[0,1/2) − χ[1/2,1) as in the definition of the transformation T in Theorem 1.1.
Moreover, ri enters Rj ′ by traveling upward along the vertical segment with coordinate
1 − b(x) = t (x).

In the calculations above, we ignored all boundary cases since we only care about
x = tn(1/2) for some n ≥ 0 and α is irrational.

It follows from the analysis above that ri visits the nth rectangle with entry point(
tn−1(1/2), 0, i +

n−1∑
j=1

f (tj (1/2))

)
.

The sum
∑n−1

j=1 f (tj (1/2)) is equal to Sn(1/2) − f (1/2) = Sn(1/2) + 1, where Sn is
the nth Birkhoff sum defined in §1. Thus, ri contains the points (tn−1(1/2), 0, i + 1 +
Sn(1/2)) for n ≥ 1, and the pairs (tn−1(1/2), i + 1 + Sn(1/2)) are dense in [0, 1] × Z

by Corollary 1.2. To see the last claim, note that for each m ∈ Z, the set of n ≥ 0 with
i + 1 + Sn(1/2) = m is �(1/2, m − i − 1), so the pairs above contain (tn(1/2), m) for
all n ∈ �(1/2, m − i − 1) − 1 except possibly n = 0, and the first coordinates of such
pairs are dense by Corollary 1.2. This proves that ri is dense in Rm for any m ∈ Z and
hence dense in the whole foliation F̃ . This completes the proof of Lemma 4.1.

We now define a geodesic lamination on an infinite type hyperbolic surface. The track
τ̃ may be folded to yield the train track τ̂ pictured on the left of Figure 7. The track τ̂ is
carried by another track σ shown on the right of Figure 7, which can in turn be embedded
in any infinite type surface � with at least one isolated puncture p as we explain below;
see the left of Figure 8.

On the left of Figure 8, every tiny black disk represents a subsurface of � with a single
boundary component, corresponding to the boundary of the black disk. We require each
such subsurface to have either positive genus or at least two punctures. Furthermore, in �,
the border line pictured on the left of Figure 8 is glued to itself by a reflection across
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FIGURE 7. Left, the track τ̂ obtained by folding τ̃ ; middle, another embedding of τ̃ that spirals; right, the track σ

obtained by collapsing parallel branches.

the central vertical line, so that � has no boundary. With this identification, each dotted
horizontal line segment represents an essential simple closed curve γi on �. Thus, the
surface � with the black disks removed is a flute surface �′. Any infinite-type surface
without boundary and with at least one isolated puncture can be realized this way by
appropriately choosing the topological type of the subsurfaces represented by the black
disks.

LEMMA 4.2. For any orientable surface S of infinite type with at least one isolated
puncture p, there is a sequence of surfaces {Di}i≥1 each with one boundary component
and either positive genus or at least two punctures, so that the surface (�, p) above with
the black disks homeomorphic to the surfaces Di is homeomorphic to (S, p).

Proof. Recall the classification of (possibly non-compact) orientable surfaces without
boundary [9]. Each surface S has a space of ends E, which is totally disconnected,
compact, and metrizable. The non-planar ends form a closed subset Eg ⊂ E, which is
non-empty if and only if S has infinite genus. Then the classification states that two
surfaces are homeomorphic if and only if they have the same genus (possibly infinite)
and the pairs of spaces of ends (E, Eg) are homeomorphic. Moreover, given any pair
(E, Eg) with E totally disconnected, compact, and metrizable and Eg ⊂ E closed, and
given n ∈ Z≥0 ∪ {∞} so that n < ∞ if and only if Eg = ∅, there is an orientable surface
S with genus n and spaces of ends homeomorphic to (E, Eg). We say S is of infinite type
if either E is an infinite set or Eg is non-empty.

Consider any S of infinite type with an isolated puncture p, and denote its space of ends
by E. Since p is isolated, E \ {p} is clopen. There are two cases.

(1) Suppose E is infinite. Then, there is an accumulation point x ∈ E and a sequence
of nested clopen neighborhoods E \ {p} = V1 ⊃ V2 ⊃ · · · of x with

⋂
i Vi = {x}. Up to
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FIGURE 8. Left, the track σ obtained by embedding τ̂ on an infinite type surface � and collapsing parallel
branches. Right, the non-filling ray R∞ on �.

relabeling, we may assume that Ui := Vi \ Vi+1 contains at least two points for all i ≥ 1.
For each i ≥ 1, there is a surface Si with space of ends homeomorphic to (Ui , Ui ∩ Eg).
Moreover, if Ui ∩ Eg = ∅, then we can choose Si to have any genus ni ∈ Z≥0, which we
now specify. If S has finite genus, we may choose the numbers ni so that

∑
ni is equal to

the genus of S. If S has infinite genus, for each i with Ui ∩ Eg = ∅, we choose ni = 0 if x
is planar and ni > 0 if x is non-planar. Let Di be Si with an open disk removed. Then, each
Di either has positive genus or has at least two punctures. Choose the black disks in the
construction of our surface � above to be homeomorphic to the surfaces Di . Then, (�, p)

is homeomorphic to (S, p) by the classification of surfaces.
(2) Suppose E is finite. Then, Eg must be non-empty for S to be of infinite type. Then,

E = Eg � E′ � {p}, where E′ consists of planar ends other than p. For 1 ≤ i ≤ |Eg| − 1,
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let Si be the surface of infinite genus and exactly one (non-planar) end, that is, the Loch
Ness monster. For i = |Eg|, let Si be the surface of genus one with |E′| punctures. For
i > |Eg|, let Si be the torus. Now for each i ∈ Z+, let Di be Si with an open disk removed.
Choose the black disks in the construction of our surface � above to be homeomorphic to
the surfaces Di . Then, � has infinite genus and has the same pair of spaces of ends as S,
so again (�, p) is homeomorphic to (S, p) by the classification of surfaces.

The simple closed curves {γi}i≥0 cut �′ into an infinite sequence of finite type
subsurfaces {�i}i≥0. For each i ≥ 1 (respectively i = 0), the surface �i is bounded by
two (respectively one) curves γi together with 7 (respectively 2) boundary components of
black disks (respectively and a puncture p). Thus, each �i admits a complete hyperbolic
structure with geodesic boundary components all of length 1. In the following, we choose
the metric on �i with the additional property that the (finitely many) train paths in σ ∩ �i

have lengths bounded above independent of i, which can be done for instance by making
�i (i ≥ 1) all isometric under the obvious translation in Figure 8. Since each black disk
represents a surface with positive genus or at least two punctures, it admits a hyperbolic
structure of the first kind so that the boundary is a geodesic of length 1. Hence, by gluing,
we can endow � with a complete hyperbolic metric of the first kind so that:
(1) each γi is a closed geodesic of length 1;
(2) the train paths in σ ∩ �i have lengths bounded above independent of i.

Let �̃ ∼= H
2 be the universal cover of �. Consider the preimage σ̃ of σ and the

collection L of lifts of all curves γi to �̃. We notice the following fact.

LEMMA 4.3. For the choice of hyperbolic metric on � above, there are uniform constants
K , C > 0 such that any bi-infinite train path of σ̃ is a (K , C)-quasi-geodesic. In
particular, it limits to two distinct points on the Gromov boundary ∂�̃.

Proof. We show this by looking at the intersections with lines in L. Each lift of γi is a
bi-infinite geodesic in L. Note that there is a lower bound on the distance between any two
lines of L by the collar lemma since the curves γi have bounded length. Moreover, the
segment between any two consecutive intersections of the train path with L is a lift of a
train path in σ ∩ �i for some i, and thus its length is bounded above by a uniform constant
due to our choice of metric.

We claim that any train path of σ̃ with endpoints on two lines of L is not homotopic,
relative to endpoints, into a line in L. Given the claim, any bi-infinite train path of σ̃

intersects a bi-infinite non-backtracking sequence of geodesics in L at a uniformly bounded
linear rate, from which the lemma follows.

The claim above follows from the observations below. There are only two homeomor-
phism classes of pairs (�i , �i ∩ σ). Moreover, in each track �i ∩ σ , there are finitely
many train paths. Finally, by the choice of curves γi , no train path of �i ∩ σ is homotopic
into ∂�i via a homotopy keeping the endpoints of the train path on the boundary, and no
two distinct train paths of �i ∩ σ are homotopic via such a homotopy.

Consequently, any bi-infinite train path t of σ̃ may be straightened to a geodesic α in
∂�̃ with the same endpoints on the Gromov boundary. Moreover, the proof above implies
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that the sequences of lines in L intersecting α and t, respectively, are identical. In addition,
the intersections with L cut both α and t into segments of length bounded above and below
by uniform constants. We also see from the last observation made in the proof above that
if t1, t2 are train paths in σ̃ such that ti joins a line Li ∈ L to a line L′

i ∈ L, then t1 and
t2 are equal if and only if L1 = L2 and L′

1 = L′
2. The following lemmas can be deduced

from these facts.

LEMMA 4.4. Let {ti}∞i=1 be bi-infinite train paths of σ̃ straightening to geodesics {αi}∞i=1
of �̃. If α is a geodesic of �̃ such that αi → α, then α intersects infinitely many lines in L
at each end.

Proof. Suppose this is not the case. Then one end of α projects to a geodesic ray in �

disjoint from the curves γj . Note that each αi projected to � is disjoint from the boundary
curve of each black disk in Figure 8. Hence, the limiting ray above is also disjoint from
such boundary components. So the ray must be trapped in some �j . This implies that
there is an arbitrarily long geodesic segment βi inside �j in the projection of αi for i
sufficiently large. This contradicts the observation we made above, that αi is divided by L
into segments of uniformly bounded length.

LEMMA 4.5. Let {ti}∞i=1 be bi-infinite train paths of σ̃ straightening to geodesics {αi}∞i=1
of �̃. Suppose that α is a geodesic of �̃. Then, αi → α if and only if α is also carried by σ̃

and for any finite sub-path s of the train path t defining α, s is contained in ti for all large
enough i. In particular, the set of geodesics carried by σ̃ is closed in the space of geodesics
of �̃.

Proof. We only focus on the less obvious direction: if αi converges to a geodesic α, then
α is carried by σ̃ and for any finite sub-path s of the train path t defining α, s is contained
in ti for all large enough i.

Each αi intersects a bi-infinite sequence of lines in L. By Lemma 4.4 and the fact that
intersection is an open condition, these sequences (with an appropriate choice of the 0th
term) are pointwise eventually constant, with the limiting sequence equal to the lines in
L intersecting α. As each straightening αi intersects the same sequence of lines in L as
the corresponding train path ti does, the limiting sequence above determines a train path t
carrying α with the desired properties.

LEMMA 4.6. Let s and t be bi-infinite train paths of σ̃ straightening to geodesics β and α.
Then, β and α share an endpoint q ∈ ∂�̃ if and only if s and t share an infinite train path
limiting to q.

Proof. We again focus on the less obvious direction: if β and α share an endpoint q ∈ ∂�̃,
then s and t share an infinite train path limiting to q. As in the proof above, α intersects
the same bi-infinite sequence of lines in L as t does. Note that the endpoints of these lines
must converge to q since lines in L are at distances uniformly bounded away from zero.
This implies that this sequence of lines would eventually all intersect the ray in β limiting
to q, and vice versa. It easily follows that s and t intersect the same sequence of lines in L
at one end, determining the desired infinite train path.
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Now we define a geodesic lamination on � as follows. Recall that the weights on τ

induce weights on τ̃ . Via the union of foliated rectangles construction, the leaves of the
rectangles glue to a set of train paths on τ̃ and they correspond to a set T̃ of train paths on
σ via the carrying map. Finally, we consider the train path t∗ in σ which passes through
each surface �i (i > 0) exactly twice and never returns. This is the train path parallel to the
border line on the left side of Figure 8. We define S := T̃ ∪ {t∗}, a set of train paths on σ .
By Lemma 4.3, we may straighten the train paths in S to geodesics. Denote the resulting
set of geodesics by �. Since the train paths in S do not cross, neither do the geodesics
of �.

LEMMA 4.7. The set of geodesics � is closed as a subset of �. Therefore, it is a geodesic
lamination on �.

We postpone the proof of Lemma 4.7 and first discuss the train paths in S in more detail.
Any non-singular leaf of F̃ uniquely determines a train path in σ , and it is determined by
any segment of the leaf contained in a foliated rectangle of F̃ . Now we describe train paths
of T̃ corresponding to singular leaves of F̃ . Note that there is a sequence of quadrilaterals
Qi in the complement of the train track σ ; see the left of Figure 8. In each Qi , i ≥ 1, a
pair of singularities si and s−i sit at the two opposite horizontal corners, corresponding
to the singularities si and s−i+1 in Figure 6. For each i ∈ Z+, there is a unique singular
leaf �i containing si and si+1, and a unique singular leaf �−i containing s−i and s−i−1.
Moreover, there is a singular leaf �0 containing s−1 and s1. Thus, we have a collection
. . . , �−1, �0, �1, . . . of singular leaves of F̃ indexed by the integers, corresponding to
those investigated in Lemma 4.1. This gives rise to a collection . . . , t−1, t0, t1, . . . of train
paths in S. Note that for each i ∈ Z, �i shares a ray with �i−1 and �i+1, respectively, so
that ti shares a half-infinite sub-train-path with ti−1 and ti+1, respectively.

For each i, the train path ti gives rise to a leaf Li of �, corresponding to the leaf �i in
F̃ studied in Lemma 4.1.

Proof of Lemma 4.7. Lift � to a set of geodesics �̃ on �̃. Let λ1, λ2, . . . be geodesics in
�̃ converging to the geodesic λ. By Lemma 4.5, λ is carried by σ̃ . Let t be a train path
of σ̃ straightening to λ. If t projects to t∗ in �, then λ is in �̃ by definition. Otherwise, t
passes through some branch b on the boundary of a quadrilateral in the complement of σ̃ .
Hence, ti passes through b for i sufficiently large. Without loss of generality, we assume
that ti passes through b for every i.

Lift F̃ to a foliation of a subset of �̃. Then, for each i, ti is the train path defined by a
(possibly singular) leaf of F̃ . That is, after collapsing the rectangles of F̃ to branches, and
composing with the carrying map to σ̃ , we obtain ti . Thus, for each ti , there is a unique
vertical line segment ui in the rectangle R(b) which the leaf corresponding to ti passes
through. Up to passing to a subsequence, the segments ui converge to a vertical segment u
in R(b), and we may further assume all segments ui lie on the same side of u, say the left
side (for a chosen orientation of u). Let ri be the (possibly singular) leaf defining ti (which
passes through ui). Furthermore, let r be the (possibly singular) leaf which passes through
u, and, when given the orientation induced by u, merges from or splits into the left rectangle
at every singularity that it passes through (if there are indeed any such singularities). Then,
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ui converges to u, since for any finite sequence of rectangles that u passes through, ui also
passes through the same sequence for i sufficiently large. Hence, ti converges to the train
path defined by u, which is therefore equal to t. In particular, λ is a leaf of �̃.

The following lemma is the key to obtain our infinite clique of 2-filling rays.

LEMMA 4.8. The complementary component to � containing p is a once-punctured ideal
polygon with countably infinitely many ends, exactly one of which is the limit of the others.
The sides of the ideal polygon are the leaves {Li}i∈Z.

To prove Lemma 4.8, we look at some particular rays, which we denote as Ri with
i ∈ Z ∪ {∞}. We apologize for reusing the notation and warn the reader not to confuse
them with the rectangles Ri discussed earlier (which play no role in the rest of the paper).

First, we define a ray R∞ with one end at the isolated puncture p. This is the geodesic
ray pictured on the right of Figure 8. It is non-proper and not filling (as defined at the end
of §3). Observe that it is disjoint from �.

We also define a sequence of geodesic rays Ri for i ∈ Z \ {0} as follows. The ray Ri is
obtained by following R∞ until it enters the quadrilateral Qi with ends corresponding to
the singularities s±i . Thereafter, it passes through si and follows the common half-infinite
sub-train-path of ti−1 and ti (if i > 0) or of ti and ti+1 (if i < 0). The path just described
may be homotoped to be simple and disjoint from any given leaf of �, and furthermore,
none of its arcs in a component of � \ �iγi is homotopic into the boundary. Hence, the
path may be straightened to a geodesic ray Ri ; see Figure 9.

Now, we prove Lemma 4.8.

Proof. Recall that the surfaces �j are the complementary subsurfaces of the dotted curves
γj and black disks in Figure 8. We see that for i � 0 or i � 0, Ri and R∞ pass through
many of the surfaces �j in the same order, and in each such �j , the arcs of Ri and R∞ are
homotopic, keeping endpoints on the boundary. Hence, we have Ri → R∞ as i → ∞ and
as i → −∞. Furthermore, Ri is asymptotic to Li and Li−1 if i > 0, and Ri is asymptotic
to Li and Li+1 if i < 0. Finally, the rays Ri occur in the order

R∞ < · · · < R2 < R1 < R−1 < R−2 < · · · < R∞

in the circular order on geodesics asymptotic to p.
Lift R∞ to a ray R̃∞ in the universal cover �̃. Then, R̃∞ has one endpoint at a lift p̃

of p on ∂�̃ and the other endpoint at a point z ∈ ∂�̃. Let g be a generator of the cyclic
subgroup of π1(�) fixing p̃. There is a unique lift R̃i of Ri based at p̃, between R̃∞ and
g · R̃∞. Up to replacing g by g−1, we see that R̃i → gR̃∞ as i → +∞ and R̃i → R̃∞ as
i → −∞. Moreover, there is a lift L̃i for i ∈ Z such that:
• L̃0, R̃−1, R̃1 are the sides of an ideal triangle;
• L̃i , R̃i , R̃i+1 are the sides of an ideal triangle for i > 0;
• L̃i , R̃i , R̃i−1 are the sides of an ideal triangle for i < 0.

Consequently, R̃∞, gR̃∞, and the geodesics L̃i form the sides of a polygon with
countably infinitely many ends. Each of these ends is isolated except z and gz, which are
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FIGURE 9. The rays Ri and R∞. They enter the union of foliated rectangles at a cusp and thereafter follow a leaf
of the corresponding singular foliation (the dotted lines in the figure). For ease of presentation, the picture has

been ‘unwrapped’ before being embedded into �.

limits of the others. After quotienting by g, we obtain a once-punctured ideal polygon with
a countable set of ends, exactly one of which is the limit of the others, as claimed.

Finally, we prove Theorems 1.3 and 1.4.

Proof of Theorem 1.4. By Lemma 4.2, any infinite type surface S with at least one isolated
puncture p is homeomorphic to our surface � by a suitable choice in the construction.
Construct the lamination � and use the notation as above. We see from Lemma 4.8
that every simple ray based at p, except Ri for i ∈ {∞} ∪ Z \ {0}, intersects Li for some
i ∈ Z. Moreover, Li has a half leaf asymptotic to Ri , and this half leaf is dense in �

by Lemma 4.1. Hence, each Ri accumulates onto �. Thus, every simple ray based at p,
not contained in {Ri}i∈{∞}∪Z\{0}, intersects Ri for every i ∈ Z \ {0}. Thus, each ray Ri

is 2-filling, only disjoint from one non-filling long ray R∞, and {Ri}i∈Z\{0} is an infinite
clique of 2-filling rays.

Proof of Theorem 1.3. Let S = � with the hyperbolic structure and lamination � as above.
In the construction of �, choose α = [0; 2m + 1, 2m + 2, 2m + 2, . . .] as in Example 2.10
for some m ≥ 2, which satisfies the assumptions of Theorem 1.1. Each leaf Li described
above is dense in � by Lemma 4.1, so � is topologically transitive. However, the full
orbit we examined in Example 2.10 has (forward and backward) Birkhoff sum always
non-positive, so the corresponding leaf misses infinitely many rectangles, and thus it is
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not dense. There is an obvious Z action on F̃ in Figure 6. It is straightforward to see that
the Z-orbit of this leaf yields infinitely many distinct non-dense leaves, which completes
our proof.

Acknowledgments. We owe a debt of gratitude to Jon Chaika for teaching us and
suggesting the method used in this paper for studying irrational rotations. We also thank
the anonymous referee for their careful reading of the paper and suggestions. The second
author was partially funded by NSF grant DMS-2202986.

REFERENCES

[1] J. Aramayona, A. Fossas and H. Parlier. Arc and curve graphs for infinite-type surfaces. Proc. Amer. Math.
Soc. 145(11) (2017), 4995–5006.

[2] J. Bavard. Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire. Geom.
Topol. 20(1) (2016), 491–535.

[3] J. Bavard. An infinite clique of high-filling rays in the plane minus a Cantor set. Preprint, 2021,
arXiv:2106.01962.

[4] J. Bavard and A. Walker. The Gromov boundary of the ray graph. Trans. Amer. Math. Soc. 370(11) (2018),
7647–7678.

[5] J. Bavard and A. Walker. Two simultaneous actions of big mapping class groups. Trans. Amer. Math. Soc.
376(11) (2023), 7603–7650.

[6] M. Boshernitzan and D. Ralston. Continued fractions and heavy sequences. Proc. Amer. Math. Soc. 137(10)
(2009), 3177–3185.

[7] L. Chen and A. J. Rasmussen. Laminations and 2-filling rays on infinite type surfaces. Ann. Inst. Fourier
(Grenoble) 73(6) (2023), 2305–2369.

[8] D. Ralston. 1/2-heavy sequences driven by rotation. Monatsh. Math. 175(4) (2014), 595–612.
[9] I. Richards. On the classification of noncompact surfaces. Trans. Amer. Math. Soc. 106 (1963), 259–269.

https://doi.org/10.1017/etds.2024.80 Published online by Cambridge University Press

https://arxiv.org/abs/2106.01962
https://doi.org/10.1017/etds.2024.80

	1 Introduction
	2 Proof of Theorem 1.1
	2.1 First case: β> 0
	2.2 Second case: β< 0
	2.3 The end of the proof

	3 Background on laminations and rays
	4 Laminations
	Acknowledgements
	References

