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Let M be an Ahlfors n-regular Riemannian manifold such that either the Ricci
curvature is non-negative or the Ricci curvature is bounded from below together
with a bound on the gradient of the heat kernel. In the paper [IMRN, 2022, no. 2,
1245-1269] of Brazke–Schikorra–Sire, the authors characterised the BMO function
u : M → R by a Carleson measure condition of its σ-harmonic extension
U : M× R+ → R. This paper is concerned with the similar problem under a more
general Dirichlet metric measure space setting, and the limiting behaviours of BMO
& Carleson measure, where the heat kernel admits only the so-called diagonal upper
estimate. More significantly, without the Ricci curvature condition, we relax the
Ahlfors regularity to a doubling property, and remove the pointwise bound on the
gradient of the heat kernel. Some similar results for the Lipschitz function are also
given, and two open problems related to our main result are considered.
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2 B. Li, J. Li, Q. Lin, B. Ma and T. Shen

1. Introduction

The Carleson measure ν on R
n+1
+ , meaning that

|||ν||| = sup
B(xB ,rB)⊂Rn

ν(B(xB , rB) × (0, rB))
|B(xB, rB)| < ∞,

as its name implies, was introduced by Carleson in the 1950s. This measure captures
essential orthogonality properties and exploits properties of extension of a function
on the upper half-space. There exists a natural and deep connection between Car-
leson measure and bounded mean oscillation function (BMO function for short);
indeed, a measure derived from some function is Carleson if and only if the under-
lying function is in BMO. In his ground-breaking paper, Fefferman [14] announced
that, a function u belongs to BMO space if and only if its Poisson integral (also
called harmonic extension) U(x, t) = e−t

√−Δu(x) satisfies the following Carleson
measure condition

sup
B(xB ,rB)

1
|B(xB , rB)|

ˆ rB

0

ˆ
B(xB ,rB)

|t∇(x,t)U(x, t)|2dx
dt

t
� C < ∞, (1.1)

where ∇(x,t) = (∇x, ∂t) denotes the total gradient. This Poisson integral is effec-
tively to solve the Dirichlet problem for the Laplace equation on R

n+1
+ , i.e., one

obtains U(x, t) = e−t
√−Δu(x) as the solution to{

ΔU(x, t) + ∂2
t U(x, t) = 0, ∀x ∈ R

n, t > 0,

U(x, 0) = u(x), ∀x ∈ R
n.

For more related works on BMO function and Carleson measure, we refer the reader
to [5, 6, 10, 11, 13, 20, 22, 24, 27–29, 32, 33] and their references therein. On the
other hand, to define the fractional powers of the Laplacian (−Δ)σ in local form,
0 < σ < 1, Caffarelli-Silvestre [3] introduced the σ-harmonic extension⎧⎨

⎩ΔU(x, t) +
1 − 2σ

t
∂tU(x, t) + ∂2

t U(x, t) = 0, ∀x ∈ R
n, t > 0,

U(x, 0) = u(x), ∀x ∈ R
n.

They interpreted the function U satisfying the equation above as the σ-harmonic
extension of u to a fractional dimension 2 − 2σ, and proved that, up to a
multiplicative constant,

(−Δ)σu(x) = − lim
t→0

t1−2σ∂tU(x, t).

This means any fractional power of the Laplacian can be determined as an oper-
ator that maps a Dirichlet boundary condition to a Neumann-type condition via
the above extension problem. Later on, Brazke–Schikorra–Sire [2] considered the
boundary behaviour of the σ-harmonic extension. They characterised the BMO
function u : M → R by a Carleson measure condition of its σ-harmonic extension
U : M× R+ → R, where M is a complete path connected and Ahlfors regular man-
ifold without boundary, such that either the Ricci curvature is non-negative or the
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BMO functions & Carleson measures 3

Ricci curvature is bounded from below together with a pointwise bound on the
gradient of the heat kernel. However, since this pointwise bound fails already for
the elliptic operators (see [8, 23] for instance), a basic question arising from the
above discussions motivates our work:

• Question : Can we remove the pointwise bound on the gradient of the heat
kernel or the non-negative Ricci curvature condition on M?

In this paper, under a more general Dirichlet metric measure space setting, we
will provide a positive answer to the above question; see Theorem 2.2. More-
over, we equip the solution U and the trace u with some limiting conditions to
derive the relationship between vanishing Carleson measure and vanishing mean
oscillation function (CMO function for short); see Theorem 6.1. It is remark-
able that our method and technique in this paper are different from that of
Brazke–Schikorra–Sire. Their proofs lean heavily on the Ricci curvature condition,
the pointwise bound on the gradient of the heat kernel, the T (b)-theorem proved by
Hofmann–Mitrea–Mitrea–Morris, and so on. However our main tools are the space-
time conversion technology (see Lemma 3.2), the spectral theory (see Proposition
4.1), and the theory of the tent space (see the proof of Theorem 5.4). Therefore, our
conclusions can get rid of the Ricci curvature condition and the pointwise bound
on the gradient of the heat kernel, and are suitable for the Dirichlet metric measure
space setting; see the proof of Theorem 2.2 for more details.

The remainder of this paper will be as follows. In § 2, we collect some prelimi-
naries, state the main result (namely Theorem 2.2) that the relationship between
BMO and Carleson measure without the pointwise bound on the gradient of the
heat kernel, and pose two open problems related to the main result. In § 3, we first
establish the time derivative estimate of the σ-Poisson kernel, and then control the
spatial gradient of the σ-harmonic function by the time derivative part. § 4 provides
the L2-estimate of the square function by applying the spectral theory, and § 5 will
be devoted to the proof of Theorem 2.2. In § 6, we continue the line of § 5 to study
the σ-harmonic function with CMO trace. Some remarks are then presented in the
final section.

The letter C (or c) will denote a positive constant that may vary from line to
line but will remain independent of the main variables.

2. Main result

In this section, we first briefly describe our metric measure space settings; see
[15, 19, 31] for more details, and then state the main result about BMO and
Carleson measure; see Theorem 2.2. Finally, two open problems are considered.

2.1. Preliminaries

Suppose that M is a separable, connected, locally compact and metrisable space.
Let μ be a Borel measure that is strictly positive on non-empty open sets and finite
on compact sets. We consider a strongly local, closed, and regular Dirichlet form E
on L2(M, μ) with dense domain D ⊂ L2(M, μ) (see [15] or [19] for an accurate
definition). Suppose that E admits a ‘carré du champ’, which means that, for all
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f, g ∈ D , the measure-valued non-negative and symmetric bilinear form Γ(f, g) is
absolutely continuous with respect to the measure μ. In what follows, for simplic-
ity of notation, let 〈∇xf, ∇xg〉 denote the energy density dΓ(f, g)/dμ and |∇xf |
denote the square root of dΓ(f, f)/dμ. Assume that (M, μ, E ) is endowed with
the intrinsic (pseudo-)distance on M related to E , which is defined by setting

d(x, y) = sup {f(x) − f(y) : f ∈ Dloc ∩ C(M), |∇xf | � 1 a.e.} ,

where C(M) is the space of continuous functions on M. Suppose d is indeed a
distance and induces a topology equivalent to the original topology on M. As
a summary of the above situation, we will say that (M, d, μ, E ) is a complete
Dirichlet metric measure space.

Corresponding to such a Dirichlet form E , there exists an operator denoted by
ΔM (similar to the Laplacian), acting on a dense domain D(ΔM) in L2(M, μ),
D(ΔM) ⊂ W 1,2(M), such that for all f ∈ D(ΔM) and each g ∈ W 1,2(M),ˆ

X

ΔMf(x)g(x)dμ(x) = −E (f, g),

where W 1,2(M) is the Sobolev space equipped with the norm ([f ]2L2 + E (f, f))1/2

on the domain D . The ‘Laplacian’ ΔM is the infinitesimal generator of the heat
semigroup Ht = etΔM , t > 0. The heat semigroup {Ht}t>0 has an integral kernel
ht(x, y) (also called heat kernel), namely,{

(∂t − ΔM)ht(x, y) = 0, ∀x ∈ M, t > 0,

h0(x, y) = δy(x), ∀x ∈ M,

which is a non-negative measureable function on R+ ×M×M such that

etΔMf(x) =
ˆ
M

ht(x, y)f(y)dμ(y), ∀ f ∈ L2(M), t > 0;

see [31] for more details.
To state the main result, we impose some assumptions on the underlying space

and the heat kernel, define the σ-harmonic extension and introduce some function
classes.

Denote by B(x, r) the open ball with centre x and radius r, by V (x, r) its
volume μ(B(x, r)), and set λB(x, r) = B(x, λr) for each λ > 0. We suppose that
the measure μ is doubling, i.e., there exists a constant CD > 0 such that

V (x, 2r) � CDV (x, r) < ∞, ∀x ∈ M, r > 0. (2.1)

Note that the doubling property of μ implies there exists a constant n � 1 such
that

V (x,R) � CD

(
R

r

)n

V (x, r), ∀x ∈ M, 0 < r < R < ∞,

and the reverse doubling property holds on a connected space (cf. [21, Remark
8.1.15]), i.e., there exists a constant 0 < κ � n such that

V (x, r) � C
( r

R

)κ

V (x,R), ∀x ∈ M, 0 < r < R < ∞. (2.2)
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Obviously, the Ahlfors regular measure is doubling with n = κ.
Assume that the heat kernel ht(x, y) admits the so-called diagonal upper estimate

ht(x, x) � C

V (x,
√

t)
, ∀x ∈ M, t > 0. (2.3)

The conjunction of (2.1) and (2.3) is well understood: it is equivalent to a relative
Faber–Krahn inequality

λ1(Ω) � c

r2

(
V (x, r)
μ(Ω)

)γ

, ∃ γ > 0, (2.4)

for all balls B(x, r) in M and each open set Ω ⊂ B(x, r), where λ1(Ω) is the
smallest Dirichlet eigenvalue of ΔM in Ω; see [18] for more details. Under the
doubling conditon (2.1), the diagonal upper estimate (2.3) self-improves into a
Gaussian upper bound

ht(x, y) � C

V (x,
√

t)
exp

(
−d(x, y)2

ct

)
, ∀x, y ∈ M, t > 0; (2.5)

see [17, Theorem 1.1] for the Riemannian manifold case, and [9, Section 4.2] for
the metric measure space case. Due to some technical reasons, we also assume the
heat kernel ht(x, y) satisfies the Hölder condition of order θ (0 < θ � 1)

|ht(x, y) − ht(x, z)| � C

(
d(y, z)√

t

)θ

ht(x, y), ∀ d(y, z) <
√

t. (2.6)

On the other hand, note that the doubling property (2.1) together with the
L2-Poincaré inequality

( 
B

|f − fB|2dμ

)1/2

� CP rB

( 
B

|∇xf |2dμ

)1/2

, ∀ f ∈ W 1,2(B), (2.7)

where fB denotes the mean (or average) of f over B, implies that two sides Gaussian
bounds for the heat kernel (also called Li-Yau’s estimate), i.e., it holds

ht(x, y) ≈ 1
V (x,

√
t)

exp
(
−d(x, y)2

ct

)
, ∀x, y ∈ M, t > 0; (2.8)

see [31] for example. Moreover, the two-sided estimate above is equivalent to a
parabolic Harnack inequality for positive solutions to the heat equation; see [31].
Therefore, under the validity of (2.1) and (2.7), the heat kernel is Hölder continuous.

2.2. Relationship between BMO and Carleson measure

The σ-harmonic extension is defined as follows.

Definition 2.1. Let (M, d, μ, E ) be a complete Dirichlet metric measure space.
Given 0 < σ < 1, for every u ∈ L1(M, (1 + d(x, x0))−εV (x0, 1 + d(x, x0))−1dμ(x))
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with some x0 ∈ M and 0 < ε < min{2σ, κ/2}, its σ-harmonic extension U : M×
R+ → R is the solution to⎧⎨

⎩ΔMU(x, t) +
1 − 2σ

t
∂tU(x, t) + ∂2

t U(x, t) = 0, ∀x ∈ M, t > 0,

U(x, 0) = u(x), ∀x ∈ M.

This solution is formally given by

U(x, t) = Pσ
t u(x) =

1
Γ(σ)

ˆ ∞

0

(
t2

4s

)σ

exp
(
− t2

4s

)
esΔMu(x)

ds

s

=
1

Γ(σ)

ˆ ∞

0

sσe−se
t2
4s ΔMu(x)

ds

s
,

and explicitly one has

U(x, t) =
1

Γ(σ)

ˆ ∞

0

(
t2

4s

)σ

exp
(
− t2

4s

) ˆ
M

hs(x, y)u(y)dμ(y)
ds

s

=
ˆ
M

[
1

Γ(σ)

ˆ ∞

0

(
t2

4s

)σ

exp
(
− t2

4s

)
hs(x, y)

ds

s

]
u(y)dμ(y)

=
ˆ
M

pσ
t (x, y)u(y)dμ(y),

where P σ
t is the σ-Poisson operator and pσ

t (x, y) is its integral kernel.

The previous definition is not explicitly stated in [30] (see also [16]) but it is easy
to check that the semigroup approach automatically carries over to such a geometric
setting under very weak assumptions on the metric measure space; see [1] for the
Dirichlet case and [2] for the manifold case. Moreover, Brazke–Schikorra–Sire [2]
assume the boundary value u(x) is a smooth function with compact support to
ensure that its σ-harmonic extension U(x, t) is vanishing at infinity

lim
|(x,t)|→∞

U(x, t) = 0.

However, via a more elaborate analysis, we can substitute the integrability of u for
the smoothness.

We define the following semi-norms. Denote the usual BMO norm as

[u]BMO = sup
B

( 
B

|u − uB|2dμ

)1/2

< ∞.

Furthermore, let U(x, t) be the σ-harmonic extension of a function u(x) to the
upper half-space M× R+, and we introduce a notion of the Carleson measure

[U ]Car = sup
B

(ˆ rB

0

 
B

|t∇(x,t)U |2dμ
dt

t

)1/2

< ∞.

Above the two supremum are taken over all balls B in M.
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The following Theorem 2.2 is the main result of this paper.

Theorem 2.2. Let (M, d, μ, E ) be a complete Dirichlet metric measure space
satisfying the doubling condition (2.1). Assume that the heat kernel ht(x, y) admits
the diagonal upper estimate (2.3) and the Hölder continuity (2.6). If 0 < σ < 1, then
u is a BMO function if and only if U is a Carleson measure. Moreover, it holds

[u]BMO ≈ [U ]Car.

Remark 2.3. In 2017, Carron [4, Theorem 2.4] established that, if a manifold sat-
isfies a volume comparison condition, the relatively connected to an end condition,
and the Ricci curvature has quadratic decay, then the manifold satisfies the doubling
condition (2.1) and the heat kernel admits the diagonal upper estimate (2.3).

Remark 2.4. To the best of our knowledge, when (M, d, μ) = (Rn, | · |, dx),
Theorem 2.2 is new even for the second-order elliptic operator L = −divA∇, where
A = A(x) is an n × n matrix of real, symmetric, bounded measurable coefficients,
defined on R

n, and satisfies the ellipticity condition, i.e., there exist constants
0 < λ � Λ < ∞ such that, for all ξ ∈ R

n,

λ|ξ|2 � 〈Aξ, ξ〉 � Λ|ξ|2.
Moreover, as we do not need any curvature condition, our result can be applied to
different settings, such as Euclidean space with Muckenhoupt weight, Lie group of
polynomial growth, sub-Riemannian manifold; see [8, Section 7] for more details.

2.3. Two open problems

We pose two open problems related to Theorem 2.2.
Problem 1: As stated in [14], Fefferman in advance assumed the harmonic

function can represented as the Poisson integral of an initial value. Later on,
Fabes–Johnson–Neri [12] found that the Carleson measure condition actually char-
acterises all harmonic functions U(x, t) on R

n+1
+ with boundary value in BMO

space. They proved that a harmonic function U satisfies the Carleson measure
condition if and only if its trace u is a BMO function.

Inspired by [12], rather than assuming U = P σ
t u in advance, can we seek the

trace of the σ-harmonic function U? At this point we believe that the underlying
space (M, d, μ, E ) needs to satisfy the doubling condition (2.1) and support the
Poincaré inequality (2.7) (which is equivalent to Li-Yau’ estimate (2.8)); see [8] and
[22] for example.

Based on the arguments above, we pose that

Conjecture 2.5. Let (M, d, μ, E ) be a complete Dirichlet metric measure space
satisfying the doubling condition (2.1) and supporting the Poincaré inequality (2.7).
For every 0 < σ < 1, a σ-harmonic function U satisfies the Carleson measure
condition if and only if its trace u is a BMO function.

The proof of the necessity relies heavily on the structure of the elliptic equation
and the Poincaré inequality. The main difficulty lies in that the σ-harmonic func-
tion only satisfies a Hölder continuity condition (since t1−2σ is a Muckenhoupt
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8 B. Li, J. Li, Q. Lin, B. Ma and T. Shen

A2-weight) instead of smoothness or Lipschitz continuity. When σ = 1/2, we can
prove that such harmonic function enjoys Lipschitz regularity in the time direction;
see [22] and [25] for example. This together with the Carleson measure condi-
tion enables us to derive suitable control of the growth of the harmonic function.
Whereas σ �= 1/2, we do not know that how to establish L∞-estimate of t∂tU(x, t).
We look forward to proving the estimate

|t∂tU(x, t)| � C sup
B

(ˆ rB

0

 
B

|t∂tU |2dμ
dt

t

)1/2

� C[U ]Car

holds for all x ∈ M and t > 0.
Problem 2: In paper [13] (see also [24]), Fabes-Neri solved the Dirichlet problem

for the heat equation

−ΔV (x, t) + ∂tV (x, t) = 0

on the upper half-space. They characterised the caloric function (the solution to
the heat equation) by a parabolic Carleson measure condition

[V ]Car2 = sup
B

(ˆ r2
B

0

 
B

|√t∇xV |2dx
dt

t

)1/2

< ∞.

More precisely, they showed that a caloric function V satisfies the parabolic
Carleson measure condition if and only if its trace v is a BMO function.

In the setting of this paper, how to define the σ-heat equation? Note that a
W 1,2-function U : M× R+ → R is said to be σ-harmonic if it is the solution to the
elliptic equation

ΔMU(x, t) +
1 − 2σ

t
∂tU(x, t) + ∂2

t U(x, t) = 0

in the weak sense, namely, it holds
ˆ ∞

0

ˆ
M
〈∇xU,∇xΦ〉t1−2σdμdt +

ˆ ∞

0

ˆ
M

∂tU∂tΦt1−2σdμdt = 0

for all Lipschitz functions Φ on M× R+ with compact support, where the classical
product measure dμdt is replaced by the weighted measure t1−2σdμdt. Therefore the
σ-caloric function (the solution to the σ-heat equation) V : M× R+ → R should
be also understood in the weighted product measure t1−2σdμdt, namely, it holds

ˆ ∞

0

ˆ
M
〈∇xV,∇xΨ〉t1−2σdμdt −

ˆ ∞

0

ˆ
M

V ∂tΨt1−2σdμdt = 0

for all Lipschitz functions Ψ on M× R+ with compact support.
Inspired by [13], can we consider the Dirichlet problem for the σ-heat equation

−ΔMV (x, t) +
1 − 2σ

t
V (x, t) + ∂tV (x, t) = 0

on the upper half-space, and study the relationship between the σ-caloric function
and its trace?
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Based on the above arguments, we pose a conjecture related to the σ-heat
equation as follows.

Conjecture 2.6. Let (M, d, μ, E ) be a complete Dirichlet metric measure space
satisfying the doubling condition (2.1) and supporting the Poincaré inequality (2.7).
For every 0 < σ < 1, a σ-caloric function V satisfies the parabolic Carleson measure
condition

[V ]Car2 = sup
B

(ˆ r2
B

0

 
B

(|√t∇xV |2 + |t∂tV |2)dμ
dt

t

)1/2

< ∞

if and only if its trace u is a BMO function.

The parabolic Carleson measure condition in Conjecture 2.6 is different from that
in [13]. When (M, d, μ) = (Rn, | · |, dx), these two parabolic Carleson measure
conditions coincide with each other. The time derivative part t∂tV in our parabolic
Carleson measure condition is essential due to the complex structure of the parabolic
equation; see [26] for example.

3. σ-Poisson kernel estimates

In this section, we estimate the time derivative of the σ-Poisson kernel, and the
spatial gradient of the σ-harmonic function.

Proposition 3.1. For each integer k � 0, the σ-Poisson kernel satisfies

|tk∂k
t pσ

t (x, y)| � C(σ, k)
(

t

t + d(x, y)

)2σ 1
V (x, t + d(x, y))

, ∀x, y ∈ M, t > 0.

Proof. It follows from the σ-Poisson formula that

pσ
t (x, y) =

1
Γ(σ)

ˆ ∞

0

(
t2

4s

)σ

exp
(
− t2

4s

)
hs(x, y)

ds

s
.

Differentiating both sides of the identity with respect to t, using the basic inequality,
and invoking the Gaussian upper bound (2.5), we deduce that

|tk∂k
t pσ

t (x, y)| =
1

Γ(σ)

∣∣∣∣
ˆ ∞

0

tk∂k
t

((
t2

4s

)σ

exp
(
− t2

4s

))
hs(x, y)

ds

s

∣∣∣∣
� C(σ, k)

ˆ ∞

0

(
t2

s

)σ

exp
(
− t2

5s

)
hs(x, y)

ds

s

� C(σ, k)
ˆ ∞

0

(
t2

s

)σ

exp
(
− t2

5s

)
1

V (x,
√

s)
exp

(
−d(x, y)2

cs

)
ds

s

� C(σ, k)
ˆ ∞

0

(
t2

s

)σ 1
V (x,

√
s)

exp
(
− t2 + d(x, y)2

cs

)
ds

s

= C(σ, k)

{ˆ t2+d(x,y)2

0

+
ˆ ∞

t2+d(x,y)2

}
· · · ds

s
= I1 + I2.
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To estimate the local part I1, we conclude by the doubling condition (2.1) that

I1 =
ˆ t2+d(x,y)2

0

(
t2

s

)σ 1
V (x,

√
s)

exp
(
− t2 + d(x, y)2

cs

)
ds

s

� C

(
t

t + d(x, y)

)2σ 1
V (x, t + d(x, y))

ˆ 1

0

s−
n+2σ

2 exp
(
− 1

cs

)
ds

s

� C

(
t

t + d(x, y)

)2σ 1
V (x, t + d(x, y))

.

For the global part I2, there holds by the doubling condition (2.1) again that

I2 =
ˆ ∞

t2+d(x,y)2

(
t2

s

)σ 1
V (x,

√
s)

exp
(
− t2 + d(x, y)2

cs

)
ds

s

� C
1

V (x, t + d(x, y))

ˆ ∞

t2+d(x,y)2

(
t2

s

)σ ds

s

� C

(
t

t + d(x, y)

)2σ 1
V (x, t + d(x, y))

.

Collecting the three inequalities above leads to the desired result. �

Lemma 3.2. Given a σ-harmonic function U, then for each ball B = B(xB , rB)
⊂ M, it holds that

ˆ
T (B)

|t∇xU |2dμ
dt

t
� C

ˆ
T (2B)

(|U |2 + |t∂tU |2 + |t2∂2
t U |2)dμ

dt

t
,

where T (B) is the tent over the ball B, namely, T (B) = B × (0, rB).

Proof. Take a Lipschitz function ϕ on M with suppϕ ⊂ 2B such that ϕ = 1 on
B and |∇xϕ| � C/rB , and for each ε ∈ (0, rB), take a smooth function φε(t) on R

such that suppφε ⊂ (ε, 2rB), φε(t) = 1 on (2ε, rB), |∂tφε(t)| � C/ε for t ∈ (ε, 2ε),
|∂tφε(t)| � C/rB for t > rB . By repeating the Caccioppoli argument, we arrive at

ˆ
T (2B)

|ϕφεt∇xU |2dμ
dt

t

=
ˆ

T (2B)

〈∇xU, tϕ2φ2
ε∇xU〉dμdt
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=
ˆ

T (2B)

〈∇xU,∇x(tϕ2φ2
εU)〉dμdt −

ˆ
T (2B)

〈∇xU,U∇x(tϕ2φ2
ε)〉dμdt

=
ˆ

T (2B)

〈∇xU,∇x(t2σϕ2φ2
εU)〉t1−2σdμdt −

ˆ
T (2B)

2〈ϕφεt∇xU, φεUt∇xϕ〉dμ
dt

t

�
ˆ

T (2B)

∂t(t1−2σ∂tU)t2σϕ2φ2
εUdμdt

+
1
2

ˆ
T (2B)

|ϕφεt∇xU |2dμ
dt

t
+ 2

ˆ
T (2B)

|φεUt∇xϕ|2dμ
dt

t

=
ˆ

T (2B)

(
1 − 2σ

t
∂tU + ∂2

t U

)
tϕ2φ2

εUdμdt

+
1
2

ˆ
T (2B)

|ϕφεt∇xU |2dμ
dt

t
+ 2

ˆ
T (2B)

|φεUt∇xϕ|2dμ
dt

t
.

Using the fact |∇xϕ| � C/rB � C/t and employing the mean value inequality lead
to

ˆ
T (2B)

|ϕφεt∇xU |2dμ
dt

t
� C

ˆ
T (2B)

(|U |2 + |t∂tU |2 + |t2∂2
t U |2)dμ

dt

t
.

This combined with the monotonic converges theorem tells us

ˆ
T (B)

|t∇xU |2dμ
dt

t
= lim

ε→0

ˆ rB

2ε

ˆ
B

|t∇xU |2dμ
dt

t

� lim
ε→0

ˆ
T (2B)

|ϕφεt∇xU |2dμ
dt

t

� C

ˆ
T (2B)

(|U |2 + |t∂tU |2 + |t2∂2
t U |2)dμ

dt

t
,

which completes the proof. �

4. Square function estimate

By applying the spectral theory, we give the L2-estimate of the square function in
this section.

Proposition 4.1. Let U be a σ-harmonic function U with trace u. Then it holds
that

(ˆ ∞

0

ˆ
M

|t∇(x,t)U |2dμ
dt

t

)1/2

�
(

Γ(σ + 1/2)
Γ(σ)

+
√

2
2

)(ˆ
M

|u|2dμ

)1/2

.
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Proof. We only consider the spatial gradient part since the proof of the time part
is similar. It follows from the σ-Poisson formula and Minkowski’s inequality that

(ˆ ∞

0

ˆ
M

|t∇xU |2dμ
dt

t

)1/2

=

(ˆ ∞

0

ˆ
M

∣∣∣∣ 2
Γ(σ)

ˆ ∞

0

sσ+1/2e−s t

2
√

s
∇xe

t2
4s ΔMu

ds

s

∣∣∣∣
2

dμ
dt

t

)1/2

� 2
Γ(σ)

ˆ ∞

0

sσ+1/2e−s

(ˆ ∞

0

ˆ
M

∣∣∣∣ t

2
√

s
∇xe

t2
4s ΔMu

∣∣∣∣
2

dμ
dt

t

)1/2
ds

s

=
√

2Γ(σ + 1/2)
Γ(σ)

(ˆ ∞

0

ˆ
M

∣∣∣√t∇xetΔMu
∣∣∣2 dμ

dt

t

)1/2

.

By the self-adjointness of the heat semigroup, and the spectral theory, we arrive at

ˆ ∞

0

ˆ
M

∣∣∣√t∇xetΔMu
∣∣∣2 dμ

dt

t
=
ˆ ∞

0

〈t(−ΔM)e2tΔMu, u〉L2
dt

t

=
ˆ ∞

0

(ˆ ∞

0

tλe−2tλdEu,u(λ)
)

dt

t

=
ˆ ∞

0

(ˆ ∞

0

tλe−2tλ dt

t

)
dEu,u(λ)

=
1
2

ˆ
M

|u|2dμ.

Collecting the two inequalities above leads to the desired result. �

5. BMO and Carleson measure: proof of Theorem 2.2

In this section, we give the proof of Theorem 2.2 stated in § 2.

5.1. From BMO to Carleson measure

Lemma 5.1. Let (M, d, μ, E ) be a complete Dirichlet metric measure space satis-
fying the doubling condition (2.1). Assume that the heat kernel ht(x, y) admits the
diagonal upper estimate (2.3). For every 0 < σ < 1, if u is a BMO function, then
its σ-harmonic extension U : M× R+ → R is well-defined.

Proof. By the conservation property of the heat semigroup

P σ
t uB(x,t) =

1
Γ(σ)

ˆ ∞

0

sσe−se
t2
4s ΔMuB(x,t)

ds

s
= uB(x,t),
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the σ-Poisson upper bound (Proposition 3.1), and Hölder’s inequality, we arrive at

|U(x, t)| � |U(x, t) − uB(x,t)| + |uB(x,t)|

� C

ˆ
M

(
t

t + d(x, y)

)2σ |u(y) − uB(x,t)|
V (x, t + d(x, y))

dμ(y) + |uB(x,t)|

� C

ˆ
B(x,t)

(
t

t + d(x, y)

)2σ |u(y) − uB(x,t)|
V (x, t + d(x, y))

dμ(y)

+
∞∑

k=1

ˆ
B(x,2kt)\B(x,2k−1t)

· · · dμ(y) + |uB(x,t)|

� C

∞∑
k=0

1
4kσ

 
B(x,2kt)

|u(y) − uB(x,t)|dμ(y) + |uB(x,t)|

� C

∞∑
k=0

1
4kσ

k∑
i=0

 
B(x,2it)

|u(y) − uB(x,2it)|dμ(y) + |uB(x,t)|

� C[u]BMO

∞∑
k=0

k + 1
4kσ

+ |uB(x,t)|

� C[u]BMO + |uB(x,t)| < ∞,

which completes the proof. �

Remark 5.2. From the argument used in the above lemma, we see that, if u is a
BMO function, then

ˆ
M

|u(x)|
(1 + d(x, x0))εV (x0, 1 + d(x, x0))

dμ(x) � C(x0, ε) < ∞

for all x0 ∈ M and ε > 0.

Theorem 5.3. Let (M, d, μ, E ) be a complete Dirichlet metric measure space
satisfying the doubling condition (2.1). Assume that the heat kernel ht(x, y) admits
the diagonal upper estimate (2.3). For every 0 < σ < 1, if u is a BMO function,
then its σ-harmonic extension U is a Carleson measure. Moreover, there exists a
constant C > 0 such that

[U ]Car � C[u]BMO.

Proof. We follow the argument from [2, Proposition 4.1] without the Ahlfors regular
condition and the pointwise bound on the gradient of the heat kernel.

Fixed a ball B ⊂ M, we decompose

∇(x,t)U = ∇(x,t)U1 + ∇(x,t)U2 + ∇(x,t)U3,
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where Ui is the σ-harmonic extension of ui, respectively, given as⎧⎪⎨
⎪⎩

u1 = (u − uB)χ4B ,

u2 = (u − uB)(1 − χ4B),
u3 = uB.

It follows from the conservation property of the heat semigroup that

U3(x, t) =
1

Γ(σ)

ˆ ∞

0

sσe−se
t2
4s ΔMuB(x)

ds

s
= uB ,

and thus ∇(x,t)U3 = 0.
In view of Proposition 4.1, we have(ˆ rB

0

 
B

|t∇(x,t)U1|2dμ
dt

t

)1/2

�
(

1
V (xB , rB)

ˆ ∞

0

ˆ
M

|t∇(x,t)U1|2dμ
dt

t

)1/2

� C(σ)
(

1
V (xB , rB)

ˆ
M

|u1|2dμ

)1/2

= C(σ)
(

1
V (xB , rB)

ˆ
4B

|u − uB|2dμ

)1/2

� C(σ)[u]BMO.

It remains to estimate U2. In view of Lemma 3.2, we arrive at

(ˆ rB

0

 
B

|t∇(x,t)U2|2dμ
dt

t

)1/2

� C

(ˆ 2rB

0

 
2B

max
0�m�2

|tm∂m
t U2|2dμ

dt

t

)1/2

.

Denote by Bk, k ∈ N, the ball concentric around B but with radius 4k times the
radius of B. Since suppu2 ⊂ M\ 4B, we deduce from the σ-Poisson upper bound
(Proposition 3.1) that, for all x ∈ 2B,

max
0�m�2

|tm∂m
t U2(x, t)| � C

ˆ
M\4B

(
t

t + d(x, y)

)2σ |u(y) − uB|
V (x, t + d(x, y))

dμ(y)

� C
∞∑

k=2

ˆ
Bk\Bk−1

(
t

t + d(x, y)

)2σ |u(y) − uB|
V (x, t + d(x, y))

dμ(y)

� C
∞∑

k=2

ˆ
Bk\Bk−1

(
t

4krB

)2σ |u − uB|
V (xB , 4krB)

dμ

� C

∞∑
k=2

(
t

4krB

)2σ  
Bk

|u − uB|dμ.

By the triangle inequality and a telescoping sum, it holds that

 
Bk

|u − uB|dμ �
 

Bk

|u − uBk
|dμ +

k∑
i=1

|uBi−1 − uBi
| � C

k∑
i=1

 
Bi

|u − uBi
|dμ.
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Using Hölder’s inequality and the definition of BMO function, we have
 

Bk

|u − uB |dμ � Ck[u]BMO.

Consequently one has

max
0�m�2

|tm∂m
t U2(x, t)| � C

(
t

rB

)2σ

[u]BMO

∞∑
k=2

k

42kσ
= C

(
t

rB

)2σ

[u]BMO.

This implies

(ˆ rB

0

 
B

|t∇(x,t)U2|2dμ
dt

t

)1/2

� C

(ˆ 2rB

0

 
2B

max
0�m�2

|tm∂m
t U2|2dμ

dt

t

)1/2

� C

(ˆ 2rB

0

 
2B

(
t

rB

)4σ

[u]2BMOdμ
dt

t

)1/2

� C[u]BMO,

which, combined with the estimates of U1 and U3, concludes the proof of Theorem
5.3. �

5.2. From Carleson measure to BMO

Theorem 5.4. Let (M, d, μ, E ) be a complete Dirichlet metric measure space sat-
isfying the doubling condition (2.1). Assume that the heat kernel ht(x, y) admits the
diagonal upper estimate (2.3) and the Hölder continuity (2.6). For every 0 < σ < 1,
if the σ-harmonic extension U is a Carleson measure, then its trace u is a BMO
function. Moreover, there exists a constant C > 0 such that

[u]BMO � C[U ]Car.

To show Theorem 5.4, we need to introduce the definition of the H1-atom. An
L∞-function a(x) is called a H1-atom associated with a ball B = B(xB , rB) ⊂ M,
if it satisfies

(i) supp a ⊂ B;

(ii) [a]L∞ � V (xB , rB)−1;

(iii)
´
M adμ = 0.

The following lemma establishes the Calderón reproducing formula with respect
to the H1-atom.

Lemma 5.5. Let U, A : M× R+ → R be the σ-harmonic extension of u and a,
respectively. Then it holds

ˆ
M

uadμ =
1
σ

ˆ ∞

0

ˆ
M
〈t∇(x,t)U, t∇(x,t)A〉dμ

dt

t
.
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Proof. We first claim

lim
t→∞ |UA| = lim

t→∞ |Ut∂tA| = lim
t→∞ |At∂tU | = 0.

In fact, on the one hand, it follows from the σ-Poisson formula that

|U(x, t)| + |t∂tU(x, t)| � C

ˆ
M

(
t

t + d(x, y)

)2σ |u(y)|
V (x, t + d(x, y))

dμ(y)

� C

ˆ
M

tmin{2σ,κ/2}

(1 + d(x, y))min{2σ,κ/2}
|u(y)|

V (x, 1 + d(x, y))
dμ(y)

� C(x, σ, κ)tmin{2σ,κ/2}.

On the other hand, by the σ-Poisson formula again, the definition of the H1-atom,
and the reverse doubling property (2.2), we arrive at

|A(x, t)| + |t∂tA(x, t)| � C

ˆ
M

(
t

t + d(x, y)

)2σ |a(y)|
V (x, t + d(x, y))

dμ(y)

� C

V (x, t)

ˆ
B

|a(y)|dμ(y)

� C

V (x, 1)
t−κ

� C(x)t−κ.

Therefore, one has

lim
t→∞ |UA| � C lim

t→∞ tmin{2σ,κ/2}−κ = 0

and similarly

lim
t→∞ |Ut∂tA| = lim

t→∞ |At∂tU | = 0

as claimed.
Below we verify the Calderón reproducing formula. Employing the integration by

parts and using the above decay as t → ∞, we deduce thatˆ ∞

0

t2σ∂t(t1−2σ∂t(UA))dt = t2σt1−2σ∂t(UA)
∣∣∞
0

−
ˆ ∞

0

2σt2σ−1t1−2σ∂t(UA)dt

= (Ut∂tA + At∂tU))|∞0 − 2σUA|∞0
= − lim

t→0
(Ut∂tA + At∂tU) + 2σua

= − lim
t→0

t2σ(Ut1−2σ∂tA + At1−2σ∂tU) + 2σua

= C(σ)[u(−ΔM)σa + a(−ΔM)σu] lim
t→0

t2σ + 2σua

= 2σua,

where the second line from the bottom is due to the extension problem for the
fractional of −ΔM; see [1] and [30] for example. One may use the above identity,
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the integration by parts again, the vanishing properties of Ut∂tA and At∂tU at 0
and ∞, and the fact that U and A are σ-harmonic, to obtain

2σ

ˆ
M

uadμ = 2
ˆ ∞

0

ˆ
M
〈t∇(x,t)U, t∇(x,t)A〉dμ

dt

t
,

see also [2, Lemma 4.3]. This completes the proof. �

Remark 5.6. It is worth noting the proof of the above lemma is analogous to
that of [2, Lemma 4.3]. However, based on some new observations, we can provide
another proof. Indeed note that the structure of the elliptic equation. One obtains

ˆ ∞

0

ˆ
M
〈t∇(x,t)U, t∇(x,t)A〉dμ

dt

t
=
ˆ ∞

0

ˆ
M
〈t2σ∇(x,t)U,∇(x,t)A〉t1−2σdμdt

=
ˆ ∞

0

ˆ
M
〈∇(x,t)(t2σU),∇(x,t)A〉t1−2σdμdt

−
ˆ ∞

0

ˆ
M

U∂t(t2σ)∂tAt1−2σdμdt

= −2σ

ˆ ∞

0

ˆ
M

U∂tAdμdt,

and similarly

ˆ ∞

0

ˆ
M
〈t∇(x,t)U, t∇(x,t)A〉dμ

dt

t
= −2σ

ˆ ∞

0

ˆ
M

A∂tUdμdt.

Therefore, we arrive at

ˆ ∞

0

ˆ
M
〈t∇(x,t)U, t∇(x,t)A〉dμ

dt

t

= −σ

(ˆ ∞

0

ˆ
M

U∂tAdμdt +
ˆ ∞

0

ˆ
M

A∂tUdμdt

)

= −σ

ˆ
M

ˆ ∞

0

∂t(UA)dtdμ

= σ

ˆ
M

uadμ,

as desired.

Proof of Theorem 5.4. Step 1. We verify that, if a(x) is a H1-atom associated with
a ball B = B(xB , rB) ⊂ M, then its σ-harmonic extension A satisfies

∣∣∣∣
ˆ ∞

0

ˆ
M
〈t∇(x,t)U, t∇(x,t)A〉dμ

dt

t

∣∣∣∣ � C[U ]Car.
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One can write∣∣∣∣
ˆ ∞

0

ˆ
M
〈t∇(x,t)U, t∇(x,t)A〉dμ

dt

t

∣∣∣∣ �
ˆ ∞

0

ˆ
M

|t∇(x,t)U ||t∇(x,t)A|dμ
dt

t

=

{ˆ
T (4B)

+
∞∑

k=3

ˆ
T (2kB)\T (2k−1B)

}
· · · dμ

dt

t

=
∞∑

k=2

Ik.

For the term I2, it follows from Hölder’s inequality, the square function estimate
(Proposition 4.1) and the definition of the H1-atom that

ˆ
T (4B)

|t∇(x,t)U ||t∇(x,t)A|dμ
dt

t

�
(ˆ

T (4B)

|t∇(x,t)U |2dμ
dt

t

)1/2(ˆ
T (4B)

|t∇(x,t)A|2dμ
dt

t

)1/2

� CV (xB , 4rB)1/2[U ]Car

(ˆ
B

|a|2dμ

)1/2

� CV (xB , rB)[U ]Car[a]L∞

� C[U ]Car.

To estimate the term Ik, one may invoke the space–time conversion technology
(see the proof of Lemma 3.2) to obtain

ˆ
T (2kB)\T (2k−1B)

|t∇xA|2dμ
dt

t

� C

ˆ
T (2k+1B)\T (2k−2B)

max
0�m�2

|tm∂m
t A|2dμ

dt

t
. (5.1)

Below we claim that, for all (x, t) ∈ T (2k+1B) \ T (2k−2B) with k � 3,

max
0�m�2

|tm∂m
t A(x, t)| � C2−kθ

(
t

2krB

)2σ 1
V (xB , 2krB)

,

where 0 < θ � 1 as in (2.6). Indeed, from the σ-Poisson formula, it holds

max
0�m�2

|tm∂m
t A(x, t)| � C

ˆ ∞

0

(
t2

s

)σ

exp
(
− t2

5s

) ∣∣esΔMa(x)
∣∣ ds

s

= C

ˆ ∞

0

(
t2

s

)σ

exp
(
− t2

5s

) ∣∣∣∣
ˆ

B

hs(x, y)a(y)dμ(y)
∣∣∣∣ ds

s
.
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If d(y, xB) <
√

s, then by the cancellation condition of a(y)

∣∣∣∣
ˆ

B

hs(x, y)a(y)dμ(y)
∣∣∣∣ =

∣∣∣∣
ˆ

B

[hs(x, y) − hs(x, xB)]a(y)dμ(y)
∣∣∣∣

� C

ˆ
B

(
d(y, xB)√

s

)θ

hs(x, y)|a(y)|dμ(y),

where the last inequality is due to the Hölder continuity of the heat kernel (2.6).
Otherwise d(y, xB) � √

s, there holds from the Gaussian upper bound (2.5) that

∣∣∣∣
ˆ

B

hs(x, y)a(y)dμ(y)
∣∣∣∣ � C

ˆ
B

(
d(y, xB)√

s

)θ

hs(x, y)|a(y)|dμ(y).

Therefore an argument similar to the one used in Proposition 3.1 shows that

max
0�m�2

|tm∂m
t A(x, t)|

� C

ˆ ∞

0

(
t2

s

)σ

exp
(
− t2

5s

) ∣∣∣∣
ˆ

B

hs(x, y)a(y)dμ(y)
∣∣∣∣ ds

s

� C

ˆ ∞

0

(
t2

s

)σ (
d(y, xB)√

s

)θ

exp
(
− t2

5s

)ˆ
B

hs(x, y)|a(y)|dμ(y)
ds

s

� C

ˆ
B

(
d(y, xB)

t + d(x, y)

)θ (
t

t + d(x, y)

)2σ 1
V (x, t + d(x, y))

|a(y)|dμ(y),

which, together with

t + d(x, y) � c2krB

provided y ∈ B and (x, t) ∈ T (2k+1B) \ T (2k−2B) with k � 3, implies

max
0�m�2

|tm∂m
t A(x, t)| � C

ˆ
B

(
d(y, xB)

2krB

)θ (
t

2krB

)2σ 1
V (x, 2krB)

|a(y)|dμ(y)

� C2−kθ

(
t

2krB

)2σ 1
V (xB , 2krB)

ˆ
B

|a(y)|dμ(y)

� C2−kθ

(
t

2krB

)2σ 1
V (xB , 2krB)

as claimed. By substituting this estimate into (5.1), we obtain

ˆ
T (2kB)\T (2k−1B)

|t∇(x,t)A|2dμ
dt

t

� C

ˆ
T (2k+1B)\T (2k−2B)

max
0�m�2

|tm∂m
t A|2dμ

dt

t
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� C

ˆ 2k+1rB

0

ˆ
2k+1B

2−2kθ

(
t

2krB

)4σ 1
V (xB , 2krB)2

dμ
dt

t

� C2−2kθ 1
V (xB , 2krB)

.

This combined with Hölder’s inequality yields

Ik �
ˆ

T (2kB)\T (2k−1B)

|t∇(x,t)U ||t∇(x,t)A|dμ
dt

t

�
(ˆ

T (2kB)\T (2k−1B)

|t∇(x,t)U |2dμ
dt

t

)1/2

×
(ˆ

T (2kB)\T (2k−1B)

|t∇(x,t)A|2dμ
dt

t

)1/2

� C2−kθ

(ˆ 2krB

0

 
2kB

|t∇(x,t)U |2dμ
dt

t

)1/2

� C2−kθ[U ]Car.

Summing over k, we arrive at∣∣∣∣
ˆ ∞

0

ˆ
M
〈t∇(x,t)U, t∇(x,t)A〉dμ

dt

t

∣∣∣∣ � C[U ]Car.

Step 2. Let f be a finite linear combinations of the H1-atoms, namely,

f =
N∑

j=1

λjaj .

From the Calderón reproducing formula (Lemma 5.5) and the conclusion of Step
1, it follows that

∣∣∣∣
ˆ
M

ufdμ

∣∣∣∣ =
∣∣∣∣∣∣
ˆ
M

u

N∑
j=1

λjajdμ

∣∣∣∣∣∣
�

N∑
j=1

|λj |
∣∣∣∣
ˆ
M

uajdμ

∣∣∣∣
=

N∑
j=1

|λj | 1
σ

∣∣∣∣
ˆ ∞

0

ˆ
M
〈t∇(x,t)U, t∇(x,t)Aj〉dμ

dt

t

∣∣∣∣
� C[U ]Car

N∑
j=1

|λj |.

By taking the infimum over all admissible decompositions of f on the both sides
of the above inequality, and invoking the fact that the vector space of all finite
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linear combinations of the H1-atoms is dense in the Hardy space H1 = H1(M), we
conclude that, for any g ∈ H1(M),∣∣∣∣

ˆ
M

ugdμ

∣∣∣∣ � C[U ]Car[g]H1 .

From this and the H1-BMO dual theorem of Fefferman–Stein (see [7] for instance),
it follows that

[u]BMO = sup
[g]H1�1

∣∣∣∣
ˆ
M

ugdμ

∣∣∣∣ � C sup
[g]H1�1

[U ]Car[g]H1 � C[U ]Car,

which completes the proof. �

6. Limiting behaviours of BMO and Carleson measure

In this section we set a fixed reference point x0 in M.
Let us introduce the CMO function and the vanishing Carleson measure. A BMO

function u is said to be in CMO = CMO(M), the space of functions of vanishing
mean oscillation, if u satisfies the limiting conditions

γ1(u) = γ2(u) = γ3(u) = 0,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1(u) = lim
a→0

sup
B:rB�a

( 
B

|u − uB |2dμ

)1/2

;

γ2(u) = lim
a→∞ sup

B:rB�a

( 
B

|u − uB |2dμ

)1/2

;

γ3(u) = lim
a→∞ sup

B:B⊂B(x0,a)�

( 
B

|u − uB |2dμ

)1/2

.

A σ-harmonic function U with trace u is said to satisfy the vanishing Carleson
measure condition, if U is a Carleson measure, and satisfies the limiting conditions

β1(U) = β2(U) = β3(U) = 0,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1(U) = lim
a→0

sup
B:rB�a

(ˆ rB

0

 
B

|t∇(x,t)U |2dμ
dt

t

)1/2

;

β2(U) = lim
a→∞ sup

B:rB�a

(ˆ rB

0

 
B

|t∇(x,t)U |2dμ
dt

t

)1/2

;

β3(U) = lim
a→∞ sup

B:B⊂B(x0,a)�

(ˆ rB

0

 
B

|t∇(x,t)U |2dμ
dt

t

)1/2

.

Roughly speaking, the CMO function and the vanishing Carleson measure are the
BMO function and the Carleson measure, which satisfy the vanishing conditions,
respectively.
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Theorem 6.1. Let (M, d, μ, E ) be a complete Dirichlet metric measure space
satisfying the doubling condition (2.1). Assume that the heat kernel ht(x, y) admits
the diagonal upper estimate (2.3) and the Hölder continuity (2.6). If 0 < σ < 1, then
u is a CMO function if and only if U is a vanishing Carleson measure. Moreover,
it holds

[u]BMO ≈ [U ]Car.

Remark 6.2.

(i) Evidently, CMO(M) is a proper subspace of BMO(M) since it is the predual
of the Hardy space H1(M); see [7, Theorem 4.1].

(ii) When (M, d, μ) = (Rn, | · |, dx), the space CMO(Rn) is defined by the
closure in the BMO norm of the smooth function with compact support.

6.1. From CMO to Carleson measure

Theorem 6.3. Let (M, d, μ, E ) be a complete Dirichlet metric measure space
satisfying the doubling condition (2.1). Assume that the heat kernel ht(x, y) admits
the diagonal upper estimate (2.3). For every 0 < σ < 1, if u is a CMO function,
then its σ-harmonic extension U is a vanishing Carleson measure. Moreover, there
exists a constant C > 0 such that

[U ]Car � C[u]BMO.

Proof. By Theorem 5.3, we know

[U ]Car � C[u]BMO.

It remains to verify that U satisfies the three limiting conditions. We only consider
the last one since the proofs of the other two cases are similar. Fixed a ball B ⊂ M,
by the proof of Theorem 5.3, we see that

(ˆ rB

0

 
B

|t∇(x,t)U |2dμ
dt

t

)1/2

� C

∞∑
k=2

4−2kσ
k∑

i=1

( 
4iB

|u − u4iB |2dμ

)1/2

= C
∞∑

k=2

4−2kσ
k∑

i=1

ηi(u,B).

For any fixed integer i, it follows from γ2(u) = γ3(u) = 0 that

sup
B:B⊂B(x0,a)�

ηi(u,B) = sup
B:B⊂B(x0,a)�

( 
4iB

|u − u4iB |2dμ

)1/2
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� sup
B:B⊂B(x0,a)�

2irB<a/2

( 
4iB

|u − u4iB |2dμ

)1/2

+ sup
B:B⊂B(x0,a)�

2irB�a/2

( 
4iB

|u − u4iB |2dμ

)1/2

� sup
B:B⊂B(x0,a/2)�

( 
B

|u − uB |2dμ

)1/2

+ sup
B:rB�a/2

( 
B

|u − uB |2dμ

)1/2

→ 0

as a → ∞, and from the definition of BMO that

ηi(u,B) =
( 

4iB

|u − u4iB |2dμ

)1/2

� [u]BMO.

Therefore, we have

β3(U) = lim
a→∞ sup

B:B⊂B(x0,a)�

(ˆ rB

0

 
B

|t∇(x,t)U |2dμ
dt

t

)1/2

� C lim
a→∞ sup

B:B⊂B(x0,a)�

∞∑
k=2

4−2kσ
k∑

i=1

ηi(u,B)

= C lim
a→∞ sup

B:B⊂B(x0,a)�

{
K∑

k=2

+
∞∑

k=K+1

}
4−2kσ

k∑
i=1

ηi(u,B)

� C

K∑
k=2

4−2kσ
k∑

i=1

lim
a→∞ sup

B:B⊂B(x0,a)�
ηi(u,B) + C

∞∑
k=K+1

4−kσ[u]BMO

� C4−Kσ[u]BMO,

where the constant C is independent of K. As the positive integer K is arbitrary,
we derive that the last limiting condition β3(U) = 0 holds by letting K → ∞. The
proof is completed. �

6.2. From Carleson measure to CMO

Theorem 6.4. Let (M, d, μ, E ) be a complete Dirichlet metric measure space
satisfying the doubling condition (2.1). Assume that the heat kernel ht(x, y) admits
the diagonal upper estimate (2.3) and the Hölder continuity (2.6). For every
0 < σ < 1, if the σ-harmonic extension U is a vanishing Carleson measure, then
its trace u is a CMO function. Moreover, there exists a constant C > 0 such that

[u]BMO � C[U ]Car.
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Proof. By Theorem 5.4, we know

[u]BMO � C[U ]Car.

It remains to verify that u satisfies the three limiting conditions. Let f be a finite
linear combinations of H1-atoms, namely,

f =
N∑

j=1

λjaj .

From the Calderón reproducing formula (Lemma 5.5), and the conclusion of Step
1 in Theorem 5.4, it follows that

∣∣∣∣
ˆ
M

ufdμ

∣∣∣∣ =
∣∣∣∣∣∣
ˆ
M

u
N∑

j=1

λjajdμ

∣∣∣∣∣∣
�

N∑
j=1

|λj |
∣∣∣∣
ˆ
M

uajdμ

∣∣∣∣
=

N∑
j=1

|λj | 1
σ

∣∣∣∣
ˆ ∞

0

ˆ
M
〈t∇(x,t)U, t∇(x,t)Aj〉dμ

dt

t

∣∣∣∣
� C

∞∑
k=2

2−kθ

(ˆ 2krB

0

 
2kB

|t∇(x,t)U |2dμ
dt

t

)1/2 N∑
j=1

|λj |.

By taking the infimum over all admissible decompositions of f on the both sides of
the above inequality, and invoking the fact that the vector space of all finite linear
combinations of the H1-atoms is dense in the Hardy space H1(M), we conclude
that, for any g ∈ H1(M),

∣∣∣∣
ˆ
M

ugdμ

∣∣∣∣ � C
∞∑

k=2

2−kθ

(ˆ 2krB

0

 
2kB

|t∇(x,t)U |2dμ
dt

t

)1/2

[g]H1 .

This, combined with the H1-BMO dual theorem of Fefferman–Stein (see [7] for
instance), tells us that( 

B

|u − uB |2dμ

)1/2

� sup
[g]H1�1

∣∣∣∣
ˆ
M

ugdμ

∣∣∣∣
� C

∞∑
k=2

2−kθ

(ˆ 2krB

0

 
2kB

|t∇(x,t)U |2dμ
dt

t

)1/2

.

Therefore an argument similar to the one used in Theorem 6.3 shows that the
limiting conditions

γ1(u) = γ2(u) = γ3(u) = 0

hold, which completes the proof. �
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7. Final remarks

This paper will end by pointing out some further results. Since it is intended solely
as a brief review and not as a rigorous development, the pertinent results are stated
without proof.

For each α > 0, a function u on M is said to be Lipschitz of order α if it satisfies

[u]Lip(α) = sup
B�x,y

|u(x) − u(y)|
[μ(B)]α

,

where the supremum is taken over all balls B containing x and y. In fact, our
Theorem 2.2 is also valid for the Lipschitz function. To this end, let us introduce
the corresponding α-Carleson measure of U as follows:

[U ]Car(α) = sup
B

1
V (xB , rB)α

(ˆ rB

0

 
B

|t∇(x,t)U |2dμ
dt

t

)1/2

.

The following result is the Lipschitz version of Theorem 2.2.

Theorem 7.1. Let (M, d, μ, E ) be a complete Dirichlet metric measure space sat-
isfying the doubling condition (2.1). Assume that the heat kernel ht(x, y) admits
the diagonal upper estimate (2.3) and the Hölder continuity (2.6). If 0 < α < θ/n
and 0 < σ < 1, then u is a Lipschitz function of order α if and only if U is an
α-Carleson measure. Moreover, it holds

[u]Lip(α) ≈ [U ]Car(α).

When 0 < α < θ/n, the Lipschitz space Lip(α) = Lip(α)(M) coincides with the
Campanato space Cam(α) = Cam(α)(M) as follows:

[u]Cam(α) = sup
B

1
V (xB , rB)α

( 
B

|u − uB |2dμ

)1/2

,

which is the dual of Hardy space Hp(M) provided α = 1/p − 1; see [7] for example.
Note that Cam(0) = BMO. Therefore the Campanato norm [·]Cam(α) unifies the
BMO norm [·]BMO and the Lipschitz norm [·]Lip(α) by assigning different values to
α. Similar to the definition of CMO in § 6, we can introduce the vanishing BMO(α)
function and the vanishing α-Carleson measure, respectively. The details will be
omitted.

The following result is the Campanato version of Theorems 2.2 and 6.1.

Theorem 7.2. Let (M, d, μ, E ) be a complete Dirichlet metric measure space sat-
isfying the doubling condition (2.1). Assume that the heat kernel ht(x, y) admits the
diagonal upper estimate (2.3) and the Hölder continuity (2.6). If 0 � α < θ/n and
0 < σ < 1, then u is a (vanishing) Cam(α) function if and only if U is a (vanishing)
α-Carleson measure. Moreover, it holds

[u]Cam(α) ≈ [U ]Car(α).
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