Journal of Functional Programming 1 (2): 155-189, April 1991

Modular proof of strong normalization for the
calculus of constructions
HERMAN GEUVERS* AND MARK-JAN NEDERHOF

Faculty of Mathematics and Computer Science, University of Nijmegen, The Netherlands

Abstract

We present a modular proof of strong normalization for the Calculus of Constructions of
Coquand and Huet (1985, 1988). This result was first proved by Coquand (1986), but our proof
is more perspicious. The method consists of a little juggling with some systems in the cube of
Barendregt (1989), which provides a fine structure of the calculus of constructions. It is proved
that the strong normalization of the calculus of constructions is equivalent with the strong
normalization of Fo.

In order to give the proof, we first establish some properties of various type systems.
Therefore, we present a general framework of typed lambda calculi, including many well-
known ones.

Capsule review

The calculus of constructions due to Coquand and Huet (1985, 1988) is a very popular subject
among those interested in computer science-oriented aspects of intuitionistic type theory. The
strong normalization theorem for it, stating that all computation sequences terminate, is one
of the most basic results. The authors present a new proof of strong normalization obtained
essentially by combining ideas from several previous proofs of similar results for different
systems, allowing them to divide up the difficulties and cope with them one at a time. The paper
is self-contained and all proofs are given in detail.

1 Introduction

The strong normalization (SN) property for the calculus of constructions (Coquand
and Huet, 1985, 1988) was proved by Coquand (1986). This proof is rather ‘ baroque’,
although it is reminiscent of other proofs of strong normalization for systems like the
simply or polymorphically typed lambda calculus. Therefore, we looked for a
conceptually more perspicious proof.

Barendregt (1989) gives a fine structure of the calculus of constructions. He defines
a natural cube of eight type systems, ordered along the edges by inclusion, of which
the smallest system is the simply typed lambda calculus A—, and the most
complicated system is the calculus of constructions AC. Other systems in Barendregt’s

* Partially supported by the EEC ‘Project Stimulation ST2J/0374/C(EDB): Lambda Calcul Typé’.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

156 Herman Geuvers and Mark-Jan Nederhof

cube include the second order (polymorphic) lambda calculus A2, Girard’s Fo system
(called Aw in the cube) and AP, a system related to the AUTOMATH system AUT-QE and
studied by Harper et al. (1987) under the name LF

The first step in our proof of strong normalization consists of defining a mapping
from AC into Aw such that reduction of terms is preserved. (This generalizes a method
of Harper et al. (1987) mapping AP into A—). Then, motivated by three kinds of
abstractions possible in the various parts of the cube, reductions in Ao are divided
into three kinds. Two of these reductions turn out to be strongly normalizing. (For
one of them we need that A — is SN.) To show that the third notion of reduction (even
if mixed with the other two) is also SN, we map the terms of Ao into the set A of
typefree lambda terms. Then a higher order version of the argument used for A2 (by
Girard (1972), or Tait (1975)) shows that A is SN.

The lemmas that are used in the proof of strong normalization are valid for a large
class of systems not included in the cube. Therefore, we start this paper by giving a
more general notion of type system, following definitions by Terlouw (19894) and
Berardi (1988), and prove the basic lemmas for this general notion. This puts the
properties of the systems of the cube in a larger framework that might be useful for
other arguments about typed lambda calculi. Berardi has shown that various logical
systems also fit in the general notion of type system (see Barendregt, 1989, for some
examples), which again stresses the relationship between typed lambda calculus and
logic, usually expressed by the ‘formulae-as-types’ notion, discussed by Howard
(1980).

2 Framework for type systems

A general notion of type system is presented, following definitions given by Terlouw
(1989 a, b) and Berardi (1988), generalizing Barendregt’s cube. This notion will serve
as a framework for reasoning about type systems and comparing various type systems
with each other. One can prove a number of basic properties for this notion, which
show how things work. We restrict ourselves to those properties that will be useful in
the argument about strong normalization.

Definition 1
A Generalized Type System (GTS) is a system consisting of the following objects

(i) Cons, a set of constants,
(it) SorT = CoNs, a set of sorts,
(iii) Axrom, a set of pairs (c, ¢’), with ¢, ¢’ e Cons,
(iv) RULE, a set of triples (s, 5", s”), with s, 5", s” € SORT,
(v) for every se SORT, a set V4R® of variables.

The axiom pairs (c, ¢) will usually be denoted by c:¢’. If s = 5” in a rule (s, 5', s”), then
the rule (s,s",s”) will be written as (s,5). A GTS will be denoted by the quadruple
(Cons, Sort, Axiom, RULE). For the set of all variables, we shall write V4R, so
Var=J VAR

8€SORT

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 157

The idea of the GTS definition is that the sorts are the universes of the type system,
where the axioms give the hierarchical structure between them. The constants are
special objects of the type system, belonging to a universe or another constant. The
rules restrict the formation of the IT-type, the collection of (possibly dependent)
functions from one type to another. In Chapter 3 it can be seen how the GTS
definition works in the case of well-known systems such as simply and poly-
morphically typed lambda calculus and the calculus of constructions.

Definition 2
(i) A GTS (Cons, SORT, AxioM, RULE) is functional iff

— AxioM = Cons x Cons is a function, i.e., Yc,c’, c” € CONS.
[c:c’,c:c"eAxiom = ¢’ = ¢”),

— RULE < (SORT x SORT) x SORT is a function, i.e., Vs,, s,, 5,53 € SORT.
[(51, S5, $3), (51, S5, 53) € RULE = 5, = 53],

(i) A GTS (Sort, Cons, AxioM, RULE) is injective iff

— AXIOM is injective on SORT X SORT, i.e., Vs, s’ € SORT, ce CONS.
[s:c,s":ce Axiom =5 = 5],

— RULE is injective in its second argument, i.e., Vs,,S,, 53, 5, € SORT.
(515 82, 53), (51, 5, 53) € RULE =5, = 53].

A motivation for these two definitions is that type systems which are functional will
turn out to have the so called ‘uniqueness of assignment’ property ; the type that can
be assigned to a certain object is unique up to p-equality. (Even without knowing the
inference rules for GTSs, it will be clear that if Axiom is not injective, a constant
might be typed with two different sorts which are not B-equal.) Further, the properties
of functionality and injectivity give rise to nice classifications of objects in a type
system. It is not worth explaining the interest of these two definitions at this point.
They will only become clear in view of the specific properties for functional and
injective GTSs that are given at the end of this chapter.
Let in the following { = (Sort, CONs, AxioM, RULE) be a GTS.

Definition 3
(i) The collection of pseudoterms of {, PST((), is defined by

t::= VAR|Cons|(tt)|(A\VaR:t.8)|(IIVAR: 2. 0).

(ii) If a term is one of the last three forms, it will be called a composed term.

The notions of bound variable and free variable of a pseudoterm are defined as usual,
A and II bind variables.

The substitution operator works as in the untyped lambda calculus; #[x:=t']
denotes the substitution of ¢ for x in the term . Substitution is only allowed if no free
variables become bound.

Just as in untyped lambda calculus, terms that only differ from each other in their
bound variables will be identified ; we work modulo a-conversion. If the terms ¢ and

6 FPR |
https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

158 Herman Geuvers and Mark-Jan Nederhof

t are a-convertible, this is denoted by z = ¢’. In general, it will be assumed that the
bound variables in a term differ from the free ones.

Also, the notion of subterm is directly copied from the untyped case. (For precise
definitions, we refer to Barendregt, 1984).

Definition 4

(i) a redex is a pseudoterm of the form (Ax:z.¢)¢".

(ii) one-step B-reduction, —; (or just —), is defined by (Ax:z.)t" —gt'[x:= "],
and if ' — ", then t£ > 2t", ' t—>pt"t, Ax:t. 0 >ghx:t. 0, Ax: 0 .t >gdx: 1" 8,
Mx:t.t >pIlx:¢.¢" and TIx:¢ .t >4 Ix:¢". ¢, for all ¢, ¢, 1" € PST(Q).

(iii) B-reduction, —», is the transitive reflexive closure of —.

(iv) B-conversion, =, is the least equivalence relation generated by —».

Theorem 5
The reduction relation —» on PST(() satisfies the Church—Rosser property, i.e.
VM,NePST(). [M = N=3PePST({). M—»P & N—»P].

Proof. The proof of the Church—Rosser property for pseudoterms can be given in the
same way as the proof of Church—Rosser for the untyped lambda calculus. We do not
give it here. (For details see Barendregt and Dekkers, 1990). [

Definition 6
(i) A C-assignment is an expression of the form A:B, with A, Be PST((),
(ii) A C-declaration is an expression of the form x: A, with 4ePST({), xe V4R,
(iii) A {-pseudocontext is a finite sequence of {-declarations,
(iv) A C-statement is an expression of the form I' — 4 : B, with T a {-pseudocontext,
A: B a (-assignment.

Definition 7
LetIand I' = x,:4,, ..., x,: A, be pseudocontexts.

(i) The domain of T, dom(T'), is the set {x,, x,, ..., X,},
(i) For i < n, I'[i (T restricted to i) is the pseudocontext x,:4,, ..., x,;: 4;,
(iii) For i<n, T\CxiA) = x4y, oo i Xt Aygs Xpor i Apegs oo X0 A
@(v) T"< T (I is prefix of T) iff " = T'[i for some i < n,
(v) I" eI (I is subcontext of ') iff x:AinT"=x:Ain T,
(i) T»T"iff " = x: 4],x,: A, and A, A, for all i < n.

We now define for a pseudocontext I" and pseudoterms 4 and B, the notion ‘T’ A4: B
is true’. This definition picks the ‘legal’ terms out of the set of pseudoterms and the
‘legal’ contexts out of the set of pseudocontexts. Instead of ‘I'— A: B is true’, we
shall just write I'— A: B, in words I proves A: B, or T assigns B to A. The notion of
I'— A: B is generated by the axioms, and inference rules of the system {. In case the
system { in which we are working is not clear from the context, we write I' -, A4: B.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 159

Definition 8
() The axioms of { are the statements c:¢’, with c:c'e AXIoM,
(i) The inference rules of § are the rules of the following six forms

I'—A:s .
(Start) m with SESORT, X€e VARS, x¢dom (F),
. I'A:s THB:C
k i s
(Weakening) T xAFB.C with s€ SORT, xe V4R®, x¢dom (I),

'=B,:s, T',x:B,+B,:s,
F'=1Ix:B,.B,:s,

(IT-rule) with (s;, s,, §,) € RULE,

I'-B,:s, I''x:BFB,:s, I'x:B,-C:B,
I'=Ax:B,.C:Ilx:B,.B,

(A-rule)

with (s,, ,, 5,) € RULE for some s, € SORT,

FB,:Ilx:C,.C, T+B,:C,
'+ B, B,:C,[x:= B,] ’

(Application) r

I'EB:C THC':s
I'+=B:C

(Conversion) with C = C’, se SORT.
The statements above the line will be called premises, the statements below the line the
conclusions of a rule.

Definition 9
A derivation in the system (is a finite well-founded tree with

(i) each leaf of the tree is an axiom of ,

(ii) each node of the tree which is not a leaf is a conclusion of an inference rule,
such that the successors of the node are exactly the premises of the inference
rule.

For A and A’ derivations in {, A < A’ (A subderivation of A’) is defined as ysual.

Definition 10
() For a derivation A, the length of A, Ih(A), is inductively defined by

(i) If A consists only of an axiom, then /A(A) = 0,
(ii) If the premises of the conclusion of A are F,,...,F,, with derivations
A,,....,A,, then Ih(A) = max {Ih(A)|1 <i<n}+1.

(II) For a derivation A, the trace of A is the path in A that

(i) starts with the root and ends with a leaf,
(i) takes the left path in case of (application) or (conversion),
(iii) takes the right path in case of (weakening), (II-rule) or (A-rule).

6-2
https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

160 Herman Geuvers and Mark-Jan Nederhof

Definition 11
Let T be a pseudocontext, 4, Be PST(), A a derivation in {.

(i) A is a derivation of TH—A:B or A:(T'+A:B) iff T A4:B is the root of the
derivation A,
(i) T+ A:B is true or T~ A: B iff A:(I"— A: B) for some derivation A in C.

Notation 12. THA:B:Cif THA:Band ' B:C.

Definition 13
Let s€ SORT.

(i) Context({) = {T'|T'+ A:B for some 4, Be PST({)},
(i) T-Term()={A|T'+A:B or I'~ B:A for some BePST({)},
(iii) T-s-Term({) ={A|T" + A:s},
(iv) T-s-Elt(¢) ={A|'+— A:B:s for some BePST({)},
(V) Term(C) = UFECoMezt(Q I- Term(C)9
(Vl) - Term(C) = Ul‘eCantezt(C) I'-s- Term(g)s
(vii) $-El1(€) = Ureconteztin I -5-EIt(C).

Definition 14
Let { be a GTS, Me Term({), ne N.

(i) n is an upperbound to the reductions starting from M iff
VM, M,,... M, eTerm@).[M>M,~...>M, ,>M, =>m<n,

(ii) M is strongly normalizable, or SN(M), iff 3neN.[n is an upperbound to the
reductions starting from M],

(iii) ¢ satisfies the strong normalization property, or { = SN, iff
VM e Term({) . SN(M).

The fact that all terms of a set X are strongly normalizable will be denoted by SN(X).

In the following, the double negated version of { SN will sometimes be used:
13IM, e Term(). VmeN. IM,, M, ..., M, € Term(§). Vi < m—1. [M,— M,,,], stating
that there are no infinite reduction sequences in . The proofs given below are
therefore not all constructive. Analysing the proofs, one can see, however, that the
proof of equivalence of Aw = SN and APw = SN can be done in first order Heyting
arithmetic.

From the axioms and inference rules, it will be clear that if a constant does not
occur in any of the axioms or on the third place of a rule, then it does not occur in
any statement of {. In the following, we shall therefore assume that

ceConNs=3c¢".c:c’e AxIOM V ¢’ .ce AXIOM
v 3s,5".(s, 5", c)e RULE.

The rest of this chapter will consist of lemmas and proofs for the generalized type
systems. For examples we refer to Chapter 3, in which the systems of Barendregt’s

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 161

cube are defined as GTSs. Some more exotic examples can be found in Barendregt
(1989), e.g., the definition of predicate logics as GTSs. Barendregt also shows why, in
general, we want the set RULE to consist of triples (s,, 5,, 55), and not just pairs (s,, s,).

Lemma 15 (Free variables)
ForT =x:4,,x,:4,,...,x,:A, and T+ B:C,

(1) FV (B:C) = {xy,...,X,},
(i) Vij<n.x,=x=>i=j

Proof. Induction on the length of the derivation of I' - B:C, distinguishing cases
according to the last applied inference rule. [J

Lemma 16
For ' = x,:4,,x,:4,,...,x,: A, € Context(),

(i) THc:c for all c:c’ e Axiom,
@) THx,;:A4, forall i < n.

Proof. The proof of (i) is by easy induction on the length of the tree that proves
I" e Context(().

For the proof of (ii), let A:(I'~ B:C). The proof of I' —x,: A4, for all i < n is by
induction on the length of A, distinguishing cases according to the last applied rule.
The two interesting cases are when this is (start) or (weakening). We only treat the
case for the last rule being (weakening), as the other case is quite similar.

If the last rule is (weakening), then

Xy iAy X, A, FAs xtA, L%, i A, B:C
Xy Ay, . x,: A, B:C ’

With one application of (start) we find that I'—x,:4,. By induction hypothesis
I'ln—1Fx,:4, for all i <n—1, so with one application of (weakening): I" - x,: 4,
foralli<n—1. O

Lemma 17 (Substitution)
ForT, andT,y:A,T',e Context(§), A, B,C,De Term((), ye VAR

I,y:4,T,FB:C&T,-D:4
=T, Ty[y:= D] Bly:= D]:([y:= D).

Proof. By induction on the length of the derivation of I';, y:4,T, - B: C, assuming
that I', — D: 4. We distinguish cases according to the last applied inference rule. If
this rule is (start) or (weakening), we distinguish subcases I'y = &J and I, + (.

If the last rule is (IT-rule), (A-rule) or (conversion), or I', &= ¥ and the last rule is
(start) or (weakening), then the statement follows immediately from the induction
hypothesis and an application of the rule.

If the last rule is (start) and I'y = &, then B=y and C = 4. Now y[y:=D]=D
and A[y:= D] = A, so we are done by the assumption I'; = D: 4.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

162 Herman Geuvers and Mark-Jan Nederhof

If the last rule is (weakening) and I', = &, then

I''+4:s T)+—B:C
I,y:A-B:C

Now y¢ FV(B:C), so Bly:= D] = B and C[y:= D] = C, and we are done.
If the last rule is (application), then B = B, B,, C = C,[x:= B,] and

I',y:4, T, B,:x:C,.C, T, y:A,T,+B,:C,
I,y:4,T, B, B,:Cy[x:= B,] ’

Now by induction hypothesis and (application)
I, Tyly:= D]t By By[y:= D): Cy[y:= D][x:= By[y:= D]}.

We may assume that x¢ FV(I';,y:4,T,), so x £y and x¢ FV(D). It follows that
C,ly:= D][x:= B,[y:= D]] = C,[x:= B,][y:= D], and we are done. []

Lemma 18 (Thinning)
For T',T" e Context({), B, Ce Term({)

I'=B:C&I'cI”
=I"+B:C.

Proof. By induction on the length of the derivation of I' — B: C, distinguishing cases
according to the last applied rule.

If ' B: C is an axiom or the last rule was (start), we are done by lemma 2.16. If
the last rule is (weakening), we are done by the induction hypothesis. If the last rule
is (application) or (conversion), the statement follows from the induction hypothesis
and an application of the rule.

The argument for the cases when the last rule is (IT-rule) or (A-rule) is similar. We
treat the case for (IT-rule).

LetI" 2T, B=Ilx:B,.B,, C=s, and

I'-B,:s, T',x:B,B,:s,
I'—Ilx:B,.B,:s '

Then we may assume that x¢dom(I'"). By induction hypothesis I'" - B,:s,, so
I, x: B, € Context((). T, x: B, 2 T, x: B, so by induction hypothesis I'", x: B, - B, :s,.
With one application of (IT-rule) I +1IIx:B,.B,:s. [

Lemma 19 (Stripping)
ForT'=x:4,,...,x,:A,€ Context({), M, N, P, Re Term({)

(i) Tc:R, with ce Cons= 3¢’e CONS.[R = ¢’ & c:c' € AxioM],

(i) ' x:R, withxe VAR = Ji < n3se SORT.[x=x,e VAR &
R=4,&
I'li—1+A,:s],

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 163

(iii) T'—IIx:M.N:R =>Tk+M:s, &
[x:MbEN:s, &
R=ys,,
JSor some (s, s,,55) € RULE,
(iv) THAXx:M.N:R =T+M:s, &

I''x:MtB:s, &
Cx:M+—N:B &
I'—IIx:M.B:s;, &

R=1IIx:M.B,

JSor some (s, s,, ;) € RULE, Be Term({),
(v) THEMN:R =TI'+—-M:TIx:A.B &

I'—N:4 &

R = B[x:= N],

for some A, Be Term({), xe VAR,
(vi) '+ P:R = 3ceCoNS.[R=c V '~ R:c & ce SORT].

Proof (iY-(v). Let A:(T P:R) in one of the first five cases above. When we follow
the trace of A, we only pass applications of (weakening) and (conversion), which do
not change the term P, until we hit upon a rule by which the term P is introduced. In
case (i) this is an axiom, in case (ii) this is (start), in case (iii) the (IT-rule), in case (iv)
the (A-rule), and in case (v) the (application). In all cases, the conclusion of the rule
isT"H P:R’, with I” < T and R’ = R. The proof of the five cases above now follows
immediately by taking a look at the rule by which P is introduced, thinning the
context I'” to I" and converting R’ to R.

Proof (vi). By induction on the structure of P. Following the trace up in the tree
A:(T"+ P: R), we only pass applications of (weakening) until we hit upon (conversion),
or the rule by which P is introduced. In the first case we conclude that I' — R:s, for
some s€ SORT, and we are done. In the second case we distinguish subcases according
to the structure of P (cases (i}—(v) above).

If P=ceCoNSs, P=xeVAR, P=TIx:M.N or P=Ax:M.N, it is immediately
clear that R = ¢’ for some ¢’€ Cons or I' = R:s for some s€ SORT.

If P= MN, then R= C,[x:=N], ' M:IIx:C,.C, and I'=N:C, for certain
C,, C,. Applying the induction hypothesis to I' M :IIx: C, . C, and case (iii), we find
that T', x: C, - C,s,. With the substitution lemma we obtain I' = C,[x:= N]:s,. [

Lemma 20 (Permutation)
ForT, andT'},x:A,y:D,T,e Context(), B, Ce Term(()
r,x:A4,y:D,T,F-B:C&
NEDis=T,,y:D,x:A,T,—B:C.

Proof. Remark that I';,y:D is a legal context and so, by I'; = A4:s" and thinning,
[,,y:D,x:A is a legal context too. If ', = z,: E, ..., z,: E,, we may conclude that
T,,y:D,x:A+ E,:s" for some sort s”, and so I';, y: D, x: 4, z;: E, is legal. Proceeding
in this way for all i <n, we find that I'},y:D,x:4,T, is a legal context. Using
thinning one concludes that I'},y:D,x:4,T,—=B:C. O

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

164 Herman Geuvers and Mark-Jan Nederhof

Lemma 21 (Terms)
MeTerm({)<>MeCons v AT3IC.T—M:C.

Proof. According to the definition of Term((),
MeTerm({)<>3IriC.l—=M:C v I'+—C:M].

If T+ C: M, we find with the stripping lemma 19 (vi) that M = ceConsorT'—M:s
with se SorT < Cons. [J

Lemma 22 (Subject reduction)
For T',T" e Context({), B,B’,Ce Term({) and T —=B:C

() B»B =THB:C,
(i) T»I"=T"FB:C.

Proof. By simultaneous induction on the length of the derivation of I' —B:C,
distinguishing cases according to the last applied inference rule. We prove the lemma
for one step reductions, so B—~B or I'>1I".

Proof of (i). If the last rule is (start), there is no redex in B.

If the last rule is (weakening), (conversion), (IT-rule) or (A-rule), we are done by the
induction hypothesis. (For (IT-rule) and (A-rule), use also the induction hypothesis on
@i).)

If the last rule is (application), we distinguish subcases B = B, B, B; B; = B’ (the
reduction taking place inside B, or B,), and B = (Ax:4,.4,) B,—~ A,[x:= B,]= B'.
We treat the last case. Let B = (Ax:A4,.4,) B, A,[x:= B,] and

I'Ax:A4,.4,:1Ix:C,.C, T+B,:C,
I'(Ax:A4,.4,)B,:Cy[x:= B,]

Apply the stripping lemma to I'—Ax:4,.4,:IIx:C,.C,:s to find

THA4;:s, (¢))
I'x:A,+A,:C, for some C;, = C,)
Ix:C,+C,:s, 3)
and A, =C,.
Further we have I'-B,:C, 4

Applying (conversion) to (1) and (4), we find that
I'—B,:4,.)
With the substitution lemma we conclude from (2) and (5) that
' A4,[x:= B,]:Cy[x:= B,]. 6)
Again with the substitution lemma we conclude from (3) and (4) that

I'=Cy[x:= B,]:s, @)

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 165

and to (6) and (7) one can apply (conversion) to obtain I" — Ay[x:= B,): C,[x:= B,
which was to be proved.

Proof of (ii). If the last rule is (IT-rule), (\-rule), (application) or (conversion), we are
immediately done by induction hypothesis.

If the last rule is (start) or (weakening), we distinguish cases according to whether
or not the reduction took place in the last declaration of the context. If this is not so,
we are done by induction hypothesis. If the reduction did take place in the last
declaration of the context, apply the induction hypothesis on (i) and (conversion) (in
case (start) was the last rule) and we are done. []

Corollary 23
For T"e Context(€), B, C,C’ € Term(I')

I'B:C& C»C’'=TH+B:C".

Proof. This follows immediately from stripping (vi), applying subject reduction to the
term C and (conversion). []

Lemma 24 (Uniqueness of assignment for functional GTSs)
Let € be a functional GTS. For T € Context((), B, C,C’ € Term({)

I'EB:C&T'-B:C'=>C=C".

Proof. By induction on the structure of the pseudoterm B. As the proof is easy, we
only treat one case, for B = Ax:B,.B,. Then, I',x:B,—B,:C, and I',x: B, - B,:C,
for some terms C, and C, and C =1IIx:B,.C,, C' =IIx:B,.C;. By induction
hypothesis C, = C,. Hence C =Ilx:B,.C,=C". [

Lemma 25 (Strengthening modulo reduction for functional GTSs)
For T';,x: A, I';e Context(€), B, Ce Term(()

I,x:A,I'y—B:C, x¢ FV(I',) U FV(B)
=3C’eTerm().[C»C' & T, ', B:C’].

Proof. By induction on the length of the derivation of I',x:4,T, B:C,
distinguishing cases according to the last applied rule.

If the last rule is (start) or (II-rule), we are done by the induction hypothesis and
one application of the rule.

If the last rule is (weakening), we are done by the induction hypothesis (distinguish
between I', = Fand I, + &)

If the last rule is (conversion), we are done by induction hypothesis, Church-Rosser
property and Corollary 23.

If B=Az:B,.B,, C=Ilz:B,.C, and the last applied rule is (A-rule), then
[,x:4,T,—B:s; and T'y,x:4,T,,z:B = B,:C,:s,. By induction hypothesis
I, T, B,:s, and I',, T, 2: B, = B,: C; for some C, with C, —» C;.

Now, I',,T,,z: B, = C;:s, (By stripping (vi): C; = ce Cons and C;:s, is an axiom
or I',T,,z:B, I C;:5€ SORT and s =s, by uniqueness of assignment.) With one

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

166 Herman Geuvers and Mark-Jan Nederhof

application of (A-rule), we conclude that I';,I',Az:B,.B,:IIz:B,.C;, where
C—»Ilz:B,.C,.

If B= B, B,, C=C,x:=B,], and the last applied rule is (application), then
I,x:A,T,—B,:Mz:C,.C, and T,,x:4,T,—B,:C,. By induction hypothesis
r,,I,—B,:Mz:C,.C; and T,,T,+B,:C;, for some Cj,C;,C; with C;—»C,
C,—» C} and C,—» C;,. Take Cy such that C;—» C}’ and C,-»Cy. With Corollary
23 and (application), we find I',, T, - B, B,: Cy[x:= B,] with C— C[x:= B,].

Corollary 26 (Strengthening for functional GTSs)
Let { be a functional GTS. For T'},x: A,T,€ Context(§), B, Ce Term(()

I,x:A,T,—B:C,x¢ FV(I',) U FV(B:C)
=I,T,FB:C.

Proof. By Lemma 25, we know that I';,I', = B: C’, with C— C’. By stripping (vi),
there are two possibilities, Ce Cons or I'|,x:4,T'; C:se€ SORT. In the first case
C’ = C, and we are done. In the second case, I'},, I, = C:s by Lemma 25 so with one
application of (conversion): I'),I',=B:C. O

The idea of proving the previous corollary using Lemma 25 is due to Luo (1988),
who has used it in a proof of strong normalization for an extended calculus of
constructions.

Definition 27
Let T'e Context(C), I1x: B,.B,, Ax:B,.B,, B, B,€ Term(().

(i) Ix:B,.B, is formed by (s,,5,,5,) in T' iff
(84,85, 8;) € RULE &
I'=B;:s, &
I',x:B, - B,:s,.

(i) Ax:B,.B, is formed by (s, $,,5,) in ' iff

3C,, C,e Term(C). (s,,S,,5;) € RULE &
I'=Ax:B,.B,:IIx:C,.C, &
Ix:C,.C, is formed by (s,,s,,5,) in T.
(iii) B, B, is formed by (s,,$,,8;) in T’ iff
3C,, C,e Term(C). (sy,S,,8;,) € RULE &
I'+B,:Ilx:C,.C, &

Ix:C,.C, is formed by (s,,5,,5,) in T.

Remark 28. By this definition, all composed terms are formed by a certain rule. For
the first two cases, this follows immediately from the stripping-lemma. For the third
case, this follows from the stripping-lemma 19 (v) and (vi) and case (i).

Lemma 29 (Uniqueness of formation for functional GTSs)
Let be a functional GTS. For I" e Context((), Be Term((), B composed

B formed by (s,,5,,5,) in I & B formed by (s, s3,s3) in T

=5, = 57,8, = 855,55 = §5.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 167

Proof. We are done if we prove the following property. If I1x:B,.B, formed by
(8152, 85) in T, I1x: B . B; formed by (s, s;,53) in T" and Ilx: B, . B, » [1x: B,. B,, then
s, =57, 5, =5, and 5, = 3.

For the cases M =Ax:B,.B, and M = B, B,, the proof then follows by
the uniqueness of assignment. Namely, if I'—Ax:B,.B,:Ilx:C,.C, and
I'=Ax:B,.By:Ilx:C}.C,, respectively I'—B,:1x:C,.C, and '+ B,:x:C;.C,,
with Ilx: C,.C, formed by (s,,s,,s;) in T and Ilx:C;. C, formed by (s},s;,s;) in T,
then Ix: C,.C, = Ix: C;. C;. So, take (with Church-Rosser) ITx:C;.Cj, such that
x:C;.C,»TIx:C}.C; and Ix: C, . C,» Ix: C{. C;. Then Ix: C} . C} is formed by
(51455, 53) and (s7,55.55) in ', so s, = s, 5, = 5, and s, = 5.

The proof of the property runs as follows. Let I1x: B,. B, be formed by (s,, 5,, 5;)
in T, Ilx:B].B; formed by (s},s;,s;) in ' and Ilx:B,.B,—»Ilx:B,.B;. Then
'+ B,:s,.T,x:B, - B,:s, and '+ By:s;, T, x: By - Bj:s,. By subject reduction and
uniqueness of assignment s, = 5] and s, = 5;. So 5, =53 [

Lemma 30 (Classification for injective GTSs)
Let § be an injective GTS. For s,5'€ SORT, s £ 5,

@) s-Term@) ns'-Term(C) = &
(i) s-Ell(C) ns-Elt@) = &.

Proof. The proof of (i) and (ii) is simultaneous, by induction on the structure of
pseudoterms. We only treat the induction step for variables and for terms B of the
form B, B,. For the other induction steps, the statement follows immediately from the
induction hypothesis using the injectivity properties.

Let T'x:B:s and I"—x:B’:s". Then x:A4eI for certain 4 with 4 = B, and
I'—A:s,and x:A4’eI” for certain A" with 4" = B’ and I""—A4":s,. (Where s, is the
sort for which xe V4r%). By Church-Rosser, subject reduction and uniqueness of
assignment s, = s and s, = s’. For ' x:s and I'" x:s' the argument is similar.

Let '~B,B,:C and I'"+—B,B,:C’ Then I'B,;:Ilx:C,.C,:s,, I'=B,:C,:s,,
Ix:C,+Cy:s, and T"H B :Ilx:C;.Cyis5, T"HB,:Ciisy, TV, x:Ci = Cy:s;, for
certain terms C,, C,, C;, C; and (sy, ,, 53), (53, 83, 55) € RULE with C,[x:= B,] = C and
Cylx:=B,] = C".

By induction hypothesis s, = 51, 5, = 5; and so0 s, = ;.

By substitution I'— Cy[x:= B,]:s, and I'" Cy[x:= B,]:s}.

If now 'C:s and I C’:s’, then by Church-Rosser, subject reduction and
uniqueness of assignment, s = s, and 5’ =53, s0 s = 5.

If C =5 and C = s, then by subject reduction and uniqueness of assignment s:s,
and s:s, are axioms, so s=s". [

The previous lemma motivates terminologies such as ¢ is a s-Term’, or *tis a s-Elt’.

These notions are not ambiguous in an injective GTS. That the lemma does not hold
in general for systems which are not injective is shown by the following example.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

168 Herman Geuvers and Mark-Jan Nederhof

Example 31
Let { be given by

SorRT = {,+",V,V', A, A’, [0},
Axiom = {x:+'.V:V', A: A%},
RuLE ={(*,V,), (+,A, O},
oe VARY ,Be VARY ,ye V4AR" ,x€ VAR*,fe VARD,
then { is not injective and
oi%,BiA, fro—>B,xiabfx:B:A,
ok, y:V,fia=>y,x:0fx:y:V,
s0 fxeA-Elt(() and fxeV-Ei«(().
Corollary 32 (Uniqueness of formation for injective GTSs)
Let { be an injective GTS. For I',T" € Context(C), M € Term({), M composed
M formed by (s, 85, 5;) in I & M formed by (s, s3,53) in I’
=5, = 57,8, = S5, 83 = S5

Proof. Using the classification lemma for injective , the proof runs just like the proof
of the uniqueness of formation lemma for functional {. [J

This corollary allows us to use the terminology ‘formed by’ without mentioning the
context I', in case of an injective GTS. That the corollary is not true for just functional
GTS is shown by the following example.

Example 33
Let the system £ be given by
SORT = {5, S5, 53, S5},
AXIOM = {8,:5,, 5, 53,5583},
RULE = {(5y, 55, 53), (51, 53, 5)},
y,2€ VAR, x€ VAR".
Then Ix:y.z is formed by (s, 5,,5;) in the context y:s,,z:s,,

Mx:y.z is formed by (s, 55, 5,) in the context y:s,,z:sj.

3 Barendregt’s cube of typed lambda calculi

Barendregt’s cube consists of a coherent collection of eight type systems, each one
corresponding with a vertex of a cube such that there is an inclusion relation along
the edges of the cube. The systems of the cube will be defined by giving for each of

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 169

them the sets SORT, Cons, Axiom and RULE as in the definition of Generalized Type
System in 1-12.

Definition 34
The Barendregt's cube of typed lambda calculi is the set of type systems A —, A2, AP,
A®, AP2, Ao, AP® and AP, defined by

@) SoRrT = {*,[} for all systems,
(i1) Cons = {x,[} for all systems,
(ii1) AxroMm = {x:[1} for all systems,

(iv) RULE(L—) = {(*, %)},
RULE(A2) = {(x,*), (O,*)},

RULE(AP) = {(x, *), (x, O},

RULE(A®) = {(*, %), (O, D),
RULE(AP2) = {(x,*), (O,*), (+,0)}

RULE(M®) = {(*,%), (O, *), (O,
RULE(AP®) = {(*, %), (x,0), (O,O)

RULE(APw) = {(%,%), (O.%), (,0), (@O0

Notice that all eight are injective (Definition 2).
In 37, we give some examples of how the rules work in practice, and which
derivations they allow. For this we also refer to Barendregt (1989).

Figure 1 is referred to as Barendregt's cube; it is meant to standardize the
coordinates of the eight systems, and also notions such as "upper plane’, ‘right plane’
and ‘front plane’.

A, AP®

A2 AP2

o _ _ - e
)\‘ 7
- AP

Fig. 1. Barendregt’s cube.

Convention 35
To distinguish V4R* from V4RrD, the first variables are denoted by Latin characters,

SO X, ¥,2,P,q, ... € VAR*, and the second ones by Greek characters or Latin capitals,
s0a,B,7,9,...4,B,C,P,Q,R...€ VAR". As metavariable ranging over V4R, we shall

use u or v.

Notation 36
Expressions of the form ITx:A. B, will, as usual, be denoted by 4 > B if x¢ FV(B).

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

170 Herman Geuvers and Mark-Jan Nederhof

Maost of the right systems are well known; A — is a variant of Church’s simply typed
lambda calculus (Church, 1940), AP and AP2 are variants of the AUTOMATH system
AUT-QE, defined by de Bruijn (1980), whereas AP is also known under the name LF,
studied by Harper et al. (1987). A2 and Aw are the systems F and Fo, defined by
Girard (1972), and APo is the calculus of constructions, defined by Coquand and
Huet (1985, 1988).

Notice that in the systems of the cube, one does not have 0 as a basic type; 0 ¢ Cons,
Q:« is not an axiom. The reason for this is that by the axiom (*:[1J) it is possible to
intraduce any number of basic types in the context by extending the context with a
type variable. Inside the context this variable behaves just like a constant. A
consequence is that in the lower plane almost nothing is derivable from any empty
context, e.g., in A— only *:[] is derivable in an empty context. Church’s A in the
terminology of GTS is the system with SORT = {}, CoNs = {*, 0}, AxioM = {0:+},
RULE = {(*,*)}. The system A— is a variant of A" in the sense that A— is A* with
Cons = Var9, (Note that 't t:c<I"tt:0, where I is I' without all
assignments of the form a:.)

Besides the computational aspects of the eight type systems, an important feature
is the relation with (intuitionistic) logic. This follows the Curry—de Bruijn-Howard
nation of ‘formulae-as-types’, as discussed by Howard (1980), and leads to an
interpretation of various logical systems in typed lambda calculi. With that notion,
formulae become types and proofs become typed lambda terms such that a provable
formula becames a nonempty type. The situation for Barendregt’s cube is that one
can define a cube of logical systems that corresponds with the cube of type systems
in the ‘formulae-as-types’ sense, as studied by Geuvers (1988).

For now, we give some examples of what can be derived in the several type systems
of the cube, The examples might best be understood by the logical intuition behind
them, i.e., reading ‘V’ for IT, ‘FORM’ (the collection of all formulae) for * and
interpreting 4 — as the set of predicates on 4 (and likewise, 4 -~ 4 — * as the set of
binary relations on A4.) After the examples a few lemmas will be proved for systems
in the cube.

Examples 37
(i) A derivation in A —, given in full detail, with the numbers of the applied rules

=+ =0
|——*:D(1 ok ok (1)2 a:*l—a:*(i
ax o) oLi¥, X 0o @ a:*,x:al—x:a(24)

arkbAx:io.xia—>0
(ii) In A2 one can derive
FAocx ARk Ax:ia.Ay:B.x : TTo:x TIB:x.a—>B—>a,
8) CEE NI

(The type ITo: ».a will also be denoted by L, a term of type ITa:*.o producing an
inhabitant of any type (as in logic, where a proof of L produces a proof of any

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 171

formula). The type L can be formed in systems that include the rule (0J, *), i.¢., the
systems of the upper plane.)

Define in A2 A&B:=Tly:x.(A—~B->y)—>y, AVB:=Ily:*.(A>y)>(B->7)>7Y.
Then one can derive

A:x B:* A&B : *,

A:x B:x,z: A&B FzAMAx:A.Ay:B.x): A,

A:x B:x,2: A&B FzB(Ax:A.\y:B.y) : B,
A:x.B:x,x:4,y:B FAy:x. A:A—->B->vy.fxy: A&B,

and A:*%,B:x HAVB:*
A%, B:x,x: 4 FAy:x Af:A—>y.Ag:B>vy.fx: AV B,
A:x,B:x,y:B Ay« AffA>y.Ag:B—>y.gy: AV B,

A:*,B:ix,y:%,2.AVB,x:A—>y,y:B>yFzyxy:¥y,

{Notice the connection with the definitions of & and Vv in second order logic.>
(ii1) In AP one can derive

A:*,P:A>x,Q:A—>* R:A—>*H
Ax:AM:Px—>Qx.Ag:Qx—>Rx.Ay:Px.g(fy):
Ix:A.(Px—Qx)—>(Qx—>Rx)—>(Px—>Rx).
{This example expresses the transitivity of inclusion)
(iv) In A® one can derive
FAoc*.o0—a % —>*.
A% Fx—>x—Ap:(FA->FA—->A).Ax:FA.pxx:(FA->FA—->A)>FA—A.
(v) In AP2 one can derive
A:x, RRA—-A—>x*H—
Ap:(IIx:A.Mly:A.Rxy—>Ryx—>1).Ax:A.Ag:Rxx.pxxqq :
(Mx:A.My:A.(Rxy—>Ryx—1))>TIx:A.Rxx— 1).

{This example is taken from Barendregt (1989). The typed lambda term proves the
fact that an asymmetric relation is irreflexive.)
Define in AP2 3x:4.B:=ITy:*.((Ilx: 4. B—v) —y). Then one can derive

A:*,P:A—>+«H3Ix:4A.Px : *
and A:x,P:A—->*,a: A+
A:Tx:A.Px. Ay M:MIx:A.Px—vy.fa(ta) : [Ix:A.Px—3x:A.Px,

{which expresses the fact that (in logic) for a nonempty 4,—Vxed.¢—>3xe4.¢.)

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

172 Herman Geuvers and Mark-Jan Nederhof

(vi) In A® one can derive
FAg:(T18: % — » . TTo:#. 8ot — o) . AP:*.g(Ay:*.7v>7) B(hx:B.x) :

(TI8: % -+ . IMot: % . 800> o) > L.
Define in Ao

&:= o+ AB:* . Ily:*x. (0> P>y) =7 *>*—>%,
vi= Aok ARk Iy . (a—>Y)>(B>7) >y x>+ —>*.

(&AB = A&B, vAB = AV B, with & and Vv as in (ii); in A® one can define the
logical connectives & and Vv in a polymorphic way.)

In AP® one can derive
Ao:*. A8:a—>a—>*. Ax:o.8xx : IToi#. (o> 00— %) >0 — *,

{In this example ITo: *. (00— o — *) - o — * is not a type, but a kind; the constructor
Ao:#.Ad:a—a—x*.Ax:0o. dxx produces for each binary predicate its diagonali-
zation.)

(viii) In AP® one can derive
Flo:x. AR:a—>a—>*. Ap:(IIx:A.Ily:A.Rxy—>Ryx—~> 1).Ax:A.Aq: Rxx.pxxqq
Io:* . [TR:a0—>o—*.(IIx:A.1ly:A.(Rxy—~Ryx— 1))>(IIx:A.Rxx— L1).

(This is a higher order version of the example for AP2.)
Define in APo

Ji=lo:x AP:o—*.3x:0. Px : ITa:x. (00— %) > *,

with 3 as in (V).
Then one can derive

o:x,P:oo—*H—3JoP:+ and one has 3o P = Ix:a. Px.

Define in APo
Ti=AP:a—>*. Ax:ot. Px—> L : (0t—>*)—> 00— .

Then one can derive
a:k, Piao—>*HTP:a—+* and
a:x, Pio—xt:Ilx:a.(Px—> 1) 1Px) for some term ¢.

(with & interpreted as (... >...) & (... <...)).

Definition 38

For A_ a system of the cube, I e Context (_), the sets I'-kind (A_), T-constructor(h_)
I'-type(_) and T-object(_) are defined by

(1) T-kind(_) = I-O-Term(_),
(ii) I'-conmstructor(L_) = T-O-Elt(_),

)

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 173

(iii) T'-type(A_) = I-*-Term(_),
(vi) I'-object(r_) = I-x-Elt(_).

The sets kind(M_), constructor(L_), type(_) and object()\._) are defined by taking the
union over all I e Context(A_). (For the definitions of ...-Term(..) and ...-Elt(...) see
Definition 13).

Definition 39
For A_ a system of the cube, the erasure ||:object (_)— A is defined by

@) |x| =X, if xe VAR*,
(i) |Ax:A4.q] = Ax.|q|, if Ax:A.q is formed by (*, %),
(i) Ao:A.q| = |ql, if Aa: 4. q is formed by (0O, %),

iv) lpgl = |pllgl, if pq is formed by (x,%),
™) pQl = |pl, if pQ is formed by (O, *).
Remarks 40

(i) By definition I'-type(L_) < I'-constructor(h_), and further by the classification
lemma for injective GTS (30), constructor(h_) N object(r_) = & and kind(A-) N
type(L_) = . It is also easy to see that the two intersections kind(A_)N
constructor(h_) and kind(A_) N object(_) are empty.

(il) Mekind(_) =M=x+xvM=Tu:Q.N,
M e constructor(_) = M ¢ SORT & M ¢ VAR*,
Metype(h_) =>M=0eVARPVM = QONVM=TIu:Q.N,

M e object(_) =>M=xeVAR*VM=QNVM=Au:Q.N.

This can easily be seen by noticing that in A_, if M = seSoRrT, then M =5, and
examining the inference rules.

Lemma 41 (Nonemptyness of kinds)
(i) For _ a system of the bottom of the cube, I" = Context(A_) and T'\=,_A:* for

some A T+, k:0=3.T, r:k.
(ii) For A_2 a system of the top of the cube, I" € Context(_2),
' Lk:O=3t.TH, ,t:k
Proof. By induction on the structure of the pseudoterm k.

k== For A_2, I't—, ,ITo:*.a: %, for instance.
-k=Ilx:M.N By the stripping-lemma, I'=M:s and I',x:MH N:[O, for
se{*, O}, so by induction hypothesis I', x: M - ¢: N for some ¢
and with rule (s,) T'—Ax: M.t : [Ix:M.N. O
Definition 42
(@) K is the set, inductively defined by

(i) *eK,
(i) ky,kye K=k, >k,eK.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

174 Herman Geuvers and Mark-Jan Nederhof

(I0) T is the set, inductively defined by

(i) VarRB c T,
(ii) 6,teT=0->1€T.

Lemma 43
(1) (Structure of kinds in Aw) For I € Context(Aw),

' k:O0=keK&), k:00.
(2) (Structure of constructors in A—) For I" e Context(A—),

' tk:O=>teT&TH,_ t:*.

Proof. We only prove (1), as the proof of (2) is somewhat the same. The argument
runs by induction on the structure of the pseudoterm k.

—k = *, done.
—k=1IIx:M.N, then k is formed by rule (O,0), so I',M:0 and
xM—,,N:O.

By induction hypothesis, MeK, NeK, +,,M:0, and —,,N:O. With one
application of rule (0J, 0) we obtain -, ,M—~N:OJand k=M->N. [

Lemma 44
For A,te Term (Aw)

A € constructor (Aw) & t subexpression of A

= tekind (Aw) V t € constructor (A®).

Proof. By induction on the structure of 4, using Lemma 43 (1). If A€ V4R", we are
immediately done. If A =IIx:M.N, A=Ax:M.N or A = MN, then M and N are
both constructors or kinds. All subexpressions of M and N are constructors or kinds
by induction hypothesis, so we are done. [J

4 Ao =ESN= AP0~ SN

In Harper et al., (1987) a proof of strong normalization is given for the system LF,
which, roughly speaking, corresponds with our system AP. This is done by defining
a map from Term(AP) to Term(\ —) that preserves reductions. Then, if there exists an
infinite reduction sequence in AP, there is also an infinite reduction sequence in A —.
From the strong normalization for A — immediately follows the strong normalization
for AP.

In the case of the systems APw and A, the procedure will be the same; we shall
define a map from Term(APw) to Term(Aw), that preserves reduction. The map [] that
will be used can be seen as a higher order version of the map defined by Harper et al.,
(1987), although things get quite a bit more complicated here. It is also possible to
restrict the map [] to Term(AP2), to derive the result SN(A2) = SN(AP2).

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 175

Just as the case for AP, the map [] does not work uniformly on the terms of APw.
That is, we cannot define [] such that for all I", M and 4

e M A= [T, [M]:[A].

To show that [] really maps terms of APw on terms of Aw, one has to define another
map t : {0} U kind(APw) U constructor(APo) - type(A®) and to prove that

Mpe M:A=1(D) b, [M]:t(A).

As the definitions of [] and T do not really speak for themselves, we try to give some
intuition on how they are defined. Therefore, we present some heuristics below on
how the mappings from AP to A — should be extended to AP to obtain a proof of
SN(Aw) = SN(APw).

Analysing the proof of SN(Aw)=> SN(APw), one can see that it does not use any
higher order features; the proof can be done totally in Peano Arithmetic. In fact, one
can even give a bound to the number of possible reduction steps starting from a
certain term M by just taking the bound on the reductions starting from [M]. The
whole argument can therefore be done in Heyting Arithmetic. The equivalence of the
two strong normalization properties turns out to be quite elementary, which was
already stated by Berardi (1988), but in a much more elaborate way.

Heuristics 45
The idea of the mappings by Harper et al., (1987) is to replace redexes that use type
dependency by A —>-redexes. For example, let 4 be a type and

IF'bpo FiA—>% Thp,t:A
T, Ftix ’

then [] and t must erase the type dependency such that the following is sound

(D) by, [Fl:t(A > %) (1) by, [£]:1(A)
(D) by [F 8] t() '

This is solved by taking [F] = [F][¢], ©(4 > *) = ©1(4) >0 and () = 0, where O is a
fixed type variable. Further, if 4 is a type, M a constructor and ¢ an object, the redex
(Ax:A.M)tis replaced by (Az:0.Ax:1(4).[M]) [A] [£], where z is a fresh variable not
occurring free in A or M. In this way the type dependence redex is replaced by an
ordinary one, and the possible redexes in 4 (which might be erased by 1) are preserved
by the abstraction over z:0.

Now, for polymorphic terms the situation gets quite a bit more complicated. For
example let

' Filloix.a—-a I'lp,0:0%
Ityp, FO:0—0C ’

then the following must be sound

(D) by [Fl:t(Mo: .o —>o) (), [0]:0
(') b, [Fol:1(c - o) '

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

176 Herman Geuvers and Mark-Jan Nederhof

At first sight there are two possibilities:

) t(Mo:*.a—>a) = 0>1(a—>0),
[Fo] = [F][s],
but then ©(I") b+, [Fo]:t(c — o)
2) t([lo:*.a>0a) = Ha:+.o—a,
[Fo] = [F] (o),

but then the possible reductions in ¢ are not preserved.
The solution given below is to do both (1) and (2) by defining

t(Mo:*.0—>0a) =a:x.0>a—a,
[Fo] = [F] (o) [o].

Now the application is sound and redexes are preserved.

The definition of t that follows is not an obviously well-defined mapping from the
kinds and constructors of APw to the constructors of Aw. Moreover, in the definition
of 1, we shall use something like the "range’ p for kinds of APw, which is just the Aw-
kind obtained by erasing all type dependencies. It will turn out that if M is a
constructor of kind N in APw, then t(M) is a constructor of kind p(N) in Aw, which
shows that 1 is defined in the right way.

Definition 46
The map p:{0} U kind(A\Pw®) - kind(Aw) is inductively defined by

@ p(x) =p(O) = =,
(i) p(ITa: M. N) = p(M) - p(N) ifITa: M.N is formed by (O, O),
p(Ilx: M. N) = p(&) if [Ix: M. N is formed by (*, 0).

The case distinction in the definition is correct by Corollary 32.
Remark 47
The following properties of the map p will be used

(i) kekind(A\Pw),uec VAR, A€ Term(APw) = p(k{u: = A]) = p(k) = p(k) [u:= 4],
(i) ky,k,ekind\Pw),k, =k, = p(k,) = p(k,).

Now we choose one of the variables of V4RU to act as a fixed constant, i.e.. it will not
be used as bound variable in an abstraction. This variable will be denoted by 0.

Definition 48
The map 1 : {0} U kind(APw) U constructor(A\Pw) - Term(Lw) is inductively defined

by
@ () =(O) =0,
(i) () =a,
(i) t(TTo: M. N) = Io: p(M).t(M)—>1(N) if [To: M. N is formed by (O, s),

©(Ilx: M.N) = IIx:1(M).T(N) if Ix: M. N is formed by (x,s),

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 177

(@iv) t(Aa:M.N) = ha:p(M).1(N) if Ao: M. N is formed by (O, O),
t(Ax:M.N) = 1(N) if Ax:M.N is formed by (x,),

(v) T1(MN) = (M) 1(N) if MN is formed by (O, O),
T(MN) = 1(M) if MN is formed by (,).

The definition by cases is again correct by Corollary 32. That the range of 7 is a subset
of Term(\w) is stated in Lemma 52.

Lemma 49
For B, B’ e kind(A\Pw) U constructor(APw)

(1) xeVar*, Aeobject(\Pw) = 1(B[x:= A]) = t«(B) = t(B)[x:= 4],
(i) oce VARD, A € constructor(A\Pw) = t1(B[o.: = A]) = ©(B)[o: = 1(4)),
(iii) B, B = ©(B) >, °(B) or (B) = u(B).

Proof. By induction on the structure of B. After applying the stripping lemma and
the induction hypothesis, (i) and (ii) follow immediately from Remark 47 (ii).

The proof of (iii) goes by induction on the structure of B. The interesting
situation occurs when B= (Au:M.N)P, B’ = N[u:= P). If Metype(\Pw), then
©((Au: M .N) P) = ©(N) = to(N[u: = P}) by (). If M ekind(\Pw), then t((Aa: M. N) P) =
(Aat:p(M) . To(N)) ©(P) >3 t(N) [o: = ©(P)] = ©(N[a: = P]) by (i)). [

In order to map Context(APw) into Context(Aw), we choose for every variable o of
V4RD a connected variable x* in V4R*, such that no two variables of V4RY are
connected with the same variable of V4r*

Definition 50
Let Ae Term(APw), I' = u;: A4,, u,: 4,, ..., u,: A, € Context(A\Pw)

(1) t(x:A4):= x:1(4) if xe Var*,
t(o: A):= a:p(A), x*:1(A) if ae V4R,
@) T(M):=0:*,d: L, t(u;: 4,), t(uy:4,), ..., 1(u,:4,).

The reason for putting 0:* and d: L = ITo:*.a in the context is that in the definition
of [] on terms of APw it will be necessary to have a canonical inhabitant for every type
and kind. If ©(I') -, B: /O, we want ©(I') i, ,¢®: B for a ¢® which does not depend
on the structure of T

Now, if t©(I')F,,B:* we shall put ¢®=dB and if (')}, B:0 a canonical
inhabitant of B is defined inductively by

(i) B=#,then c* =0,
(ii) B =k, k,, then ¢*r"*: = Aa:k, . c*s, which gives in every context an inhabitant
of B by Lemma 41.

Note that cB[u:= N] = 5%~ for all kinds and types B, variables u and terms N, in
Ao.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

178 Herman Geuvers and Mark-Jan Nederhof

Before proving the lemma stating I' , ,, M: N = t(I") b, , ©(M): p(N) for T" a context,
N a kind and M a constructor, we shall give some examples. In these examples the
declarations x*:1(4) and x:o, with o a type, do not play a role in the context ©(T").
That is because in constructors and kinds of Aw no object variables occur. The role
of the object variables will become clear in the definition of [].

Examples 51
() FpoMa:x.o—o:x and O0:x,d: L, IMo:x.0>a—>a:*
(i) o:xbypoAx:0t. AP:o—>* . Px:0.—>(o.—>%)—>* and
O:%,d: L, ar%, x*:0, ,AP:%x.P: %%,

Lemma 52
For T € Context(A\Pw), M, N € Term(APw)

e MN:O VI, M:N=0O=1()F,, 1(M):p(N).

Proof. By induction on the length of the derivation of I' ,,, M: N, distinguishing
cases according to the last applied rule

—If ,p, M:N is an axiom, we are done.

—If the last rule is (start), then I",o:*k,, o:* is the conclusion, and so
(I, o:%) =5, T(@) : p(*). (7(I') is a legal context by induction hypothesis.)

—If the last rule is (weakening), we are immediately done by the induction
hypothesis and once or twice (weakening).

— If the last rule is (conversion), we are done by the induction hypothesis.

—M=Tlu:B,.B,, N =s5e{*,[1} and the last rule is (Il-rule), then by induction
hypothesis ©(I") -, ©(B,): * and (T, u: B,) -, ©(B,): *.

If B, etype(APw), then 1(I',u: B;) = ©(I'), u:t(B,), and so (), (B,) > 1(B,): *
(by rule (x, *)).

If B, ekind(APw), then ©(I",u: B,) = ©("), u: p(B,), x*:1(B,), and so, by rules (, *)
and (O, *), ©(I") -, Mu: p(B,).©(B,) > ©(B,): *.

—M =\u:B,.B,, N=1lu:B,.C,ckind(A\Po) and the last rule is (A-rule), then by
induction hypothesis ©(I') -, ©(B,):* and (T, u: B,) -, ©(B,): p(C,).

If B, e type(APw), then t(Au:B,.B,) = 1(B,), p(Ilu: B,.C,) = p(C,) and t(u:B,) =
u:t(B,). By Lemma 43 u¢ FV(1(B,):p(C,)), so by substituting ¢*®’ for u we find
) 3, T(By) 1 p(Cy).

If B ekindMPw), then t(\u:B,.B,)=\u:p(B).1(B,), p(Iu:B,.C,) =
P(B) > p(Cy) and «(T, u: B,) = ('), u: p(B,), x*: 1(B,). By 3.10 x*¢ FV(t(B,): p(C,)),
so by substituting ¢*® for x* we find ©(I'), u: p(B,) -, (B,): p(C,), and by one
application of (A-rule) (rule (O, O)) ©(T') -, Au: p(B,).(B,): p(B,) > p(C,).

—M = B, B,, N = C,[x:= B,]ekind(\Pw) and the rule is (application), then let
I'tp By:IIx: C,. C,, and we find by stripping and the induction hypothesis:

If B,eobject(\Pw), then t(B,B,)=1(B,), ©I)t,1(B):p(Ilx:C,.C,) and
p(Ilx:C,. C,) = p(Cy) = p(Cylx: = By)).

If B, e constructor(\Pw), then 1(B, B,) = ©(B,)1(B,), ("), ©(By):p(Ix:C,.C,)
and ("), ©(B,):p(C,). Furthermore, p(Ilx:C,.C,) = p(C)—p(C,), so
) b, ©(By By): p(Cy) = p(Colx:= By)). [

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 179

Definition 53
The map []:kind(APw) U constructor(\Pw) U object(A\Pw) - Term(Ao) is inductively
defined by

@ [*] ="

(i) [x] = x, if xe Var*,

(iii) [o] = x%, if aoe V4RD,

(iv) [MIx:M.N] = > [M][N][x:= c"™] if TIx:M.N is formed by (x,*) or
(+. 0,
[Moa:M.N] = c**°[M][N][o:= cP™, x*:= c*™] if Tla:M.N is formed
by (O,) or (O.0),

V) [Ax:M.N] = (Az:0.Ax:t(M).[N])[M] with ze V4R* fresh, if Ax:M.Nis
formed by (x, *) or (x,(0),
[Aa:M.N] = (Az:0.h0: p(M) . Ax*:t1(M).[N]) [M] with ze Var* fresh, if
Ao: M. N is formed by (O, *) or (O, 0),

(vi) [MN] = [M][N] if MN is formed by (, #) or (+,),
[MN] = [M]T(N)[N] if MN is formed by (O, *) or (O, 0).

The definition by cases is all right by Corollary 32. The idea of the mapping [] is that
it maps terms of APw® on terms of Aw (as stated in the definition), and preserves all
possible reduction sequences. The first fact is stated in Theorem 55, the second in
Theorem 57. To illustrate these theorems we first give some examples of APw®-terms
and their image in A under the mapping [].

Examples 54

(1) Fipora:x. Ax:a.x : Ma:x.a—a and
0:%,d: L, (Az;:0. Ao+ Ax*:0.(Az,: 0. Ax 0. x) x*) ¢® : oz #.0 > a—a.

(i) B:*, y:Bryp,(Ra:x.Ax:a.x)By : B and
0:%,d: L, B:%,x%:0,y: B, (Az,:0. hot:%. Ax*:0. (Az,: 0. Ax 0. x) x*) ¢"BxPy : B.

(iil) a:# by po AP > . Ax:o. Ay:Px.y : [IP:ot—*.Ilo:x. Px—Px and
ok, x*:0,, (Az:0.AP: % . Ax":00—>0.(Az:0.Ax: 0. (Az:0.Ay: P.y) (x"x)) x*)
(%% : IIP:*.(a—0)—> (IIx:a. P— P), which term reduces to
AP:x Ax":00—0.Ax:0.Ay:P.y.

Theorem 55
For T e Context(A\Pw), M, N € Term(APw)

I ypy M:N = t(T') b [M]:7(N).

Proof. By induction on the structure of M. By Lemma 52 we know that t(I') is a legal
context in A and that from t(I') -, [M]:T1(N), N = N" and I" =, N': /[0, we may
conclude t(I') -, [M]:T(N').

- M =x, N=[J, then [*] = ¢*:0 = () in «(I').

— M =uecVA4rY, then u:Ael’, with 4 = N.

If u=aeV4rD, then t(o:A) = a:p(A),x*:1(A)et(I), if u=xeVar* then
1(x: A) = x:1(A) e (). In both cases ©(I') -, [u]:1(4) = ©(N) and we are done.

— M =Tlu:B,.B,, then ', B,:s, and I',u: B, =5, B, s, for some s,,s,€{*, O}

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

180 Herman Geuvers and Mark-Jan Nederhof

By induction hypothesis ©(I") -, [B,]:0 and ©(I", u: B,) -, [B,]:0.

By Lemma 52 t(I") -, ©(B,): * and so ©(') b, c"?:1(B,).

If s, =%, u=xeVar*, then ©(I',x:B)) = ('), x:1(B,), so with the substitution
lemma ©(I") b, [B,] [x: = ¢*&V]:0.

With twice (application) t(I") -, ¢****°[B,] [B,] [x: = ¢"®7]:0.

If 5,=0, u=aeV4rD, then (I, a:B)) = t(),a:p(B,), x*:1(B,), so with the
substitution lemma (') -, [B,] [x*: = ¢"®7, o: = ¢P&V]:0.

With twice (application) t(I') b, ¢®**°[B,] [B,] [x*:= ¢*®Y,a: = ¢?*¥V]:0. In both
cases, ©(I") -, [TIu: B, . B,]:0.

~M=M:B,.B,, then ', B;:s,, T,u:B;tp,B,:Cy:5, for some C,e
Term(A\Pw) with N = ITu: B,.C, and s,,s,€{*, O}.

By induction hypothesis t©(I') ,,, [B,]:0 and (T, u: B,) b-,,, [B,]: 1(Cy).

By Lemma 52 t(T") ,,t(B,):* and 1(I", u: B)) b=, T(C,) : *.

If s, = *,u = xe V4r*, then t(', x: B;) = ("), x:1(B,). Applying twice (A-rule) and
once (application) we find ©(') ,, (Az:0.Ax:t(B,).[B,]) [B.]:t(B,) > ©(C,).

If s, = O, u = ae V4RO, then t(T', a: B)) = ©(I'), a: p(B,), x*: 7(B,). With three times
(A-rule) and once (application) we find
() by, Az:0.A0: p(By) . Ax*:T(B,) . [B,]) [B,] : Tla: p(B,) . 1(B,) > 1(Cy).
In both cases, 1(I') -, [Au: B, . B,]:1(ITu: B, . C,) = ©(N) and we are done.

- M = B, B,, then I't,,,B,:Ilu:C,.C, and I'~,;,,B,:C, for some C,,C,e
Term(APow) with N = C,[u:= B,).

By induction hypothesis t(I') b, [B,]:t(ITu: C,.C,) and ©(I") b, [B,]:t(C;). By
Lemma 52 t(I") -, T(C,): .

If C,etype(MPo), u=xeVar*, then 1(IIx:C,.C,)=1(C)—>1(C,), so
UT) i [Bi] [B,]:1(Cy) [x: = [B,]] = ©(C,fx: = B,]) (by Lemma 49(1)).

If C,ekind(\Pw), u = a€ V4RD, then t1(Ila: C,.C,) = ITa:p(C,).1(Cy) > 1(C,), so
UT) 0 [B 1(By) [B,]:1(Cy) [0 = ©(By), x*: = [By]] = 1(Cyfor: = B,]) (by Lemma 49).
In both cases, T(I') -y, [B, B,]: 1(Cy[u: = B,]) = 1(N) and we are done. []

Lemma 56
For M € Term(\Pw)

(i) xe VAR*, N e object(\Pw) = [M][x:= [N]] = [M[x:= NJ|,
(i) o€ V4RY, Ne constructor(A\Pw) = [M][o:= 1(N), x*: = [N]] = [M[a:= N]].

Proof (i). By induction on the structure of M. If Me VArR* or Me VARD, we are
immediately done. If M is a composed term, we are done by the induction hypothesis,
and the fact that 1(Q[x:= N]) = ©(Q) [x:= [N]] and p(Q[x:= N]) = p(Q) [x:= [N]]
(by 47 and 49), and so ¢*®[u:= [N]] = ¢"®* = and *®[u:= [N]] = #B= =M,

Proof (ii). By induction on the structure of M. If Me VAR* or Me V4ARD, we are
immediately done. If M is a composed term, we are done by the induction hypothesis
and the following facts

uQ) [0 = t(N), x*: = [N]] = «(Q[o: = N)),
p(Q) [o: = 1(N), x*: = [N]] = p(Q[a: = N]),

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 181

Cf(Q)[aI = ‘L‘(N), Xt = I[N]] = cr(Q[a:-N]),
o= ©(N), x*: = [N]] = cPlQlei=M

which are true by 47 and 49, and the fact that x*¢ FV(p(Q)). O

Theorem 57
For B, B'e Term(APw)

M-y M’ =[M]-»*"[M],

where —»*° denotes a non zero step reduction.

Proof. By induction on the structure of M.

If M=Tu:B,.By,, M =)\u:B,.B, or M = B, B, with M’ = B, B, or B,B,, then
[M]—»*°[M] follows immediately from the induction hypothesis.

If M = (Au:B,.B,) C, M’ = B,[u:= C], then we distinguish two cases, according to
the rule by which M = (Au:B,.B,) C is formed and apply Lemma 56.

~(Au:B,.B;)C is formed by (x,%) or (x,00). Then [M]=[(\Au:B,.B,)C]l=
(Az:0.Au:7(B,). [B,]) [BI[C]»*°[B,] [u: = [C]] = [Byfu: = C]] = [M].

—(Au:B,.B,)C is formed by (0O,*) or (O,0). Then [M] = [(\u:B,.B,)C]
= (Az:0.Mu:p(B)). Ax*:1(B,) . [B]) [BT(C) [C]1»*°[B,] [u: = t1(C), x*:=[C]]=
[Bfu:=Cll=[M]. O

Theorem 58
Ao = SN = APw = SN.

Proof. Suppose Aw = SN.

Now let M, M,, M,, ... € Term(APw), and M, >~ M, > M, — ... an infinite reduction
sequence. Then [M,], [M,], [M,], ... € Term(Aw) and [M,] »*° [M,] »*° [M,] »*°...,
so there is an infinite reduction sequence in Aw. This is not possible, so there is no
infinite reduction sequence in APw.

One can even give a bound to the number of possible reduction steps starting from
a term M by taking the bound on the reductions starting from [M] in Aw. [

5 L.>=SN

In this chapter the strong normalization for the system A — will be proved. It gives a
good idea of the proof of strong normalization for Aw. As a matter of fact, the proof
of strong normalization for the untyped terms of Aw is a straightforward higher order
extension of the proof given below for A —.

Another reason for first proving A—k= SN is, that as a corollary we will find
SN(constructor(hw)). This reduces the question of SN for Aw to the question of SN
for object(Aw). In Chapter 6 this question will again be reduced to the question of SN
for untyped objects of Aw.

The strong normalization proof below is a variant of Tait’s proof for the system A2
(Tait, 1975).

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

182 Modular proof of strong normalization

Facts 59
VM eobject (A—).[SN(M)] = VM e Term (A —).[SN(M)].

Definition 60
Let A be the set of untyped lambda terms.
X < A is saturated ift

(i) YMeX.[SN(M)),
(ii) VO e SN, xe Var.[x Qe X],
(iii) VQ, M, Pe SN.[M[x: = P] Q€ X = (A\x. M) PQ e X].
E:={X < A| X is saturated}.
Definition 61
Let X and Y be saturated sets

X->Y.={MeA|VNeX.[MNeY]}.
Lemma 62
(i) SNeE.
(ii) VX, YeE.[X> Y€eE].

Proof. Easy checking of properties (i), (ii) and (iii) of definition 60.

Definition 63
A type valuation is a map &: V4R9 - E.

Definition 64

Let £ a type evaluation. The map []¢: type(A) — E is defined by
(i) [o]* = E(a), if oce VARD,
(i) [4— BJ* = [A]*~[BJ.

Notice that all constructors of A — are types, and that all types of A —~ are variables
or of the form 4— B (see Lemma 41).

Definition 65
Let & be a type valuation, I e Context(A —). An object valuation of T with respect to
€ is a map p: V4R* - A such that x: 4eT" = p(x) e [A]°

Definition 66
Let I' e Context(A —), € a type valuation, p an object valuation of I' w.r.t. £. The map
[1,:T-object(A) — A is defined by

@) [x1, = p(x),
(i) [Ax:A4.b], = Ax.[b] ;. 2

(iii) [ca], = [c], [4],-

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 183

Notice that this definition is correct; the three cases cover all possible structures
of objects. As one easily checks, if caeobject(h—), then ¢,aeobject(h—) and if
Ax:A.beobject(—), then beobject(h —).

Definition 67
Let I'e Context(h—), Meobject(h—), Cetype(rh—). Tk=, M:C iff VE type valu-
ation.Vp object valuation of ' w.r.t. &.[[M],e[C]¥].

Theorem 68
For T" e Context(\.—), M € object(h—), Ce type(h—)

' M:C=>TkE, M:C.

Proof. By induction on the structure of M. The interesting case occurs when
M=Ax:A.b, C=A->B. Then, by stripping and the induction hypothesis,
I x:4F, b:B, ie., Yae[A]*.[[b],,.., €[BI*]. But then Ax.[bl, .y € [A]F > [BT,
and we are done. [J

Theorem 69
A—E=SN.

Proof. Let I e Context(h —), M € object(A), Cetype(.—) and I' =, M :C. Take as
type valuation & the function &: o+ SN, and as term valuation p of I’ w.r.t. £, the map
p:x~x. Then [M], = [M| and [C]* = SN. Moreover, [M],€[C]’, so |M|e SN and
MeSN. O

Corollary 70
VM € constructor(Aw) . SN(M).

Proof. We define a map [] from kind(Aw®) to type(rh—), and from constructor(ro) to
object(L —) that preserves reduction. Just as in Chapter 4, we assume to have a
variable x*e V4Rr* for every variable a € V4rRD Further, 0 is a fixed element of V4rC
and ¢! is a canonical constant of type [k,], defined by taking c°® as a fixed variable
in V4Rr*, and defining >t = Ax:[k,]. cl¥.

Define
[+ =0,
lk,—k,] = [k,]—1[k,] if k, and k, are kinds,
[o] = x°
[Ao:k.P] = Ax*: [k].[P] if P is a constructor,
[P Q] = [P][@] if P and Q are constructors,
[o>t] =c""c][1l,

[Mo:k.o]= [o] [x*:= "] if k is a kind.

Define further for I' e Context(hw) the context [['] by removing declarations of the
form x:A, replacing declarations of the form a:A4 by x*:[A4], and adding the two
declarations 0:* and c°:0.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

184 Herman Geuvers and Mark-Jan Nederhof

As one easily checks (using strengthening to verify that the removal of object
variable declarations is all right), we then have I' —,, M :k(:O0) = [I'] ., [M]:[k].
Moreover, if M-, M’ then [M]—»*°[M’], and so we can conclude that the
constructors of Aw are SN. (One can even give a bound to the number of reduction
steps starting from a constructor M of Aw by taking the bound on the number of
reduction steps in A —, starting from [M].) O

6 Ao = |SN|= Ao = SN

In this chapter it will be proved that for all M € object(Aw) SN(|M|) = SN(M). This
is done by analysing the different types of abstractions that can occur in an object
of Aw, and showing that if there is an infinite reduction path starting from
M € object(Aw), then there is an infinite reduction path starting from |M|eA.

The advantage of this approach is that to prove strong normalization, we only
have to check the erased terms. This makes the definition of the so called
‘computability predicates’ easier, because we do not have to take the type information
into account.

Definition 71
Let M e Term(Aw). The A-decoration of M, M", is defined by

(i) ut =u, for ue Var,

(i) (Au:A4.6)* = A u:A.tif it is formed by rule (x, *),
(Au:A.t)y" =A,u:A.tif it is formed by rule (7, *),
(Au:A.0)" = A, u:A.¢tif it is formed by rule (O, O),

(i) (PQ)* = P*Q".

Definition 72
The redexes in a term of Aw are divided in three kinds, 0-redexes, 2-redexes and w-
redexes, by defining for (Au: A.¢) ge Term(Aw)

(i) (Mu:A.1)qis a O-redex iff (Mu:A.H)* =hju:A.t,
(ii) (Mu:A.t)qis a 2-redex iff (Au:A.0)* =hu:A4.1,
(iii) (Au:A4.1)q is a w-redex iff Au:A.0)* = A u:A4.t.

A reduction of one 0-redex will be called a 0-reduction-step, a reduction of one 2-redex
a 2-reduction-step, and a reduction of one w-redex a w-reduction-step.

Note that a 0-redex is of the form (Ax:A4.1) g, with 4 a type, g and ¢ objects, a 2-
redex is of the form (Ao:4.7) g, with 4 a kind, g a constructor and ¢ an object, and
a w-redex is of the form (Aa:A4.£)g, with 4 a kind, ¢ and ¢ constructors.

Lemma 73

For M, M’ € object(\w)
i M-, M’ = H# Aysin M) = % (Nys in MY)—1,
(i) M> M’ =% Aysin M) = % (A5 in M™),

(iii) M—>, M or M—,M’' = |M| = |M’|.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 185

Proof. Note that the only case in which a reduction does not decrease the number of
As by at least 1 is the following: (\u:4.7)qg— A[u:= q), with u occurring in ¢ more
than once and a A in the term gq.

Further, we only have to compare the numbers of As in the redex and its reduct
in the rest of the term everything remains the same.

(@) If (Ao:k.b)P—>,blo:=P], then Peconstructor(\w), so in P no object-
expressions occur and # (A,s in P*) = 0. We conclude that # (A,s in (b[o: = P))*) =
3 (A8 in b%) = # (Ays in ((Aa:k.b) P))—1.

(i) If (Aa:k.Q) P—, Qfa:= P], then both (Aa:k.Q) P and Q[a: = P] are construc-
tors, 50 # (A,s in (Q[o:= P])*) = 0 = # (A,s in ((Aa:k.Q) P)*).

(iii) It is easy to see that an - or 2-reduction does not change the structure
of the erased term, so if M’ is obtained from M by a ®- or 2-reduction, then

|M] = |M'|.]

Note that (as Barendregt pointed out to us) Lemma 73(i) does not hold if we count
the number of 2-redexes, e.g., in (Aat:* . AB:*.7) 61— (AB: . f[o: = 6]) T the number of
2-redexes is the same in both terms. In Lemma 73 the number of As is used as an
upperbound for the number of redexes.

Lemma 74
There is no infinite 2/w reduction path in Ao.

Proof. Suppose M, > M,—> M, ... is an infinite reduction path in which only 2- and
ao-redexes are being reduced. With Corollary 70, we know that there is no tail
M.M, ..M, of this sequence such that M,—> M, >, M, .~ . So, after
finitely many o-reductions, a 2-reduction is performed, and there occur infinitely
many 2-reduction-steps in the path. However, when we look at the decorated reduc-
tion path Mj—>M;—~>M;— ..., a 2-reduction reduces the number of A,s by one,
whereas an o-reduction does not create any new A,s (Lemma 73). We conclude that
there is no infinite 2/ reduction path in A@. [

Theorem 75
VM e object(hw) .[SN(|M|) = SN(M)].

Proof. Suppose M, > M,—> M, ... is an infinite reduction path in object(Aw). Then
only finitely many 2/ reduction steps are being performed after one another.
The situation is M; —,,N; »3°'Ny—, N, »FN,—», where all N, are in the
sequence M,, M,, M,, ... and —-»F° denotes a non-zero step reduction. We find that
|M,| = |N,| »F°|N,| = [Ny| »F°|N,| = ..., so there is an infinite reduction path in A,
starting from |M,|. We conclude that SN(|M|) => SN(M) for all M eobject(hw). O

7 Ao =SV

In the previous chapters it has been proved that the constructors of Aw are strongly
normalizing, and that the objects are strongly normalizing if the erased objects are.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

186 Herman Geuvers and Mark-Jan Nederhof

Now, to finish the proof of Aw = SN, the only thing left to do is to prove SN(|M]) for
all M e object(hw). With the result of Chapter 4, we then have APw = SN.

Strong normalization for Ao was first proved by Girard (1972), using the notion of
*candidat de réductibilité’. For every type he defines a predicate on the terms of that
type such that all terms satisfying the predicate are SN, and all terms of a type satisfy
the corresponding predicate. Our task is a bit easier, as we only have to prove the
strong normalization for the erased terms. The proof given below is a higher order
version of the proof given for the system A — in Chapter 5.

Definition 76
Let kekind(Aw). The set of computability predicates for k, CP(k), is defined by
(i) CP(x) = {X A| X is saturated},
(ii) CP(k,~>k,) ={f1f: CP(k) > CP(k,)}.
For the definition of saturated, see Definition 60. Notice that CP(*) = E of Definition
60.

Lemma 77
For I a set and X, saturated for all iel,

() X, is a saturated set.
iel
Proof. Straightforward, checking the properties of saturated set of Definition 60.
O

Definition 78
Let I'e Context(hw). A constructor valuation of T is a map

E:V4RD - J CP(k) such that Vae VarD.[a:keT = &(a) € CP(k)).

keK

Notation. £E=T if € is a constructor valuation of T'.

Definition 79
Let I'e Context(Lo), £ =,,T.
[1%:T-constructor(ho) — U CP(k) is defined inductively by

@) ol = E(a) if ae V4RD,
(ii) [PQI° = [PI*[QF if PQ formed by (O, 0),
(iii) [Ma:k. QI = Afe CP(k).[QI**=", if Aa:k.Q is formed by ([7, O0),
(iv) [o—=1l* =[o]F->[]* if 61 is formed by (x, %),
(v) [Ma:k.ol*= () [o]=P if [Ta: k.o is formed by (O, *).

feCP(k)

The definition is justified by the stripping lemma, Vfe CP(k). £ =, T = E(a: = NEwW
I',a:k and the following lemma, which shows that in the case of ¢ —t: *, both [o]°
and [1]° are saturated sets, and so [o — 1]* is well defined.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 187

Lemma 80
For T"e Context(Aw), £ =,, T

(i) teT-constructor(\w), T otk =[e CPKk),
(i) 1,7 eT-constructor(\w), o€ Var® = [fla: = r]Jt = [t
(iii) #.tel-constructor(hw),t =1t = [1J° = []5

Proof. Both (i) and (ii) by induction on the derivation of I' b, ¢:k for certain ke K;;
(iii) immediately by the definition of []* and (i), [

Definition 81
Let T'e Context(Aw), E=T". An object valuation of T with respect to £ is a map
p:VA4R* - A such that Vxe Var*.x:ceT = p(x) € [c]".

Notation. p,&F,, " if EeT" and p is an object valuation of I" w.r.t. E.

Definition 82
Let I'e Context(Aw), p,E =T . [],:T-object(ho) > A is defined by

@) [x], = p(x) if xedom (T),

(i) [Ax:A4.1], =Ax.[t],z;-sy if Ax:A.21is formed by (*,+),
(iii) [Aa:k.f], =[], if Aa:k.t is formed by ({7, #),
(iv) [zq], = [1], 4], if tq is formed by (x, *),

v) 201, =[4, if ¢ Q is formed by ([, *).

Note that for MeTl-object(lw), if X is the vector of free object variables, then
[M1, = |M[x:= p(x)]l.

Definition 83
Let I" € Context(Aw), M € object(hw), Ce€ type(A®).

I=,M:C iff Vp,&.[p,EF=,, [=[M],e[C].

Theorem 89
For T e Context(Aw), M € object(hw), C € type(Aw)

r-,M:C=>T'=s, M:C.

Proof. By induction on the derivation of I' —,, M: C, distinguishing cases according
to the structure of M. Let p, &=, T

— M = xe VAR*, then |[x]]pe|IC']]§, with x:C’eI’ and C'=C. By Lemma 80
[CT = [C* 50 [x], € [CT"

—M=xx:A.t formed by (x,%), then I',x:Ar, t:B, for certain B, with
IIx:A.B = C. By induction hypothesis [7],..,, € [BI*, for all g€ [4]* and so Ax.[f], e
[4]°— [BF = [CT*

—M=)\a:k.t, formed by (O,*), then T',a:ki,, ¢:B, for certain B, with
Mo:k.B = C. By induction hypothesis [f],€[B]**~?, for all fe CP(k), and so
d,e N [BF"

feCP(k)

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

188 Herman Geuvers and Mark-Jan Nederhof

— M = tq, formed by (x,*), then I't~,,t: 4~ B and ', q:4, for certain 4, B
with B = C. By induction hypothesis [1],& [4 - BJ* and [q],&[4]%, and so [¢q],€[B]*.
- M = tQ, formed by (0, %), then ', t:Ilo:k. B and I' -, Q:k, for some k,B
with Bla:= Q] = C. By induction hypothesis, [f],e (] [BI**~” and [Q]*€ CP(k).
feCP(k)
We conclude that [7],€ [B]**~1%% = [B[a:= Q]I, and we are done. [

Theorem 85
VM eobject(Aw). SN(|M|).

Proof. Let M e object(ho), T €Context(hw), Cetype(hw) and It ,M:C. With
Theorem 84, I'=,, M:C. Define canonical elements of the sets CP(k) for every

k € kind(Aw) by *— SN

bk = Afe CP(k,). c*.

Then take a constructor valuation & of T, and an object valuation p of I' w.r.t. ,
such that, if a:keT, then (o) = ¥, and if x: 4 €T, then p(x) = x.

Now, p,E=,, T, because all object variables are elements of all saturated sets.
Further, |M| = [M],e[C]* = SN, so SN(M|). O

This is the final result to be proved in order to establish the strong normalization of
the calculus of constructions.

References
Barendregt, H. P. 1984. The Lambda calculus, its syntax and semantics, North Holland.
Barendregt, H. P. 1989. Introduction to generalised type systems. Proc. 3rd Italian Conference
on Theoretical Computer Science, World Scientific Publishing Co., Singapore.
Barendregt, H. P. 1990. Lambda calculi with types. In S. Abramsky, D. M. Gabbaiand T. S. E.
Maibaum (editors), Handbook of Logic in Computer Science. Oxford University Press.
Barendregt, H. P. and Dekkers, W. 1990. Typed Lambda Calculi.
Barendsen, E. 1989. Representation of logic, data types and recursive functions in typed lambda
calculi. Masters Thesis, Faculty of Mathematics and Computer Science, University of
Nijmegen, The Netherlands.
Berardi, S. 1988. Towards a mathematical analysis of type dependence in Coquand-Huet calculus
of constructions and the other systems in Barendregt's cube. Department of Computer Science,
CMU, and Dipartimento di Matematica, Torino.
de Bruijn, N. G. 1980. A survey of the project AUTOMATH. In J. R. Hindley and J. P. Seldin
(editors), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp.
579-606. Academic Press.
Church, A. 1940. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:
56-68.
Coquand, T. 1986. Metamathematical Investigations of a Calculus of Constructions, INRIA,
France and Cambridge University, UK.
Coquand, T. and Huet, G. 1985. Constructions: a higher order proof system for mechanizing
mathematics. In B. Buchberger (editor), EUROCAL 85. Volume 203 of Lecture Notes in
Computer Science, pp. 151-184.
Coquand, T. and Huet, G. 1988. The calculus of constructions. In A. R. Meyer (editors),
Information and Computation, pp. 95-120.

https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

Modular proof of strong normalization 189

Geuvers, H. 1988. The interpretation of logics in type systems. Masters Thesis, Faculty of
Mathematics and Computer Science, Catholic University Nijmegen, The Netherlands.
Girard, J.-Y. 1972. Interprétation fonctionelle et élimination des coupures dans I’arithmétique
d’ordre supérieur, Thése de Doctorat d’Etat, Université de Paris VIII, France.

Girard, J.-Y. 1971. Une extension de I'interprétation de Godel 4 I’analyse, et son application
a I’élimination des coupures dans I'analyse et la theorie des types. In J. E. Fenstad (editor),
Proceedings of the second Scandinavian Logic Symposium. North Holland.

Harper, R., Honsell, F. and Plotkin, G. 1987. A framework for defining logics. Proc.
Symposium on Logic in Computer Science, Ithaca, New York, IEEE, Washington.

Howard, W. 1980. The formulae-as-types notion of construction. In J. R. Hindley and J. P.
Seldin (editors), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pp. 479-490.

Luo, Z. 1988. CC? and its strong normalization. Notes of a talk given at the Jumelage meeting
on typed Lambda Calculus, Nijmegen, The Netherlands.

Tait, W. W. 1967. Intensional interpretation of functions of finite type. Journal of Symbolic
Logic, 32: 198-212.

Tait, W. W. 1975. A realizability interpretation of the theory of species. In R. Parikh (editor),
Logic Colloquium. Volume 453 of Lecture Notes in Mathematics, pp. 240-51. Springer-Verlag.
Terlouw, J. 1989a. Een nadere bewijstheoretische analyse van GSTT’s. Internal report, Faculty
of Mathematics and Computer Science, University of Nijmegen, The Netherlands.

Terlouw, J. 1989 b. Sterke normalisatie in C a la Tait. Notes of a lecture held at the Intercity
Seminar Typed Lambda Calculus, Nijmegen, The Netherlands.

Herman Geuvers and Mark-Jan Nederhof, Faculty of Mathematics and Computer Science
University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.

7 FPR |
https://doi.org/10.1017/50956796800020037 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800020037

