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Abstract

The basic question in perturbation analysis of Markov chains is: how do small changes
in the transition kernels of Markov chains translate to chains in their stationary distri-
butions? Many papers on the subject have shown, roughly, that the change in stationary
distribution is small as long as the change in the kernel is much less than some mea-
sure of the convergence rate. This result is essentially sharp for generic Markov chains.
We show that much larger errors, up to size roughly the square root of the convergence
rate, are permissible for many target distributions associated with graphical models. The
main motivation for this work comes from computational statistics, where there is often
a tradeoff between the per-step error and per-step cost of approximate MCMC algo-
rithms. Our results show that larger perturbations (and thus less-expensive chains) still
give results with small error.
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1. Introduction

Informally, perturbation bounds for Markov chains look like the following: if the distance
d(Q, K) between two transition kernels Q, K is sufficiently small, then the distance d(μ, ν)
between their stationary measures μ, ν is also small. Many results of this form, such as [30,
Corollary 3.2] and follow-up work [16, 32, 38], require that the inverse error d(Q,K)−1 be
much larger than some notion of the ‘time to convergence’ τ (Q) of one of the two chains. The
main results of this paper show that, in the special case that μ, ν both correspond to graphical
models and Q, K ‘respect’ the same graphical model in a sense made precise in this paper, we
can ensure that d(μ, ν) remains small even for much larger errors d(Q, K). Our main result,
Theorem 2, allows errors of up to size d(Q,K) ≈ τ (Q)−1/2 � τ (Q)−1. Our main illustrative
example, in Section 5, shows how these bounds can be achieved in a simple setting. We also
note by example that both the existing bounds and our new bounds are essentially sharp for
certain large and natural classes of Markov chains; see Examples 1, 2, and 3.
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2 N. LIN ET AL.

The main motivation for our work is the analysis of ‘approximate’ or ‘noisy’ Markov chain
Monte Carlo (MCMC) algorithms. In this setting, we think of Q as an ideal Markov chain that
we would like to run, but which is computationally expensive. We think of K as an approxima-
tion to Q that is less computationally expensive. As a prototypical example inspired by [21],
Q might be the usual Metropolis–Hastings algorithm targeting the posterior distribution asso-
ciated with a large dataset of size n, while K = Km might be an algorithm that approximates
the posterior distribution using a data subsample of size m � n. We expect the per-step cost
of Km to increase with m, while we also expect the error d(Q,Km) to decrease with m. This
suggests a tradeoff: we would like to choose a value of m that is large enough for the stationary
distributions of Q,Km to be close, but small enough for Km to be computationally tractable.
Improved perturbation bounds let us confidently decrease the value of m while still obtaining
good results.

1.1. Relationship to previous work

There is a long history of analyzing perturbations of matrices and other linear operators –
see, e.g., the classic textbook [19]. Many of these results include Markov chains as special
cases. The first application of these ideas to MCMC appeared in [6], which used perturbation
bounds to show that ‘rounding off’ numbers to the typical precision of floating-point numbers
will usually result in negligible error.

A recent surge of work on applying perturbation bounds to MCMC was inspired by two
important new lines of algorithm development. The first was the development of algorithms,
such as the unadjusted Langevin algorithm of [33], that are based on discretizations of ‘ideal’
continuous-time processes. The second was the development of algorithms, such as stochastic
gradient Langevin dynamics of [42], the ‘minibatch’ Metropolis–Hastings of [21], and Monte
Carlo within Metropolis of [28, 29], that try to make individual MCMC steps cheaper by
using computationally cheap plug-in estimates of quantities appearing in ‘ideal’ MCMC algo-
rithms. Often, as in [21, 42], the plug-in estimates are obtained by using a small subsample
of the original dataset. In both lines, the result was a profusion of useful algorithms that can
be viewed as small perturbations of algorithms that have very good theoretical support but are
computationally intractable.

We focus now on the second line of algorithms. Perturbation theory has been used to try to
show that the new computationally tractable algorithms would inherit many of the good prop-
erties of the original computationally intractable algorithms. Some representative theoretical
papers on this subject include [2, 16, 32, 38], all of which give generic perturbation bounds
that are widely applicable to approximate MCMC algorithms such as [21, 42] under very broad
conditions. This generic work has also been applied to more complex algorithms, such as
[17, 36].

One of the main questions raised by this work is: how good do the plug-in estimates need
to be in order to obtain an algorithm with ‘small’ error? Theoretical work such as [16, 32, 38]
often required that the distance between the ‘original’ kernel Q and ‘approximate’ kernel K
satisfies a condition along the lines of

d(Q,K) � 1

τ (Q)
, (1)

where d(Q, K) is a notion of distance between kernels and τ (Q) is a notion of time to converge
to stationarity. Study of specific algorithms supported the idea that the inequality (1) was often
necessary in practice and was not satisfied by various naive plug-in estimators [5, 18, 31].
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Perturbation analysis for graphical models 3

Since then, a great deal of applied work in the area has focused on developing plug-in
estimators that do satisfy this inequality [4, 34].

This work looks at the question from the opposite point of view. Rather than trying to
improve control variates to obtain algorithms that satisfy (1), we try to find conditions that
are weaker than (1) and hold under conditions of interest in statistics. The main lesson in
the present paper is that generic perturbation bounds can be vastly strengthened by restricting
attention to specific statistically interesting settings.

Of course, the point of view in this paper and the point of view in applied work such as
[4, 34] do not compete with each other. Improving control variates and improving the condition
both allow you to run MCMC algorithms with smaller per-step costs, and these improvements
can be combined. The main remaining question in this work is: how easy is it to engineer
Markov chains for which conditions such as (1) can be weakened?

1.2. Guide to this paper

Section 2 describes the basic notation used throughout this paper. Section 3 is pedagogi-
cal, giving simple examples that aim to illustrate when previous results are or are not sharp.
Section 4 states and proves the main result, Theorem 2. Finally, Section 5 gives a concrete
algorithm and model to which Theorem 2 can be applied.

We note here one question that is raised rather early in the paper but not resolved until near
the end. As discussed in Remark 1, there is one main obstacle to constructing an approxi-
mate algorithm to which Theore 2 can be applied: the algorithm’s stationary distribution must
‘respect’ the same conditional independence properties as the original target distribution. The
main purpose of Section 5 is to show that, while this property is not automatic, it is not ter-
ribly difficult to construct an algorithm with this property. In particular, the pseudomarginal
framework introduced in [3] provides a powerful general tool for doing this.

2. Notation

We introduce notation used throughout the paper.

2.1. Generic probability notation

For two probability distributions μ, ν on the same Polish space � with Borel σ -algebra
(�,F), define the total variation (TV) distance as dTV(μ, ν) = supA∈F |μ(A) − ν(A)|.

When μ, ν have densities f , g with respect to a single reference measure λ, the Hellinger
distance between μ and ν is defined as

dH(μ, ν) =
( ∫

x∈�
(
√

f (x) −√
g(x))2λ(dx)

)1/2

,

and the L2(λ) distance is defined as

dL2(λ)(μ, ν) =
( ∫

x∈�
(f (x) − g(x))2λ(dx)

)1/2

.

Our argument will rely on the following well-known relationships (see, e.g., [9, p. 135] and
[23, Lemma 20.10]):

1
2 d2

H(μ, ν) ≤ dTV(μ, ν) ≤ dH(μ, ν) ≤ dL2 (μ, ν). (2)
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By a small abuse of notation, when d is a distance on measures we extend it to a distance
on transition kernels via the formula d(Q,K) = supx∈� d(Q(x, ·),K(x, ·)).

Let Q be a transition kernel with stationary measure π and let d be a metric on probabil-
ity measures. Define the associated mixing time, τmix(Q, d, ε) = min{t : supx∈� d(Qt(x, ·), π )
< ε}. By convention, we write τmix(Q) = τmix

(
Q, dTV,

1
4

)
.

When we have two functions f , g on the same state space �, we write f � g as shorthand
for: there exists a constant 0<C<∞ such that f (x) ≤ Cg(x) for all x ∈�. Similarly, we write
g � f if f � g, and we write f ≈ g if both f � g and g � f .

2.2. Notation for couplings

For a random variable X, denote by L(X) the distribution of X. We will use the following
standard ‘greedy’ coupling between two Markov chains on a finite state space. See, e.g., [23,
Proposition 4.7] for a proof that the following construction yields well-defined processes.

Definition 1. (Greedy Markovian coupling.) Fix a Markov transition kernel K on finite state
space �. Note that, for points a, b ∈�, it is possible to write

K(a, ·) = δa,b μa,b + (1 − δa,b)νa,b;1,

K(b, ·) = δa,b μa,b + (1 − δa,b)νa,b;2,

where μa,b, νa,b;1, and νa,b;2 are probability measures on � and δa,b = 1 − dTV(K(a, ·),
K(b, ·)).

Next, fix starting points x, y ∈� and let {Xt}t≥0 (respectively {Yt}t≥0) be a Markov chain
evolving through K and starting at X0 = x (respectively Y0 = y). The greedy Markovian cou-
pling of these chains is defined inductively by the following scheme for sampling (Xt+1, Yt+1)
given Xt, Yt:

(i) Sample Bt ∈ {0, 1} according to the distribution P[Bt = 1] = δXt,Yt . Then:

(a) If Bt = 1, sample Z ∼μXt,Yt and set Xt+1 = Yt+1 = Z.

(b) If Bt = 0, sample Xt+1 ∼ νXt,Yt;1 and Yt+1 ∼ νXt,Yt;2 independently.

We note that the coupling in Definition 1 has the following properties:

(i) The joint process {Xt, Yt}t≥0 is a Markov chain.

(ii) Set τ = min{t : Xt = Yt}. Then Xs = Ys for all s< τ under this coupling.

2.3. Notation for Gibbs samplers and graphical models

Fix q ∈N and define [q] = {1, 2, . . . , q}. We denote by the binary tuple G = (V, 
) a
collection of vertices and factors. That is, following the notation of [20], we have:

• V is any finite set. We call this set the vertices.

• 
 is any collection of functions from �≡ [q]V to R. We call this set the factors.

We define the Gibbs measure associated with the tuple (V, 
) to be the probability measure
on � given by

μ(σ ) ∝ exp

(∑
φ∈


φ(σ )

)
, (3)
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where σ represents a configuration in �. Factors typically depend on only a few values. To
make this precise, we say that a factor φ ∈
 does not depend on a vertex v ∈ V if φ(σ ) = φ(η)
for all σ, η ∈� satisfying σ (u) = η(u), u = v. Otherwise, we say φ depends on v. For x ∈ V ,
denote by A[x] = {φ ∈
 : factor φ depends on variable x} the set of factors that depend on
variable x. Similarly, let S[φ] = {x ∈ V : factor φ depends on variable x}. For fixed (V, 
),
denote by (V , E) the graph with (i, j) ∈ E if and only if there exists φ ∈
 with i, j ∈ S[φ].
We note that this graph is the usual (minimal) Markov network associated with the data
(G, 
).

For a graph metric d, we abuse notation slightly by defining the distance between two vertex
sets A and B as d(A, B) = min{d(x, y) : x ∈ A, y ∈ B}. For a set A ⊂ V and integer r> 0, we
denote by Br(A) the set of vertices whose distance from A is less than r. That is, Br(A) = {x ∈
V : d(x, A)< r}.

Given A ⊂ V , we denote by σ |A : A → [q]A the restriction of the configuration σ to the
set A and by μ|A the restriction of the measure μ to the set A, i.e. σ |A(x) = σ (x) for x ∈ A
and μ|A(σ |A) =∑

η:η|A=σ |A μ(η). For brevity we write μ|A(σ ) =μ|A(σ |A). For A ⊂ B ⊂ V and

σ ∈�, we denote by μ|η|Bc

A the restriction to A of the conditional distribution of μ given that it
takes value η on Bc. That is,

μ|η|Bc

A (σ ) =
∑
θ |A=σ |A,θ |Bc=η|Bc μ(θ )∑

θ |Bc=η|Bc μ(θ )
.

Let V be partitioned into � pairwise disjoint subsets {Si}, and �1 = ∅ and �j ⊂⋃j−1
i=1 Si,

2 ≤ j ≤ �, correspond to the set of vertices conditioned on which the configuration of Sj is

independent from everything else in
⋃j−1

i=1 Si. Specifically, let {Sj, �j} satisfy

μ(σ ) =
�∏

j=1

μ|σ |�j
Sj

(σ ). (4)

Say that two measures have the same dependence structure if they can both be written in the
form (4) with the same lists {Si} and {�i}.

Denote by σx �→i be the configuration

σx �→i(x) = i,

σx �→i(y) = σ (y), y = x.

We recall in Algorithm 1 the usual algorithm for taking a single step from a Gibbs sampler
targeting (3).

This Gibbs sampler defines a Markov chain with transition matrix

Q(σ, σx �→j) = 1

|V| · exp (sj)∑q
i=1 exp (si)

.

In addition, we denote by Q|B the Gibbs sampler that only updates labels in B and fixes the
value of all labels in Bc. Note that Q|B with initial state σ has stationary measure μ|σ |Bc

B .
We next define the class of algorithms that will be the focus of this paper.

Definition 2. Let (A, d) be a Polish space and FA the associated σ -algebra. We say that a
Markov chain K on state space �×A is a perturbed Gibbs sampler with tuple (V, 
) if it has
the following properties:
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6 N. LIN ET AL.

Algorithm 1 Step of standard Gibbs sampler.

Require: Starting state σ ∈�.

1: Sample variable index x ∼ Unif(V).

2: For i ∈ [q], calculate si =∑
φ∈A[x] φ(σx �→i). Define the distribution p over [q] by

p(i) ∝ exp (si).

3: Sample j ∼ p.

4: Return the element η= σx �→j.

(i) Single-site updates: For samples (η, b) ∼ K((σ, a), ·), |{x ∈ V : η(x) = σ (x)}| ≤ 1.

(ii) Gibbs stationary measure respects factorization structure: K is ergodic, with stationary
measure ν̂ whose marginal on� is of the form (3) and has the same dependence structure
as (4).

Remark 1. (Checking that a Gibbs sampler satisfies Definition 2.) The first part of Definition 2
is fairly innocuous, both in that it is often straightforward to check and in that our arguments are
not terribly sensitive to small violations of this assumption. For example, it is straightforward
to extend our results from single-site Gibbs updates to the case of Gibbs samplers that update
O(1) different entries that are all ‘close’ in the Markov network.

The second condition is more dangerous, in that it is both harder to check and our argu-
ments do not work as written if it fails. Broadly speaking, we know of two ways to check that
a transition kernel satisfies this condition:

(i) In the case that K has the same state space as Q (i.e. A has one element), the simplest
sufficient conditions that we are aware of appear in [15, Proposition 1]. The result in [15]
requires that the Markov chain be ‘synchronous’ (a property that is straightforward to
enforce for approximate Gibbs samplers based on subsampling ideas) and reversible (a
familiar property). Although this condition is simple and seems strong enough for many
purposes, it is far from the strongest possible condition; see, e.g., [22] for sufficient
conditions that apply even to non-synchronous Markov chains.

(ii) In the case that K has the form of a pseudomarginal algorithm (see [3] for an introduction
to pseudomarginal algorithms and [34] for pseudomarginal algorithms in the context of
approximate MCMC), an exact formula for the marginal of the stationary distribution
on � is available. Thus, as long as the random log-likelihood estimate can be written in
the form L̂(σ ) =∑

φ∈
 L̂φ(σ ), where {L̂φ(σ )}φ∈
 are independent and L̂φ(σ ) depends
only on {σ (i)}i∈S[φ], the stationary distribution will also be of the form (3). We use this
condition in the worked example in Section 5.

In our proof, the second condition of Definition 2 is used to invoke (7) (originally proved as
[8, Theorem 1]). The proof in [8] relies on an exact factorization of the associated likelihoods,
and it is beyond the scope of this paper to study target distributions that are merely ‘close’ to
such a factorization.
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3. Intuition and simple examples

We give some simple (and far from optimal) calculations to show that simple perturbations
are nearly sharp for generic examples, but far from sharp for structured examples. Our simple
structured example also shows that our main result, Theorem 2, is nearly sharp.

First, we recall [32, Theorem 1]. To state it, we introduce the following temporary notation.
Recall that a kernel Q with stationary distribution μ is said to be geometrically ergodic with
factor ρ if there exists a finite function C such that, for every initial distribution ν and for all
n ∈N, dTV(μ, νQn) ≤ C(ν)ρn, and is said to be L2(μ)-geometrically ergodic if

dL2(μ)(μ, νQn) ≤ C(ν)ρn. (5)

As per [37, Theorem 2.1], if Q is reversible and the initial distribution ν ∈ L2(μ), then Q is
L2(μ)-geometrically ergodic if and only if it is geometrically ergodic, with this equivalence
holding for the same value of ρ (but not necessarily the same value of C(ν)). In this notation,
[32, Theorem 1] is given as follows.

Theorem 1. Let Q,K be two transition kernels with stationary measures μ, ν and assume that
Q satisfies (5). Then, for dL2(μ)(Q,K) � 1 − ρ,

dL2(μ)(μ, ν) ≤ dL2(μ)(Q,K)√
(1 − ρ)2 − d2

L2(μ)
(Q,K)

≈ dL2(μ)(Q,K)

1 − ρ
.

We point out that submultiplicativity of the total variation distance to stationarity, as in [23,
Lemma 4.11], implies that a finite state chain with finite mixing time is geometrically ergodic
with factor ρ for which (1 − ρ)−1 = O(τmix). In particular, we can see that dL2(μ)(μ, ν) is small
if dL2(μ)(Q,K) is much smaller than the mixing rate min{τmix(Q), τmix(K)}−1. Qualitatively
similar results, of the form

d(μ, ν) � τmix(Q, d)d(Q,K), (6)

are known to hold for many metrics d, as long as the right-hand side is sufficiently small. For
example, see [30] for this result with the choice d = dTV. The following simple example shows
that Theorem 1 is close to sharp.

Example 1. For two parameters p ∈ (0, 0.5) and C ∈ (0, p−1), define the transition kernels Q
and K on {1, 2} by the following non-holding probabilities:

Q(1, 2) = Q(2, 1) = p, K(1, 2) = Cp, K(2, 1) = p.

We view Q as the original chain, and its stationary distribution μ which is uniform serves
as the reference measure in the L2 distance. It is straightforward to verify the following scaling
estimates for fixed p and C in the range C ∈ (0.5, 2):

(i) The distance between kernels dL2(μ)(Q,K) ≈ |C − 1|p.

(ii) The mixing rates of both chains satisfy τmix(Q, dL2(μ)) ≈ τmix(K, dL2(μ)) ≈ 1/p.

(iii) The distance between stationary distributions dL2(μ)(μ, ν) ≈ |C − 1|.
By the above items, we can see that dL2(μ)(μ, ν) is of the same order as the error

min{τmix(Q, dL2(μ)), τmix(K, dL2(μ))}dL2(μ)(Q,K)

for fixed p as C → 1.

https://doi.org/10.1017/jpr.2024.102 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.102
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Example 1 shows that the error upper bound in Theorem 1 scales at best like the product
min{τmix(Q), τmix(K)}dL2(μ)(Q,K) when this product is small. When the product is large, the
error can actually ‘blow up’. The following example illustrates this ‘blowing up’ in the simpler
total variation norm.

Example 2. For n ∈N and p ∈ (0, 0.5), define the transition kernel Q = Qn,p on [n] by

Q(i, i + 1) = 1
2 p, i< n,

Q(i, i − 1) = 1
2 (1 − p), i> 1,

Q(i, i) = 1
2 , 1< i< n,

and Q(1, 1) = 1
2 (2 − p), Q(n, n) = 1

2 (1 + p). Next, for 0< ε < 1, define K = Kn,p,ε by

K(i, j) = (1 − ε)Q(i, j) + ε1{j=n}.

Informally, K takes a step from Q with probability 1 − ε and teleports to n with probability ε.
We consider the regime where p ∈ (0, 0.5) is fixed and ε= εn = Cn/n for some sequence

Cn → ∞. The proofs of the following four facts can be found in Appendix A:

(i) The distances between kernels dTV(Q,K) ≈ Cn/n.

(ii) The mixing times satisfy τmix(Q) ≈ n, τmix(K) � n/Cn.

(iii) The stationary distribution μ of Q assigns probability μ([0, n/3]) → 1 as n → ∞.

(iv) The stationary distribution ν of K assigns probability ν([2n/3, n]) → 1 as n → ∞.

By items (iii) and (iv), we can see that dTV(μ, ν) → 1, so the stationary measures are very
far apart. On the other hand, by items (i) and (ii), the error min{τmix(Q), τmix(K)}dTV(Q,K) �
Cn grows arbitrarily slowly.

However, as we will see, (6) is far from sharp for many special cases.

Example 3. Consider 0.01< p< p̃< 0.99. Let μ be the distribution of random vector X =
(X1, X2, . . . , Xn2 ) on {0, 1}n2

, where all the random variables Xi, i = 1, 2, . . . , n2, are indepen-
dently and identically distributed and take values over a Bernoulli distribution with parameter
p. Denote by ν the analogous distribution with parameter p̃. Denote by Q, K the usual Gibbs
samplers with targets μ, ν. It is well known that their mixing times are τmix(Q), τmix(K) ≈
n2 log (n), uniformly in the choice of 0.01< p< p̃< 0.99. It is straightforward to check that
dTV(Q(x, ·),K(x, ·)) ≈ |p̃ − p|. For 0< p< p̃< 1, [1, (2.15)] says

dTV(μ, ν) ≤
√

e

2
· C(p̃ − p)

(1 − C(p̃ − p))2
, with C(x) := x

√
n2 + 2

2p(1 − p)
.

This shows that we can allow perturbations of size up to dTV(Q,K) � n−1, even though the
mixing times are τmix(Q), τmix(K) ≈ n2 log(n). This motivates us to generalize this behavior
and find a more relaxed condition on the perturbation to ensure robustness.

We think of the main result of this paper as an extension of the phenomenon in Example 3.
To give a hint as to how we might prove this, we give an informal calculation for a simple
graphical model. Take the Ising model at a high enough temperature on a two-dimensional lat-
tice, for example. The decay-of-correlation property yields that, for any sequence ωn � log (n),
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mixing occurs at a point x before any influence from outside the surrounding box of side-
length O(ωn) can propagate to that point; see [25] for rigorous mathematical definitions. This
means that, when looking at perturbation bounds, we can effectively focus on a box growing
at rate log (n)2 rather than the usual n2. Thus, naive estimates with perturbation size up to
O( log (n)−2) are enough to tell us that the marginal distributions at the center of the box are
close. If we can leverage the independence property, we expect to be able to get bounds on the
whole chain that are qualitatively similar to those in Example 3.

We will use the following subadditivity property of the Hellinger distance, proved in [8], to
leverage this independence property.

Lemma 1. If μ and ν are two Markov random fields on V with common factorization structure
as (4), then we have

d2
H(μ, ν) ≤

�∑
j=1

d2
H(μ|Sj∪�j , ν|Sj∪�j). (7)

4. General results

Throughout this section, we assume that μ is the Gibbs measure of a factor graph
G = (V, 
) on state space �= [q]V with factorization structure (4), that Q is the associ-
ated Gibbs sampler, and that K is a perturbed Gibbs sampler with the same factor graph in
the sense of Definition 2. We set notation for sampling from the first component of K: if
(η, b) ∼ K((σ, a), ·), we say that η∼ K((σ, a), ·)|�. We also denote by ν̂ the stationary measure
of K and by ν its marginal distribution on �.

Fix a metric d on probability measures. Our results rely on the following four quantitative
assumptions.

Assumption 1. (Decay of correlations.) There exist positive constants m,C1 <∞ such that,
for all configuration s σ, η ∈�, all j ∈ [�], and any r> 0,

dH

(
μ
∣∣σ |Bc

r (Sj∪�j)

Sj∪�j
, μ
∣∣η|Bc

r (Sj∪�j)

Sj∪�j

)
≤ C1e−mr.

Assumption 2. (Relationship to Hellinger.) There exists a positive constant C2 <∞ such that,
for any probability measures μ, ν on �, dH(μ, ν) ≤ C2d(μ, ν).

Assumption 3. (Propagation of perturbations.) There exists a positive constant C3 <∞ and
an increasing convex function f : R+ →R+ such that, for all configurations σ ∈� and all
j ∈ [�] and any r> 0,

d
(
μ
∣∣σ |Bc

r (Sj∪�j)

Sj∪�j
, ν|σ |Bc

r (Sj∪�j)

Sj∪�j

)
≤ C3f (r) sup(σ,a)∈�×A d(Q(σ, ·),K((σ, a), ·)|�).

Assumption 4. (Small perturbations) There exists a positive constant C4 <∞ such that

sup(σ,a)∈�×A d(Q(σ, ·),K((σ, a), ·)|�) ≤ C4√
�f ( log �)

.

Remark 2. Assumption 1, also known as strong spatial mixing, plays a key role in the study
of exponential ergodicity of Glauber dynamics for discrete lattice spin systems (see [25,
Section 2.3] for details). It implies that a local modification of the boundary condition has an
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influence on the corresponding Gibbs measure that decays exponentially fast with the distance
from the site of the perturbation. There is a large literature devoted to studying the regimes
where strong spatial mixing holds for particular models. In particular, the Ising and Potts mod-
els [7, 10, 13, 14, 26, 27, 40], the hard-core model [41], and q-colorings [12] have received
special attention.

Assumption 2 places restrictions on the relationship between the distance measure d and
the Hellinger distance dH. Many popular norms satisfy this condition. For example, by [23,
Lemma 20.10] the L2 norm satisfies the condition with C2 = 1.

Assumption 3 is very similar to the usual perturbation bound for discrete-time Markov
chains, but specialized to subsets of the state space. See, e.g., [16, 30, 32, 38] for proofs of
results of this form. There are many ways to check Assumption 3 with bounds of this form;
see Remark 4 for a longer explanation of a prototypical argument of this sort.

Assumption 4 is the main assumption of our result, and must be checked for individual
approximate chains. We think of this assumption as a nearly-sharp criterion for obtaining small
error in the stationary measure, and we expect that users should design their MCMC algorithms
to satisfy this criterion.

We are now in a position to state our main result.

Theorem 2. Let the sequences of measures μ=μ(�) and ν = ν(�) have common factorization
structure (4), and their associated Gibbs samplers Q = Q(�), K = K(�) satisfy Assumptions 1–4
with constants C1, C2, C3, and C4 that do not depend on �. Fix any δ > 0. Let

D = sup

{
M > 0 :

f (M log 2)

f ( log 2)
≤ δ

2C2C3C4

}
.

Then, for all � ≥ max{2, (2C1/δ)1/(mD−0.5)}, we have dH
(
μ(�), ν(�)

)≤ δ.
Proof. Under these assumptions, we have the following basic calculation for any � (which

we omit in the notation for simplicity), any j ∈ [�], and any r> 0:

dH

(
μ
∣∣σ |Bc

r (Sj∪�j)

Sj∪�j
, ν
∣∣η|Bc

r (Sj∪�j)

Sj∪�j

)
≤ dH

(
μ
∣∣σ |Bc

r (Sj∪�j)

Sj∪�j
, μ
∣∣η|Bc

r (Sj∪�j)

Sj∪�j

)
+ dH

(
μ
∣∣η|Bc

r (Sj∪�j)

Sj∪�j
, ν
∣∣η|Bc

r (Sj∪�j)

Sj∪�j

)
≤ C1e−mr + C2d

(
μ
∣∣η|Bc

r (Sj∪�j)

Sj∪�j
, ν
∣∣η|Bc

r (Sj∪�j)

Sj∪�j

)
≤ C1e−mr + C2C3f (r) sup(σ,a)∈�×A d(Q(σ, ·),K((σ, a), ·)|�).

We now consider what happens as the number � of partitions gets large. Set r = D log �. Using
Assumption 4, we have

dH

(
μ
∣∣σ |Bc

r (Sj∪�j)

Sj∪�j
, ν
∣∣η|Bc

r (Sj∪�j)

Sj∪�j

)
≤ C1�

−mD + C2C3C4f (D log �)√
�f ( log �)

. (8)

In particular, it is easy to check that for � ≥ (2C1/δ)1/(mD−0.5) the first term of the right-hand-
side in (8) is less than δ/2

√
�. Furthermore, since f is an increasing convex function, for � ≥ 2

we have
f (D log �)

f ( log �)
≤ f (D log 2)

f ( log 2)
≤ δ

2C2C3C4
.
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Putting these together yields that, for � ≥ max{2, (2C1/δ)1/(mD−0.5)},

dH

(
μ
∣∣σ |Bc

r (Sj∪�j)

Sj∪�j
, ν
∣∣η|Bc

r (Sj∪�j)

Sj∪�j

)
≤ δ√

�
.

Plugging this into (7) gives d2
H(μ, ν) ≤∑�

j=1 d2
H

(
μ|Sj∪�j , ν|Sj∪�j

)≤ δ2, which allows us to
complete the proof. �

Remark 3. In the special case where � = |V|, d = dL2 , and f is polynomial, this shows that we
have ‘small’ perturbation error in the Hellinger distance even with ‘large’ kernel perturbations
up to order (

√|V| polylog (|V|))−1, even though the sample space is |V|-dimensional and the
mixing time is about |V|. In other words, compared with generic bounds such as [30, 38]
as summarized in our simple heuristic bound (6), our Assumption 4 allows for much larger
perturbations.

Remark 4. (Prototypical verification of Assumption 3.) We recall that most papers in the per-
turbation theory literature (e.g. [16, 30, 32, 38]) assume (i) upper bounds on the difference
d(Q, K) between the kernels of interest, and (ii) lower bounds on some notion of convergence
rate λ(Q|S) (such as the spectral gap) for one of the kernels. When using these bounds to verify
Assumption 3, it is not enough to have bounds of this sort for the Markov chain as a whole.
However, in the typical applications of these results, we expect these bounds to come from
slightly stronger bounds, and these will be enough to verify Assumption 3.

First, the bound on d(Q, K) is typically achieved as a consequence of a bound on
supS d(Q|S, K|S). Second, for ‘rapidly mixing’ spin systems, we expect that λ(Q|S) ≈ 1/|S|
scales nicely with the size of S, and we assume the bounds of this sort are achievable. Then, in
order to satisfy Assumption 3, it suffices to estimate

d(μ|S, ν|S) � d(Q,K)

max{λ(Q|S), λ(K|S)} � |S| supS d(Q|S,K|S),

where the first inequality can be directly derived by the usual perturbation theory of [16, 30,
32, 38]. Consequently, in practical applications, we require that supS d(Q|S,K|S) meets the
condition in Assumption 4, namely supS d(Q|S,K|S) ≤ C4/(

√
�f ( log �)).

Of course, these assumptions are not easy to verify in most situations. Our point is
that the assumptions in all perturbation papers can be hard to verify, and that verifying our
Assumption 3 is not much harder than verifying the bounds common to the rest of the usual
perturbation-theory literature. The only real change is that our bounds are assumed to scale in
a certain ‘typical’ way with the size of the system.

Remark 5. There exists an implicit trade-off between Assumptions 3 and 4 that is captured by
the number � of partitions. The local perturbation bound, on the one hand, can be more easily
estimated within a relatively small restricted region, which corresponds to fewer conditional
dependencies and a larger �. On the other hand, a smaller number of partitions allows for a
greater permissible perturbation between transition kernels. Our theorem states that, given that
the maximal degree of dependencies between vertices is fixed, as the number of vertices (and
hence the number of partitions) in the graphical model increases, the perturbed Gibbs sampler
will converge to the original Gibbs sampler.
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5. Application to pseudo-marginal algorithms

The main goal of this section is to illustrate one way to design an algorithm for which
our perturbation result applies. As the example shows, this is not terribly difficult, but does
require some effort. Our main tool for designing an algorithm of the correct form is the pseudo-
marginal algorithm of [3].

Note that this worked example is meant only to illustrate how to design the overall MCMC
algorithm, given plug-in estimators for the likelihood. It is not meant to illustrate how to design
good plug-in estimators. The latter task is well-studied in the context of perturbed MCMC
chains, but the best estimators are often problem-specific and giving advice is beyond the
scope of the current paper. See, e.g., [35] for practical mainstream advice, largely based around
choosing good control variates.

The worked example in this section is based on the problem of inferring values sampled
from a latent hidden Markov random field given observations at each of its vertices. We
begin with the underlying hidden Markov random field. Throughout this section, denote by
G = (V, 
1) a factor graph associated with state space �= [q]V and Gibbs measure f with
factorization structure (4). Next, we define the distributions for the observations at each ver-
tex. Denote by {e�(i,·)}i∈[q] a family of distributions on [q], indexed by the same set [q]. For
each vertex v ∈ V , fix nv ∈N; this represents the ‘number of observations’ associated with
vertex v.

This data lets us define the joint distribution of a sample from the hidden Markov random
field and the associated observations. First, the latent sample from the hidden Markov random

field: σ ∼ f . Conditional on σ , sample independently the observations Zij
ind∼ e�(σ (i),·), j ∈ [ni].

This completes the description of the data-generating process. The usual statistical problem,
such as the image denoising problem [24], is to infer σ given the observed Z.

Given the independent observations Z = {zij}i∈V,j∈[ni] with Zi = {zij}j∈[ni], we denote the log-
likelihood of vertex i by φi(σ, Zi) =∑ni

j=1 �(σ (i), zij) and define
2 = {φi}. Note that our model
on the random variables (σ, Z) is then equivalent to a Markov random field on the larger vertex
set V ∪ {(i, j)}i∈V,j∈[ni] and with augmented collection of factors 
=
1 ∪
2. The associated
posterior distribution on the hidden σ given the observed Z is

μ(σ | Z) ∝ f (σ ) · exp

( ∑
φi∈
2

φi(σ, Zi)

)
.

When many values of ni are large, an exact evaluation of the likelihood is typically expen-
sive. A natural approach is to rely on a moderately sized random subsample of the data in each
step of the algorithm. Let a := (ai)i∈V ∈A be a vector of auxiliary variables with each element
ai a subset of [ni]; we think of this as corresponding to the subset of observations to include
when estimating φi(σ, Zi). Fix a probability distribution g on A of the form g(a) =∏

i∈V gi(ai).
We next define an estimator L̂φ(σ, a; Z) for each element φ ∈
:

L̂φ(σ, a; Z) =
{
φ(σ ), φ ∈
1,

(ni/|ai|)∑j∈ai
�(σ (i), zij), φ = φi ∈
2.

The associated approximate posterior distribution on the augmented space �×A is then

ν̂(σ, a | Z) ∝ g(a) exp

(∑
φ∈


L̂φ(σ, a; Z)

)
. (9)
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Algorithm 2 Step of alternating Gibbs sampler.

Require: Initial state (σ, a) ∈�×A, distribution g on A, and observations Z.
1: Sample variable index v ∼ Unif(V).

2: For i ∈ [q], calculate sa
i =∑

φ∈A[v] L̂φ(σv �→i, a; Z), and construct distribution p1 over
[q] according to p1(i) ∝ exp (sa

i ).

3: Sample k ∼ p1, and define η as

η(w) =
{

k, w = v,

σ (w), w = v.

4: Sample variable index v′ ∼ Unif(V), and choose two observations z1 ∼ Unif(av′ ) and
z2 ∼ Unif(nv′ \ av′ ).

5: For i ∈ {1, 2}, calculate lηi = L̂φv′
(
η, a(i)

v′ ; Z
)
, where a(1)

v′ = av′ and a(2)
v′ = av′ ∪ {z2} \

{z1}, and define distribution p2 over {1, 2} by p2(i) ∝ gv′
(
a(i)

v′
)

exp (lηi ).

6: Draw k ∼ p2, and let b = (bw) where

bw =
{

a(k)
v′ , w = v′,

aw, w = v′.

7: Return (η, b).

Algorithm 2 gives a step of an alternating Gibbs sampler that targets (9) in algorithmic form.
The process can be succinctly described as follows. It first performs Gibbs sampler K(a) on σ
targeting ν̂(σ | a, Z), and then conducts Gibbs sampler K(η) on a by updating one observation
in the subset of some vertex given updated configuration η from the previous step. This leads
to the alternating Gibbs sampler, denoted by K, which can be represented as K = K(a) · K(η).

Notably, Algorithm 2 gives a perturbed Gibbs sampler in the sense of Definition 2 (see
Remark 1(ii) for an explanation). Since g is a product measure on

∏
i∈V Ai,

ν(σ | Z) ∝
∫
A

g(a)
∏
φ∈


exp(L̂φ(σ, a; Z)) da

= f (σ ) ·
∫
A

g(a)
∏
φi∈
2

exp (L̂φi (σ, a; Z)) da

= f (σ ) ·
∏
φi∈
2

∫
Ai

( exp (L̂φi (σ, a; Z)) + log (gi(ai))) dai,

which is of the form (3). Moreover, it is obvious that f , μ(σ | Z), and ν(σ | Z) share the same
dependence structure since they only differ in the product terms related to φi ∈
2, which do
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not depend on other vertices except some single vertex. This ensures that if the prior f exhibits
a factorization structure as (4), then the same holds true for μ(σ |Z) and ν(σ |Z).

Remark 6. (The reason for such a small move on such a large augmented state space.) In
Algorithm 2, steps 4 to 6 involve swapping out a single element z1 from a single set av′ . It is
natural to ask: why not make a larger Gibbs move, perhaps regenerating all elements from av′
or perhaps even all elements from all such subsets?

In principle, it is straightforward to write down an algorithm that would do this. However,
even regenerating a single set av′ would require an enormous amount of work – the analogue

of the distribution p2 in step 5 would have support on a set of size
( nv′

|av′ |
)

rather than 2.

Unless |av′ | = 1, this grows much more quickly than the cost of simply keeping the full set of
observations at all times.

Conversely, updating a single entry as we do in steps 4–6 can be very quick. In the extreme
case that p2 is always uniform, standard results from [23] on the mixing time of a Gibbs
sampler on the hypercube indicate that av′ can be resampled in O(nv′ log (nv′)) steps, regardless
of av′ .

While this paper is not focused on providing ‘near-optimal’ perturbed algorithms, this
choice allows us to provide an algorithm that has reasonable performance in the regime of
interest.

5.1. Worked example: A tree-based Ising model

In the context of the above Gibbs samplers, we show that it is possible to apply Theorem 2
to a particular family of graphs and distributions f , �. This amounts to verifying Assumption 1,
since (as noted immediately after they are stated) Assumption 2 holds for d = dL2 and it is
straightforward to force Assumptions 3 and 4 by choosing a sufficiently good approximate
likelihood L̂ and sufficiently large subsamples.

Unless otherwise noted, we keep the notation used throughout Section 5.

Example 4. (Tree-based Potts model.) Fix n ∈N and q ∈N+. Let Tn = T = (V, E) be the usual
depth-n binary tree with

∑n
j=0 2j vertices, labelled as in Figure 1.

Each vertex takes a value in [q]. We take the prior distribution f on �= [q]V as the
Gibbs measure of the Potts model associated with fixed inverse temperature β ∈ (0,∞): each
configuration σ ∈� is assigned a prior probability

f (σ ) ∝ exp

(
β

∑
(v,w)∈E

ψ(|σ (v) − σ (w)|)
)
,

where ψ is a monotonic decreasing function. Given a configuration σ ∈�, we have the set of
observations Z = {Zij : i ∈ V, j ∈ [ni]}, where each observation Zij takes a value in [q] and

P{Zij = a | σ (i) = b} ∝ exp(−g(|a − b|)),

where g is a monotonic increasing function.

The remainder of this section is an analysis of Example 4.

Remark 7. (The reason for the subsample.) We note that the fraction ik = (1/ni)
∑ni

j=1 1Zij=k

of observations at node i with label k ∈ [q] are sufficient statistics for this model. In this setting,
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FIGURE 1. Tree structure of the Potts model.

it is natural to simply precompute the sufficient statistics, so it might be surprising to see an
algorithm based on subsampling.

We give two replies. The minor answer is that this is primarily a pedagogical example
– the proofs for simple exponential models are shorter and simpler than the proofs for more
complicated ones.

The main answer is that this is one (of many) situations in which sufficient statistics may
not be helpful. In the regime that the number ni of observations per vertex is small compared
to the number of allowed values q, the dimension of the sufficient statistics is larger than that
of the original data vector. Consequently, storing and computing with these sufficient statistics
does not simplify the process compared to using the original data. However, in this regime, our
subsampling-based algorithm can still provide useful speedups. (In practice, we would use a
sparse data structure, and this could give a very small speedup. This has essentially no impact
on the conclusions of the remark.)

Recall that the log-likelihood of observations on node i is denoted by

φi(σ, Zi) =
∑
j∈[ni]

�(σ (i), zij) ∝ −
∑
j∈[ni]

g(|σ (i) − zij|).

The posterior distribution on � is

μ(σ | Z) ∝ f (σ ) · exp

(∑
i∈V

φi(σ, Zi)

)

∝ exp

(
β

∑
(v,w)∈E

ψ(|σ (v) − σ (w)|) −
∑
i∈V

∑
j∈[ni]

g(|σ (i) − zij|)
)
,

which is essentially the Gibbs measure of the generalized Potts model with some external field.
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Due to the tree structure of the graph, it is easy to check that μ(σ |Z) factorizes as

μ(σ | Z) =μ|x00 (σ ) ·
n∏

i=1

2i−1∏
j=1

1∏
k=0

μ
∣∣σ |xi−1,j
xi,2j−k

(σ ), (10)

where

μ
∣∣σ |xi−1,j
xi,2j−k

(σxi,2j−k �→a) ∝ exp

(
βψ(|a − σ (xi−1,j)| −

∑
j∈[nxi,2j−k ]

g(|a − zxi,2j−k,j|))
)

.

Hence, in this example we take {Si} as an enumeration of the vertices of T and take Si ∪�i as
the vertex Si and its parent. Correspondingly, � =∑n

j=0 2j.
Say that a sequence of vertices γ1, . . . , γk ∈ V is a path if (γi, γi+1) ∈ E for each i ∈ [k − 1].

In view of the factorization structure of (10), we make the following observation.

Proposition 1. Fix a path γ1, γ2, . . . , γk in the tree T. Sample σ, Z as in Example 4. Then,
conditional on Z, the sequence σ (γ1), σ (γ2), . . . , σ (γk) is a (time-inhomogeneous) Markov
chain.

This lets us check the following.

Lemma 2. Fix a path γ1, γ2, . . . , γk in the tree T. Sample Z as in Example 4. Then sample
σ (+) (respectively σ (−)) from the distribution in Example 4, conditional on both (i) the value Z
and (ii) the value σ (+)(γ1) = 1 (respectively σ (−)(γ1) = q). If 0 ≤ψ ≤ α1 and 0 ≤ g ≤ α2, then

dTV(L(σ (+)(γj), . . . , σ
(+)(γk)),L(σ (−)(γj), . . . , σ

(−)(γk))) ≤ (1 − εβ )j−1,

where εβ = e−(3α1β+α2n).

Proof. To simplify the notation, let Xt = σ (+)(γt+1) and Yt = σ (−)(γt+1). We couple these
according to the greedy coupling from Definition 1 and let τ = min{t : Xt = Yt} be the usual
coupling time.

For j ≥ 1, we can calculate

P(τ = j | τ > j − 1) = P(Xj = Yj | Xj−1 = Yj−1)

= 1 − P(Xj = Yj | Xj−1 = Yj−1)

≥ min
a,b∈[q]

(
1 − dTV

(
μ
∣∣σ (+)|γj
γj+1

(
σ (+)
γj→a | Z

)
, μ
∣∣σ (−)|γj
γj+1

(
σ

(−)
γj→b | Z

)))
≥ min
σ∈� min

a,b∈[q]
(1 − dTV(μ(σγj �→a | Z), μ(σγj �→b | Z))),

where the penultimate line follows by the optimal coupling between the distributions of times
after j, and the last inequality comes from looking at the worst-case scenario regarding the
values of the neighbors of γj+1 excluding γj. Noting that each vertex in the tree has degree at
most 3, 0 ≤ψ ≤ α1, and 0 ≤ g ≤ α2, we have

e−(3α1β+α2n) ≤ μ(σγj �→a | Z)

μ(σγj �→b | Z)
≤ e3α1β+α2n.

Applying Lemma 3 from Appendix B,

P(τ = j | τ > j − 1) ≥ 1 − 1 − e−(3α1β+α2n)

1 + e−(3α1β+α2n)
= 2e−(3α1β+α2n)

1 + e−(3α1β+α2n)
≥ εβ .
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Continuing by induction on j, this yields P(τ > t) ≤ (1 − εβ )t for t> 0. In view of the property
that Xs = Ys for all s> j if Xj = Yj, the claim then follows from the standard coupling inequality
(see [23, Theorem 5.4]). �

Note that the boundary of Br(Sj ∪�j) in the tree T has at most 2r+1 vertices, which implies
that there are at most 2r+1 paths starting from Sj ∪�j to the boundary. Denote by τglobal the
global coupling time of the boundary. In view of the union bound and Lemma 2,

P{τglobal > r} ≤ 2r+1 · P{τ > r} ≤ 2[2(1 − εβ )]r.

Thus, as long as 1 − εβ <
1
2 , considering the optimal coupling again yields that the influ-

ence of the perturbation decays exponentially fast with the distance from the support of the
perturbation. That is,

dTV

(
μ
∣∣σ |Bc

r (Sj∪�j)

Sj∪�j
, ν
∣∣η|Bc

r (Sj∪�j)

Sj∪�j

)
≤ 2e− log [2(1−εβ )]−1r.

By virtue of the relationship (2), the decay-of-correlation Assumption 1 holds for C1 = 2 and
m = 1

2 log [2(1 − εβ )]−1.
Suppose that we apply an alternating Gibbs sampler as outlined in Algorithm 2 to sample

from the posterior distribution. Let Q and K be the transition matrices of the classical Gibbs
sampler and its approximate pseudo-marginal version, respectively. For simplicity, we denote
by K((σ, a), ·)|Br(Sj∪�j) the transition kernel of σ restricted to the region Br(Sj ∪�j), and omit
the superscript for the configuration values conditioned on Bc

r(Sj ∪�j) in the perturbation
bounds below.

Since the state space in our setting is finite, Q|Br(Sj∪�j) is always strongly ergodic with some
positive constant ρj. Let ρ = maxj∈[�] ρj. Then an immediate consequence of Theorem 1 is

dL2(μ)(μ|Sj∪�j , ν|Sj∪�j )

≤ dL2(μ)(μ|Br(Sj∪�j), ν|Br(Sj∪�j))

� 1

1 − ρ
sup(σ,a)∈�×A d(Q|Br(Sj∪�j)(σ, ·),K((σ, a), ·)|Br(Sj∪�j))

≤ 1

1 − ρ
supj∈[�] sup(σ,a)∈�×A d(Q|Br(Sj∪�j)(σ, ·),K((σ, a), ·)|Br(Sj∪�j)).

Note that we can replace ρ ∈ (0, 1) with ρ = 1 − 1/C3r2 where C3 is a finite constant, which
gives

dL2(μ)(μ|Sj∪�j , ν|Sj∪�j )

≤ Mr2 supj∈[�] sup(σ,a)∈�×A d(Q|Br(Sj∪�j)(σ, ·),K((σ, a), ·)|Br(Sj∪�j)).

Suppose that the observation subset ai ⊂ [ni] of each vertex i is close enough to the entire set
[ni] such that, for a positive constant C4 <∞,

supj∈[�] sup(σ,a)∈�×A d(Q|Br(Sj∪�j)(σ, ·),K((σ, a), ·)|Br(Sj∪�j)) ≤ C4√
� log �

.

For any fixed δ > 0, let D = √
δ/(2C3C4). Then our Theorem 2 ensures that, for all � ≥

max{2, (4/δ)1/(mD−0.5)}, we have dH(μ(�), ν(�)) ≤ δ.
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6. Conclusions and open questions

Under very generic conditions, it is well known that the stationary measures of two Markov
chains P, Q are ‘close’ as long as the distance between P, Q is ‘small’ compared to some
notion of the convergence rate of P or Q. The main conclusion of this paper is that much larger
perturbations, of size roughly the square root of the convergence rate, are possible under certain
conditions (which we think of as being related to a sort of approximate spatial independence).
Furthermore, by looking at simple examples such as random walk on the hypercube, we can
see that this ‘square-rooting’ is essentially optimal.

Our work leaves a number of open questions, and we describe the two that seem most impor-
tant to us. The first is related to the following assumption: P, Q must have stationary measures
that are both exactly Gibbs measures, with common factorization (4). This assumption was
used in order to apply the exact summation formula (7), and feels (to us) rather unsatisfying.
Our intuition, previous work on related problems [11], and some pen-and-paper calculations
for specific examples all suggest that a weaker form of spatial mixing or approximate inde-
pendence should be sufficient. One approach to tackling this problem would be to prove an
approximate version of (7). Obtaining some generalization appears to be straightforward, but
we don’t have any conjectures about the best generalization.

Although we find this assumption unsatisfying, we should note that it is not terribly difficult
to achieve in most applications. Perturbation bounds are most often used for either Markov
chains that come from statistical algorithms or for those coming from physical models. In
the former case, the algorithm designer can create Markov chains that satisfy this assump-
tion. In both cases, the most natural perturbed Markov chains seem to satisfy this condition
already.

Our other main question is: how can and should we force Assumption 4 to hold for Markov
chains designed for statistical computing? Our paper does include an initial answer to this
question – as we pointed out, it is typically easy to force Assumption 4 to hold when design-
ing an algorithm. For example, in Example 4 we can force the assumption to hold by using a
sufficiently high subsampling rate (we can prove this works by a standard application of a con-
centration inequality). Some early papers on perturbation bounds and subsampling in MCMC
suggested that this sort of answer was ‘good enough’ – getting a perturbation bound for some
subsampling rate was enough. However, as was pointed out in [5] and other sources, many
naive subsampling algorithms have very bad performance if the subsampling rate is chosen
on the basis of perturbation estimates. It is now widely known that naive subsampling algo-
rithms typically do not give performance improvements if the subsampling rate is large enough
for standard perturbation-style bounds to apply [5, 18, 31, 39]. While our results do allow for
much larger perturbation errors, it is straightforward to check that a qualitatively similar con-
clusion often holds in the context of our paper as well. This is the main reason that we have
not included a careful analysis of the quantitative tradeoff between the per-step cost of an algo-
rithm and the minibatch size required by Assumption 4: we know that, for naive minibatch
algorithms, the tradeoff would be quite poor.

Fortunately, all is not lost. While perturbation bounds often give qualitatively poor estimates
for naive subsampling algorithms, the recent survey [39] describes many examples for which
more sophisticated algorithms can be satisfactorily analyzed with perturbation methods. A
natural next step would be to choose an algorithm of this sort and compare the subsampling
rate required by standard perturbation estimates and those required by our work. Back-of-the-
envelope calculations suggest that, when existing perturbation bounds provide useful estimates
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for a reasonable subsampling rate, our bounds will provide useful estimates for a much lower
(and thus computationally cheaper) subsampling rate.

Appendix A. Proof sketches for Example 2

We give short proof sketches for the four claims in Example 2, in order.

Claim 1. The distances between kernels is dTV(Q,K) ≈ Cn/n.

Proof. Since Q(i, ·),K(i, ·) are supported on at most three points, this is a straightfor-
ward calculation. For i = n, dTV(Q(i, ·),K(i, ·)) = 2ε≈ Cn/n. For i = n a similar calculation
holds. �

Claim 2. The mixing times are τmix(Q) ≈ n, τmix(K) � n/Cn.

Proof. Note that there is a monotone coupling of two walks Xt, Yt ∼ Q with Xt started at
X0 = n and Yt started at any point Y0. That is, it is possible to couple these chains so that
Xt ≥ Yt for all t.

Given such a monotone coupling, a standard coupling argument says that

τmix ≤ 4E[ min{t : Xt = n}].
Since Q is the standard simple random walk with drift, it is well known that E[ min{t : Xt =
n}] ≈ n. This gives the upper bound τmix(Q) � n. To get the matching lower bound, first note
that any walk Xt ∼ Q must satisfy |Xt − Xt+1| ≤ 1 for all t. Thus, for t< n/2,

dTV(Qt(n, ·), μ) ≥μ([0, n/3]).

Applying Claim 3 completes the proof that τmix(Q) � n.
Next, we analyze the mixing time of K. The lower bound is very similar to the lower bound

on Q. Let Yt ∼ K be a chain started at Y0 = 0 and let τ (n) = min{t : Yt = n}. For t< n/2, we
have

dTV(Kt(0, ·), ν) ≥ P[τ (n)> t] · ν([2n/3, n]) = (1 − ε)t · ν([2n/3, n]).

Considering t< (n log 4)/Cn and applying Claim 4 to the second term completes the proof that
τmix(K) � n/Cn. �

Claim 3. The stationary distribution μ of Q assigns probability μ([0, n/3]) → 1 as n → ∞.

Proof. We recognize that Q is obtained by taking a simple birth-and-death chain and insert-
ing a holding probability of 1

2 at each step. Thus, we can use the standard exact formula for the
stationary measure of a birth-and-death chain to check this. �

Claim 4. The stationary distribution ν of K assigns probability ν([2n/3, n]) → 1 as n → ∞.

Proof. Let Xt be a Markov chain drawn from K, and let τk+1 = min{t> τk : Xt = n}
represent the successive times at which the chain hits n. We assume X0 = n and set τ0 = 0.

Define δj = τj − τj−1 as the times between successive visits to n. We note that δj, j ≥ 1, are
independent and identically distributed. Let Sk = |{τk ≤ t< τk+1 : Xt < 2n/3}| be the amount
of time between τk and τk+1 that the chain spends below 2n/3. By the strong law of large
numbers,

ν([0, 2n/3)) = lim
K→∞

∑K
k=1 Sk∑K
k=1 δk

= limK→∞ (1/K)
∑K

k=1 Sk

limK→∞ (1/K)
∑K

k=1 δk
= E[S1]

E[δ1]
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holds almost surely. On the one hand, since there is a probability ε of teleportation at each time
step, we have E[S1] ≤ 1/ε. On the other hand, when hitting the state below 2n/3, the chain
must have spent at least n/3 time steps above 2n/3. This leads to E[δ1] ≥ n/3. Putting this
together, we have

ν([0, 2n/3)) = E[S1]

E[δ1]
≤ 1/ε

n/3
= 3

Cn
,

which goes to 0 as long as Cn → ∞. �

Appendix B. Short calculation on TV distances

Lemma 3. Fix 0< r< 1 and let μ, ν be two distributions on {−1,+1} satisfying

r ≤ μ(x)

ν(x)
≤ r−1

for x ∈ {−1, 1}. Then

dTV(μ, ν) ≤ 1 − r

1 + r
.

Proof. By symmetry, the worst-case pair μ, ν must satisfy μ( + 1) = ν( − 1) = δ and
μ( − 1) = ν( + 1) = 1 − δ for some 0< δ < 1

2 satisfying δ/(1 − δ) = r. Solving this for δ, we
have δ = r/(1 + r). Then the total variation distance is

dTV(μ, ν) = ν( + 1) −μ( + 1) = 1 − 2δ = 1 − r

1 + r
. �
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