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Abstract

We present a graph manifold analog of the Jankins–Neumann classification of Seifert
fibered spaces over S2 admitting taut foliations, providing a finite recursive formula to
compute the L-space Dehn-filling interval for any graph manifold with torus boundary.
As an application of a generalization of this result to Floer simple manifolds, we compute
the L-space interval for any cable of a Floer simple knot complement in a closed three-
manifold in terms of the original L-space interval, recovering a result of Hedden and
Hom as a special case.

1. Introduction

In the late 1990s, Thurston showed [CD03] that any taut foliation on an atoroidal three-manifold
M makes π1(M) act faithfully on the circle. This result came almost two decades after Eisenbud,
Hirsch, and Neumann [EHN81] encountered a complementary phenomenon: they proved that an
oriented three-manifold M Seifert fibered over S2 admits a co-oriented foliation transverse to
the fiber if and only if π1(M) admits a representation in ˜Homeo+S

1 sending φ 7→ sh(1), where
˜Homeo+S

1 is the universal cover of the group of orientation-preserving homeomorphisms of the

circle, φ is the regular fiber class, and sh(s) : t 7→ t + s for any s ∈ R, making ˜Homeo+S
1 the

centralizer of sh(1) in Homeo+R.

1.1 Jankins–Neumann classification
Inspired by this observation, Jankins and Neumann used Poincaré’s ‘rotation number’ invariant
to generalize the criterion of [EHN81] to a more local representation-theoretic condition in terms
of meridians of exceptional fibers. This new formulation of the problem, in addition to a correct

conjecture that the necessary representation-theoretic conditions could be met in ˜Homeo+S
1 if

and only if they could also be met in a smooth Lie subgroup thereof, allowed them to work out
a complete, explicit classification [JN85], which they proved in all but one special case, later
proven by Naimi [Nai94].

Theorem 1.1 [JN85, Nai94]. For n > 1, the manifold MS2(y0; y1, . . . , yn) Seifert fibered over S2

admits a co-oriented taut foliation if and only if 0 = y− = y+ or 0 ∈ 〈y+, y−〉, where

y− := max
k>0
−1

k

(
1 +

n∑
i=0

byikc
)
, y+ := min

k>0
−1

k

(
−1 +

n∑
i=0

dyike
)
.

(In the above, and henceforth in this paper, we always regard k as an integer, writing k > 0
as shorthand for the restriction k ∈ Z>0.)
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Since then, the Jankins–Neumann–Naimi classification has served as a Rosetta stone for
certain a priori unrelated properties.

Theorem 1.2 [EHN81, JN85, Nai94, CW11, OS04, LM04, LS07, BGW13, RR15]. If M is a
closed oriented Seifert fibered space, then the following are equivalent:

(1a) π1(M) admits a non-trivial representation in Homeo+R;

(1b) π1(M) is left-orderable;

(2) M admits a co-oriented C0 taut foliation;

(3) M has non-trivial Heegaard Floer homology, i.e. M fails to be an L-space.

One often uses (1a) as a proxy for (1b), since a result of Boyer, Rolfsen, and Wiest [BRW05,
Theorem 1.1.1], combined with the well-known fact [Lin99] that the set of countable left-orderable
groups coincides with the set of countable non-trivial subgroups of Homeo+R, shows that
(1a) = (1b) for every prime compact oriented three-manifold. Boyer, Gordon, and Watson have
conjectured that (1) = (3) for any prime compact oriented three-manifold [BGW13], and quite
recently, Kazez and Roberts [KR15], and independently Bowden [Bow15], have extended a C2

foliations result of Ozsváth and Szabó [OS04] to show that (2)⇒ (3) for any compact oriented
three-manifold. (For this reason, all foliations in this paper are assumed to be C0 unless otherwise
stated.)

The implication (3)⇒ (2), however, is entirely more mysterious. In particular, all known
proofs [LM04, LS07, RR15] that non-L-space oriented Seifert fibered spaces admit co-oriented
taut foliations rely on an explicit comparison of sets of manifolds: one works out the classification
of Seifert fibered manifolds over S2 with non-trivial Heegaard Floer homology, and observes that
this classification coincides with the Jankins–Neumann–Naimi classification of oriented Seifert
fibered spaces over S2 admitting co-oriented taut foliations. (The implication (3) ⇒ (2) holds
vacuously for closed oriented Seifert fibered spaces with b1 > 0, all of which admit co-oriented
taut foliations [Gab83], and for oriented Seifert fibered spaces over RP2, all of which are L-spaces
[BGW13].)

1.2 Graph manifolds
Boyer and Clay recently brought insight to this question by introducing a relative version of the
problem, studying the gluing behavior of properties (1a), (1b), and (2) along the incompressible
tori separating Seifert fibered components of graph manifolds. By showing that these three
properties glue in an identical manner along boundaries of JSJ components of rational homology
sphere graph manifolds, they were able to prove the equivalence of these three properties for any
closed graph manifold [BC14]. Boyer and Clay also conjectured that property (3) should obey
the same gluing behavior.

In answer, Hanselman and Watson [HW15], and independently Rasmussen and the author
[RR15], were able to confirm this gluing conjecture for a larger class of three-manifolds with
torus boundary, but subject to certain hypotheses, which one can show are safe to remove in the
case of graph manifolds. The four of us [HR15] were therefore able to prove the following.

Theorem 1.3 [HR15]. A graph manifold is an L-space if and only if it fails to admit a co-oriented
taut foliation.
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The current paper follows an independent trajectory from the work of [HR15], launched
before the author joined the other collaboration. Although the two papers overlap in one or two
results, including slightly variant proofs of Theorem 1.3 and the below gluing criterion, the main
result of the current paper is the generalization of the Jankins–Neumann classification formula
to graph manifolds, for which we now introduce some notation.

Definition 1.4. If Y is a compact oriented three-manifold with torus boundary, then the L-space
interval of Y is the space L(Y ) ⊂ P(H1(∂Y )) of L-space Dehn-filling slopes of Y.

We call L(Y ) an interval because if it contains more than one point, then it is the intersection
of P(H1(∂Y )) with either a closed interval in P(H1(∂Y ;R)) or the complement of a single point
in P(H1(∂Y ;R)). It therefore makes sense to speak of the interior L◦(Y ) of L(Y ). If L◦(Y ) is
non-empty, we call Y Floer simple.

Proposition 1.5. If Y1 and Y2 are non-solid-torus graph manifolds with torus boundary, then
the union Y1 ∪ϕY2, with gluing map ϕ : ∂Y1 → −∂Y2, is an L-space if and only if

ϕP
∗(L◦(Y1)) ∪ L◦(Y2) = P(H1(∂Y2)).

In particular, Floer simplicity is not required.
A graph manifold Y with torus boundary and b1(Y ) > 1 has L(Y ) = ∅. If b1(Y ) = 1, then

the graph for Y is a tree, and we choose to root this tree at the JSJ component Ŷ containing
∂Y . Writing Y1, . . . , YnG for the nG components of Y \(Ŷ \(∂Ŷ \∂Y )), we then regard Y as the
union

Y = Ŷ ∪ϕ
ng∐
i=1

Yi, ϕi : ∂Yi → −∂iŶ ,

with Ŷ Seifert fibered over an (ng + 1)-punctured S2 or RP2. Note that each Yi is again a graph
manifold with torus boundary and b1 =1, hence is endowed with its own tree graph rooted at the
JSJ component containing ∂Yi, but with the height of this tree strictly less than the height of
the tree for Y , so that a recursive computation of L(Y ) in terms of the L(Yi) is a finite process.

For any (necessarily toroidal) boundary component of an oriented Seifert fibered space, we
fix the reverse-oriented homology basis (f̃ ,−h̃), where h̃ is the meridian of the excised regular
fiber, and f̃ is the lift dual to h̃ of the regular fiber class, so that we can express any slope
rf̃ − sh̃ ∈ P(H1(∂Y )) as r/s ∈ Q ∪ {∞}. For any Yi with non-empty L(Yi), we then write

ϕP
i∗(L(Yi)) =:

{
[[ygi−, y

g
i+]], L◦(Yi) 6= ∅,

{ygi−} = {ygi+}, L◦(Yi) = ∅,

where we use the notation [[y−, y+]] ⊂ Q ∪ {∞} to denote the L-space interval with left-hand
endpoint y− and right-hand endpoint y+, since any L-space interval with non-empty interior is
uniquely specified by its endpoints.

We also write yd0 , . . . , y
d
nd

for the Seifert data of Ŷ , so that Ŷ is the complement of ng+1

regular fibers in either MS2(yd0 ; yd1 , . . . , y
d
nd

) or MRP2(yd0 ; yd1 , . . . , y
d
nd

), depending on whether Ŷ
has orientable or non-orientable base. (These ydi can also be regarded as Dehn-filling slopes in
terms of the basis (f̃di ,−h̃di ) described above. See § 2.2 for notation and homology conventions
for Seifert fibered spaces.) We can now state our main result.
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Theorem 1.6. Suppose that Y is not a solid torus and that L(Y ) is non-empty. Then

L(Y ) =


〈−∞,+∞〉, Ŷ has non-orientable base,

[[y−, y+]], Ŷ has orientable base, L◦(Y ) 6= ∅,

{y−} = {y+}, Ŷ has orientable base, L◦(Y ) = ∅,

where

y− := max
k>0
−1

k

(
1 +

nd∑
i=0

bydi kc+

ng∑
i=1

(
dygi+ke − 1

))
,

y+ := min
k>0
−1

k

(
−1 +

nd∑
i=0

dydi ke+

ng∑
i=1

(bygi−kc+ 1)

)
.

(In the above, we define y− := ∞ or y+ := ∞, respectively, if any infinite terms appear as
summands of y− or y+, respectively.)

Whereas every oriented Seifert fibered space over the disk or Möbius strip is Floer simple,
i.e. has L◦ 6= ∅, the story for graph manifolds is more complicated. Consider the following
examples, for all of which we take Ŷ to have orientable base:

L(Y ) = [−∞, 96] : nd = 3, (yd1 , y
d
2 , y

d
3 ) = (1

3 ,−2
5 ,

3
2),

ng = 2, ϕP
1∗(L(Y1)) = [−100,+∞], ϕP

2∗(L(Y2)) = [[2
5 ,−20]];

L(Y ) = {0} : nd = 1, yd1 = 1
3 ,

ng = 1, ϕP
1∗(L(Y1)) = [−1

3 , 0];

L(Y ) = ∅: nd = 3, (yd1 , y
d
2 , y

d
3 ) = (1

3 ,−2
5 ,

3
2),

ng = 2, ϕP
1∗(L(Y1)) = [−100,+∞], ϕP

2∗(L(Y2)) = [−1
3 , 0].

Above, we see examples in which Y is Floer simple, has an isolated L-space filling, or has
empty L-space interval. One cannot use Theorem 1.6 without first knowing which of these three
cases occurs for Y . We therefore provide Proposition 4.7, which lists explicit criteria for the
multiple mutually exclusive cases in which Y is Floer simple or in which Y has an isolated
L-space filling. In the complement of these criteria, L(Y ) is empty.

In fact, the validity of Theorem 4.6 extends beyond the realm of graph manifolds.

Proposition 1.7. Theorem 1.6 holds for any boundary incompressible Floer simple three-
manifolds Y1, . . . , Yng , provided that Y satisfies the criteria in Proposition 4.7 for L(Y ) to be
non-empty.

One immediate application of this generalization is the computation of L-space intervals for
cables of Floer simple knot complements.

1.3 Cables

The (p, q)-cable Y (p,q) ⊂ X of a knot complement Y := X\ν(K) ⊂ X is given by the knot
complement Y (p,q) := X\ν(K(p,q)), where K(p,q) ⊂ X is the image of the (p, q)-torus
knot embedded in the boundary of Y. Since one can realize any cable of Y ⊂ X by gluing
an appropriate Seifert fibered space onto Y, we can use the above generalization of Theorem 1.6
to prove the following result.
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Theorem 1.8. Suppose that p, q ∈ Z with p > 1 and gcd(p, q) = 1, and that Y = X\ν(K) is a
boundary incompressible Floer simple knot complement in an L-space X, with L-space interval
L(Y ) = [[a−/b−, a+/b+]], written in terms of the surgery basis µ, λ ∈ H1(∂Y ) for K, with µ
the meridian of K and λ a choice of longitude. Then in terms of the surgery basis produced by
cabling, the (p, q)-cable Y (p,q) ⊂ X of Y ⊂ X has L-space interval

L(Y (p,q)) =

{∞},
a−
b−
∈
[
p∗

q∗
,∞
]
,
a+

b+
∈
[
q − p∗
p− q∗ ,

q

p

〉
∪ {∞},

[[1/y+, 1/y−]] otherwise,

where p∗, q∗ ∈ Z are defined to satisfy pp∗ − qq∗ = 1 with 0 < q∗ < p, and where we define
y− := maxk>0 y−(k) and y+ := mink>0 y+(k), with

y−(k) :=
1

k

(⌈
q∗

p
k

⌉
− dy1+ke

)
, y+(k) :=

1

k

(⌊
q∗

p
k

⌋
− by1−kc

)
,

and

y1± :=
a±q

∗ − b±p∗
a±p− b±q

=
q∗

p

(
1− b±

q∗(a±p− b±q)

)
.

We also prove a slightly more general version of Theorem 1.8 which does not require that X
be an L-space, and which holds for any p/q ∈ Q ∪ {∞}.

A brief application of the theorem, followed by an appropriate change of basis, recovers the
following result of Hedden [Hed09] and Hom [Hom11].

Corollary 1.9. Suppose Y := S3\ν(K) is a boundary incompressible Floer simple positive
knot complement in S3. If p > 0 and gcd(p, q) = 1, then in terms of the conventional basis for
knot complements in S3, Y (p,q) has L-space interval

L(Y (p,q)) =


{∞}, 2g(K)− 1 >

q

p
,

[pq − p− q + 2g(K)p, ∞], 2g(K)− 1 6
q

p
.

(1)

By positive, we simply mean that Y has an L-space Dehn filling Y (N) for some N > 0.
Note that equating pq−p−q+2g(K)p with 2g(K(p,q))−1 recovers the formula for the genus

of the (p, q)-cable of K ⊂ S3. Note also that since p∗/q∗ − q/p = 1/pq∗, with p∗/q∗, q/p /∈ Z,
the domain specified for Floer simple cables in the above corollary is equivalent to the condition
2g(K)− 1 /∈ [p∗/q∗,∞], matching Theorem 1.8.

1.4 Generalized solid tori
A recent result of Gillespie [Gil16] states that a compact oriented three-manifold Y with torus
boundary satisfies L(Y ) = P(H1(∂Y ))\{l} if and only if Y has genus 0 and an L-space filling,
where l denotes the rational longitude of Y . Such manifolds are called generalized solid tori in
[RR15] and are of independent interest [Ber91, Gab89, Ceb13, BBL16, HW15].

Using the version of Theorem 1.8 that does not require X to be an L-space, along with some
incremental results from the proof of Theorem 1.6, we are able to show the following.

Theorem 1.10. If Y is a generalized solid torus, then any cable of Y ⊂ Y (l) is a generalized
solid torus. If Y is a graph manifold with torus boundary, b1(Y ) = 1, and rational longitude other
than the regular fiber, then Y is a generalized solid torus if and only if it is homeomorphic to an
iterated cable of the regular fiber complement in S1 × S2.
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Similarly, for any class of manifolds for which the gluing result in Proposition 1.5 holds
without the requirement of Floer simplicity—such as graph manifolds—one has the result that
if Y has an isolated L-space filling, i.e. if L(Y ) = {µ} for some µ ∈ P(H1(∂Y )), then any cable
of Y ⊂ Y (µ) has Y (µ) as an isolated L-space filling.

1.5 Floer simple knot complements
Whereas the regular fiber complement in a rational homology sphere Seifert fibered space could
arguably be called the prototypical Floer simple manifold, not every regular fiber complement
in an L-space graph manifold is Floer simple, due to the existence of isolated L-space fillings.
However, the next best thing is true.

Given a closed graph manifold X, call an exceptional fiber fe ⊂ X invariantly exceptional if
the JSJ component Ŷ ⊂ X containing fe has more than one exceptional fiber. Note that if Ŷ has
only one exceptional fiber, then Ŷ is either a lens space (if X is Seifert fibered) or a punctured
solid torus. Since the solid torus has non-unique Seifert structure, one can show that if X is not
a lens space, it is homeomorphic to a graph manifold X ′ in which the image f ′e of fe is a regular
fiber. Excluding this scenario allows us to show the following.

Theorem 1.11. Every invariantly exceptional fiber complement in an L-space graph manifold
is Floer simple.

There are also Floer simple knot complements traversing the graph structure of X.

Proposition 1.12. If X is an L-space graph manifold, then for every incompressible torus
T ⊂ X, there is a knot K ⊂ X transversely intersecting T for which the complement X\ν(K) is
Floer simple.

The same occurs for an arbitrary L-space X, provided that X decomposes as a union of
Floer simple manifolds along T (see Proposition 6.6).

The above results, together with the evidence of various other classes of L-spaces, and a
certain degree of optimism, motivate the following.

Conjecture 1.13. Every L-space admits a Floer simple knot complement.

1.6 Organization
In § 2 we introduce our conventions for Seifert fibered spaces and provide a lengthy discussion of
the Jankins–Neumann problem, since we cannot hope for Theorem 1.6 to provide insight if the
original theorem of Jankins, Neumann and Naimi is opaque to the reader.

Section 3 reviews some basic facts about L-space intervals, including the independent results
of Hanselman and Watson [HW15] and Rasmussen and the author [RR15] about L-space criteria
for unions of Floer simple manifolds.

Section 4 is where we prove our main graph manifold results, including Theorems 1.3 and 1.6
in the forms of Theorems 4.5 and 4.6. This section also derives the classification in Proposition 4.7
of single-boundary-component graph manifolds with non-empty L-space intervals.

Our main cabling results reside in § 5, although the proof of Theorem 1.10, for generalized
solid tori, is relegated to § 6.

Lastly, § 6 justifies the generalization in Proposition 1.7 of our Jankins–Neumann graph
manifold result to the union of a Seifert fibered space with Floer simple manifolds. This final
section also lists an array of applications of the paper’s main results, including the aforementioned
generalized solid torus cabling result and proofs of the Floer simple knot complement results from
Theorem 1.11 and Proposition 1.12.
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2. Foliations on Seifert fibered spaces

A graph manifold is a prime compact oriented three-manifold which admits a JSJ decomposition—
which in this case, we take to be a minimal cutting apart along incompressible tori into
disjoint pieces—such that each JSJ component is an oriented Seifert fibered space. The data
for reassembling these components into the original manifold are encoded in a labeled graph,
where each vertex corresponds to a Seifert fibered JSJ component, and each edge corresponds
to a gluing of two Seifert fibered pieces along an incompressible torus.

2.1 Restricting taut foliations to JSJ components
Questions about taut foliations on graph manifolds can often be reduced to questions about taut
foliations on Seifert fibered spaces, due in part to the following result.

Proposition 2.1 [Rou74, Thu80, BR99]. If Y is a compact oriented three-manifold admitting
a taut foliation F transverse to ∂Y , then every incompressible separating torus in Y can be
isotoped to be everywhere transverse to F .

Proof. Roussarie [Rou74] showed that if F is C2, then each incompressible torus T ⊂ Y can be
isotoped to be either everywhere transverse to F or a leaf of F . A later theorem of Brittenham
and Roberts [BR99] extends the validity of this proposition to C0 foliations. Thus, since a taut
foliation has no compact separating leaves, an incompressible separating torus cannot be isotoped
to be a leaf of F , and so it must be possible to isotop any incompressible separating torus to be
everywhere transverse to F . This is also believed to have been known by Thurston [Thu80]. 2

As noted by Brittenham, Naimi, and Roberts [BNR97], this result has major consequences
for graph manifolds.

Corollary 2.2. If Y is a graph manifold with tree graph and F is a taut foliation on Y
transverse to ∂Y , then F can be isotoped so that it restricts to boundary-transverse taut foliations
on the Seifert fibered JSJ components of Y .

When a closed graph manifold has positive first Betti number, the question of existence of
taut foliations becomes trivial, since a result of Gabai states that any such manifold admits
a co-oriented taut foliation [Gab83]. Correspondingly, any closed oriented three-manifold with
b1 > 0 has non-trivial Heegaard Floer homology, hence is not an L-space. We therefore restrict
attention to rational homology sphere graph manifolds, hence to oriented Seifert fibered spaces
over S2 or RP2, and regular fiber complements thereof.

2.2 Conventions for Seifert fibered spaces

If M̂ denotes the trivial circle fibration over the (n+ 1)-punctured two-sphere,

M̂ := S1 ×
(
S2
∖ n∐
i=0

D2
i

)
, ∂iM̂ := −∂(S1 ×D2

i ), i ∈ {0, . . . , n}, (2)

then writing −h̃i :∈ H1(∂iM̂) for the meridian of each excised solid torus S1 ×D2
i , we have

−
n∑
i=1

h̃i = pS1 × ∂(S2\D2
0) = pS1 ×−∂D2

0 = h̃0 (3)
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for any point class pS1 ∈ H0(S1) of the circle fiber. For each i ∈ {0, . . . , n}, if we write ιi :
H1(∂iM̂) → H1(M̂) for the map induced by inclusion, then there is a lift f̃i ∈ ι−1

i (f) of the

regular fiber class f ∈ H1(M̂) satisfying (−h̃i · f̃i)|∂iM̂ = 1. The reverse-oriented basis (f̃i,−h̃i)
for H1(∂iM̂) induces a projectivization map

πi : H1(∂iM̂)\{0}→ P(H1(∂iM̂))
∼
→ Q ∪ {∞}, rif̃i − sih̃i 7→

ri
si
, (4)

by which we identify Seifert invariants with slopes, and slopes with Q ∪ {∞}.
The Seifert fibered space MS2(r∗/s∗) := MS2(e0 = r0/s0; r1/s1, . . . , rn/sn) over S2 is the

Dehn filling of M̂ along the slopes µi := rif̃i−sih̃i, with πi(µi) = ri/si, subject to the convention
that e0 = r0/s0 ∈ Z and ri/si /∈ Z ∪ {∞}. Setting each hi := ιi(h̃i) then gives the presentation

H1

(
MS2

(
r∗
s∗

))
=

〈
f, h0, . . . , hn

∣∣∣∣ n∑
i=0

hi = e0f−h0 = r1f−s1h1 = · · · = rnf−snhn = 0

〉
. (5)

Likewise, if we respectively lift f and each hi to generators φ and ηi for π1(MS2(r∗/s∗)) and
substitute φe0 for η0, then we obtain the fundamental group presentation

π1

(
MS2

(
r∗
s∗

))
=

〈
φ, η1, . . . , ηn

∣∣∣∣ φ central,
n∏
i=1

ηi=φ−e0 , ηs11 =φr1 , . . . , ηsnn =φrn
〉
. (6)

For a manifold MRP2(r∗/s∗) Seifert fibered over RP2, we adopt the same homology and slope
conventions for the boundary of a regular fiber complement, but the global homology is slightly
different. Since, this time, M̂ is the twisted circle bundle over a punctured RP2, the fiber class
f is now 2-torsion. Also, since puncturing RP2 once gives a Möbius strip instead of a disk, the
sum

∑n
i=1 h̃i differs from pRP2 × ∂(RP2\D2

0) by twice the one-cell c glued to the disk to make
RP2, yielding a homology presentation of the form

H1

(
MRP2

(
r∗
s∗

))
=

〈
f, c, h0, . . . , hn

∣∣∣∣ 2f = 0, 2c+
n∑
i=0

hi = 0, ι0(µ0) = · · · = ιn(µn) = 0

〉
. (7)

For either type of base, the Seifert fibration is invariant under any reparameterization
M(r0/s0, . . . , rn/sn) → M(r0/s0 + z0, . . . , zn + rn/sn) with

∑n
i=0 zi = 0 and each zi ∈ Z. The

manifold also admits orientation-reversing homeomorphism, M(r0/s0, . . . , rn/sn) → M(−r0/s0,
. . . ,−rn/sn).

A regular fiber complement Y := M\ν(f) in a rational homology sphere Seifert fibered space
has b1(Y ) = 1, hence has a well-defined rational longitude.

Definition 2.3. Any compact oriented three-manifold Y with torus boundary and b1(Y ) = 1
has a rational longitude, a unique class l ∈ P(H1(∂Y )) such that representatives in H1(∂Y ) have
torsion image in H1(Y ) under the homomorphism induced by inclusion of the boundary.

It is straightforward to show (see, for example, [RR15]) that

MS2

(
r∗
s∗

)
\ν(f) has rational longitude l = −

n∑
i=0

ri
si
. (8)

A mild generalization of the calculation in [RR15] shows that the above result also holds if each
solid torus S1 ×D2

i is replaced with an arbitrary compact oriented three-manifold Yi with torus
boundary and b1(Yi) = 1, with ri/si the image of the rational longitude of Yi. By contrast, if the
JSJ component containing ∂Y has non-orientable base, then l = π(f̃) =∞.
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Remark. The requirement that ri/si 6=∞ for i ∈ {0, . . . , n} is a necessary (assuming n > 1) and
sufficient condition for the resulting Seifert fibered space to be prime—an important property
for manifolds serving as building blocks in combinatorial constructions. To understand necessity,
let M̂∞ denote the result of Dehn filling M̂ with slope ∞ along ∂0M̂ . If M̂ is fibered over a
punctured S2, then M̂∞ is a connected sum of n solid tori, each with longitude of slope ∞.
Similarly, if M̂ is fibered over a punctured RP2, then M̂∞ is the connected sum of an S1 × S2

with n solid tori, each with longitude of slope ∞.

Primality is especially important in the context of foliations, since, by Novikov [Nov65], no
reducible manifold except S1 × S2 admits a co-oriented taut foliation. On the other hand, not
all connected sums are L-spaces, so any correspondence between being an L-space and failing to
admit a co-oriented taut foliation breaks down beyond the realm of prime manifolds.

2.3 Rotation number, shift, and foliation slope
One of the key insights of Jankins and Neumann into the work of Eisenbud, Hirsch, and
Neumann on taut foliations on Seifert fibered spaces was the need for a better invariant on
˜Homeo+S

1 . Whereas the latter group relied on the invariants m,m : ˜Homeo+S
1

→ R, with
m(γ) := mint∈R γ(t) − t and m(γ) := maxt∈R γ(t) − t, Jankins and Neumann introduced the
problem to a more precise invariant of circle actions: a conjugacy invariant called the (Poincaré)
rotation number,

rot : ˜Homeo+(S1) → R, rot(γ) = lim
k→∞

1

k
(γk(t)− t), (9)

which is independent of t ∈ R, and rational if and only if γ has some closed orbit [Ghy01]. The
rotation number is not, in general, a homomorphism. However, it restricts to a homomorphism on
any amenable, hence any abelian, subgroup [Ghy01]. In particular, it restricts to a homomorphism
on any representation of the fundamental group of a torus.

The simplest element of ˜Homeo+(S1) is a rotation, or shift,

sh(s) : t 7→ t+ s, t ∈ R. (10)

Whereas rot◦ sh = id, not every element of ˜Homeo+(S1) is conjugate to a rotation. It is a classic

result, however, that every element of ˜Homeo+(S1) with irrational rotation number is left and
right semiconjugate to a shift of the same rotation number [Ghy01].

Rotation numbers can also be used to associate slopes to taut foliations on tori.

Definition 2.4. For the two-torus T , there is a canonical map

α : {C0 codimension-one foliations on T}→ P(H1(T ;R)), (11)

constructed below, which respects isotopy. We call α(F ) the slope of F .

If F has Reeb components, then α(F ) is given by the class of any closed leaf of F . All
Reebless foliations on tori are taut. Thus, if F is Reebless, then there is a curve, say Cλ of
primitive class λ ∈ H1(T ), which intersects every leaf transversely, and F can be realized as the
suspension of a circle homeomorphism γF,λ ∈ Homeo+S

1 from Cλ to itself [HH81]. A choice of
µ ∈ H1(T ) with µ · λ = 1 induces a lift of this suspension to a suspension from a universal cover
C̃λ of Cλ to its translate by µ in the universal cover of T . That is, if we regard C̃λ as the real
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vector space {tλ}t∈R spanned by λ, with Cλ ∼= C̃λ/λZ, then we can lift the foliation F to the
universal cover of T by iteratively suspending the map tλ 7→ γ̃F,λ,µ(t)λ + µ, for an appropriate

lift γ̃F,λ,µ ∈ H̃omeo+S
1 ⊂ Homeo+R of γF,λ ∈ Homeo+S

1.
This lifted suspension, in turn, induces a representation

ρFλ : π1(T ) → H̃omeo+S
1, [λ] 7→ sh(1), [−µ] 7→ γ̃F,λ,µ, (12)

where [λ] and [µ] denote the lifts of λ and µ to π1(T ). One can regard ρFλ as describing how to
traverse the line {tλ}t∈R ⊂ 〈µ, λ〉R by traveling only along foliation leaves or integer multiples of
λ or µ. That is, if one starts at some t0λ, hops by aλ+ bµ for some a, b ∈ Z, takes the foliation
leaf intersecting this new point, and follows this leaf back to the line {tλ}t∈R, then one will arrive
at ρFλ (aλ+ bµ)(t0)λ. Note that while ρFλ is independent of the choice of µ, and is determined up
to conjugacy by a choice of λ, it still depends on λ.

On the other hand, when we define the slope α(F ) of F to be

α(F ) := ker(rot ◦ ρFλ ) = 〈(rot(ρFλ(−µ)))λ+ µ〉 ∈ P(H1(T ;R)), (13)

then the rotation number washes out all dependence on λ and choice of suspension. That is, one
can use the definition of rotation number to compute rot(ρFλ(−µ)) in terms of the rotation number
associated to a different choice of basis and suspension for F , and obtain the same answer for
α(F ) in both cases. Alternatively, any suspension homeomorphism with rational rotation number
has a periodic orbit, hence realizes a foliation with a compact leaf of slope α(F ). If the suspension
homeomorphism has irrational rotation number, then it is semiconjugate to a shift of matching
rotation number [Ghy01], giving rise to a linear foliation of slope α(F ).

2.4 Restricting Seifert fibered space foliations to torus foliations
If a compact oriented three-manifold Y admits a co-oriented taut foliation transverse to ∂Y , then
Gabai tells us that ∂Y can only have toroidal components [Gab83]. Thus, we often encounter
foliations on tori as boundary restrictions of foliations on three-manifolds. Moreover, on a
Seifert fibered space, any taut foliation transverse to the boundary restricts to taut foliations on
boundary components.

Suppose F is a co-oriented taut foliation transverse to the fibration of the Seifert fibered
Dehn filling MS2(r∗/s∗) along the slopes r∗/s∗ = (r0/s0, . . . , rn/sn) of the trivial circle fibration
M̂ over an (n + 1)-punctured S2, according to the conventions of § 2.2. For each boundary
component ∂iM̂ , we regard the foliation F ∩ ∂iM̂ as a suspension of a homeomorphism of the
curve of class f̃i to itself, and since the class −h̃i satisfies −h̃i · f̃i = 1, it specifies a lift of this

suspension to a suspension of an element γF,f̃i,−h̃i ∈ ˜Homeo+S
1. To this suspension we associate

the representation

ρi := ρF∩∂iM̂
f̃i

: π1(∂iM̂) → ˜Homeo+S
1, [f̃i] → sh(1), [h̃i] → γF,f̃i,−h̃i , (14)

allowing us to express the slope α(F ∩ ∂iM̂) of F ∩ ∂iM̂ as

α(F ∩ ∂iM̂) = πi(rot(ρi([h̃i]))f̃i − h̃i) = rot(ρi([h̃i])). (15)

The construction of Eisenbud, Hirsch, and Neumann [EHN81] associating a representation

ρ : π1(M(ri/si)) → ˜Homeo+S
1 to F , sending the fiber class φ = [f ] to sh(1), is sufficiently

compatible with the construction of each ρi above that, possibly after conjugation of each
ρi, ρ can be chosen to satisfy ρi = ρ ◦ ιπ1i , with ιπ1i : π1(∂iM̂) → π1(MS2(r∗/s∗)) the
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homomorphism induced by inclusion. The presentation (6) for π1(MS2(r∗/s∗)) then places the
following restrictions on ρ, as observed by Jankins and Neumann [JN85]:

n∏
i=1

ηi = φ−e0 =⇒ • rot

( n∏
i=1

ρ(ηi)

)
= −e0 = −r0

s0
, (16)

i ∈ {0, . . . , n} : ηsii = φri =⇒


• rot(ρ(ηi)) =

ri
si
,

• ρ(ηi) is conjugate to sh

(
ri
si

)
.

(17)

Jankins and Neumann mostly focused on the case of n = 3, e0 = −1, and 0 < r1/s1, r2/s2,
r3/s3 < 1, but their above observation holds in general.

Whereas the first condition enforces a global restriction on F , the latter two conditions
provide local restrictions at each F ∩ ∂iM̂ , which we could recover simply by considering Dehn
fillings. The solid torus admits only one taut foliation, namely, the product foliation with slope
given by the rational longitude. As a consequence, the co-oriented taut foliation F ∩ ∂iM̂ extends
to a co-oriented taut foliation on the Dehn filling ∂iM̂(ri/si) if and only if F ∩∂iM̂ is the product
foliation of slope ri/si, which occurs if and only if ρi([h̃i]) = ρ(ηi) is conjugate to sh(ri/si), a
condition which requires α(F ∩ ∂iM̂) = rot(ρ(ηi)) = ri/si. In particular, the jth shift conjugacy
condition, that ρ(ηj) be conjugate to sh(rj/sj), is due solely to the fact that ∂jM̂ is glued to a
solid torus. As emphasized by Boyer and Clay [BC14], when one relaxes the jth shift conjugacy
condition, one can still find manifolds Y with torus boundary for which F extends to a taut
foliation on M̂ ∪∂jM̂ Y, for a suitable choice of gluing map.

It is presumably for this reason that Jankins and Neumann focused on the more general
condition of J-realizability for an (n + 1)-tuple r∗/s∗ := (e0 = r0/s0, r1/s1, . . . , rn/sn), given
a subset J ⊂ {1, . . . , n}. They deem r∗/s∗ J-realizable if there is a representation ρJ : 〈η1, . . . ,

ηn〉→ ˜Homeo+S
1 such that ρJ meets the r∗/s∗ rotation number condition, that rot(

∏n
i=1 ρ(ηi)) =

−e0 with rot(ρ(ηi))=ri/si for each i ∈ {1, . . . , n}, and such that ρJ meets the jth shift conjugacy
condition for each j ∈ J . We have already shown that J-realizability is a necessary condition for
M̂ to admit a taut foliation F of slopes α(F ∩ ∂iM̂) = ri/si which extends to a taut foliation on
the partial Dehn filling of M̂ along the slopes rj/sj ∈ P(H1(∂jM̂)) for all j ∈ {0} ∪ J . With the
help of Naimi, Jankins and Neumann showed that the condition is also sufficient [JN85, Nai94].

2.5 Solutions for J-realizability

Jankins and Neumann conjectured that a slope r∗/s∗ is J-realizable in ˜Homeo+S
1 if and only if it

is J-realizable in a smooth Lie subgroup of ˜Homeo+S
1. Observing that any smooth Lie subgroup

of ˜Homeo+S
1 is conjugate to P̃SLk(2,R) for some k∈Z>0, where P̃SLk(2,R) = ψ−1

k P̃SL(2,R)ψk
for (ψk : t 7→ kt) ∈ Homeo+R, they computed

max rot

( n∏
i=1

γi

)
=

1

k

(
−1 +

n∑
i=1

(⌊
rik

si

⌋
+ 1

))
(18)

for the maximum rotation number of a product of elements γi ∈ P̃SLk(2,R) with each rot(γi) =
ri/si. They then proved the above conjecture in all but one case, later proven by Naimi [Nai94].
More recently, in [CW11, Theorem 3.9] (appropriately generalized from 2 to n), Calegari and

Walker rederived (18) (with the maximum taken over k∈Z>0) for ˜Homeo+S
1, without appealing

to P̃SLk(2,R), by using dynamical techniques similar to those of Naimi.
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One obtains the analogous minimum rotation number of a product by sending ri/si 7→ −ri/si
in (18). Demanding that −e0 lie between the minimum and maximum rotation numbers for∏n
i=1 ρ(ηi), and multiplying the resulting inequality by −1, implies that a representation in

˜Homeo+S
1 can only satisfy the rotation number condition for r∗/s∗ = (e0, r1/s1, . . . , rn/sn) if

min
k>0
−1

k

(
−1 +

n∑
i=1

(⌊
rik

si

⌋
+ 1

))
6 e0 6 max

k>0
−1

k

(
1 +

n∑
i=1

(⌈
rik

si

⌉
− 1

))
, (19)

a criterion which Jankins and Neumann prove is also sufficient [JN85]. Moreover, r∗/s∗ is

J-realizable in P̃SLk(2,R), for some k ∈ Z>0, if and only if

− 1

k

(
−1+

n∑
i=0

(⌊
rik

si

⌋
+1

))
6 0 6 −

n∑
i=0

ri
si

or −
n∑
i=0

ri
si

6 0 6 −1

k

(
1+

n∑
i=0

(⌈
rik

si

⌉
−1

))
. (20)

The shift conjugacy condition is easier to apply: one can approximate an element of
˜Homeo+S

1 with a shift-conjugate element of arbitrarily close rotation number. Jankins and

Neumann used this fact to show that if one fixes all ri/si with i 6= j, for some fixed j ∈ {1, . . . , n},
then imposing the jth shift conjugacy condition is equivalent to restricting to the interior of the

interval of rj/sj ∈ R for which the r∗/s∗ rotation number condition is satisfied. More generally,

Calegari and Walker have shown that the same principle holds for the rotation number condition

associated to any fixed positive word [CW11, Lemma 3.31].

Since for any r ∈ R and z ∈ Z, we have

z 6 brc ⇐⇒ z 6 r, dre 6 z ⇐⇒ r 6 z, (21)

it follows, for any j ∈ {1, . . . , n}, that if we fix all ri/si with i 6= j, then the interval of rj/sj ∈ R
satisfying (19) is closed. On the other hand, for any r ∈ R and z ∈ Z, we know that

z 6 dre − 1 ⇐⇒ z < r, brc+ 1 6 z ⇐⇒ r < z. (22)

These identities led Jankins and Neumann to produce the formulas in the following result.

[JN85] and Naimi [Nai94];

Theorem 2.5 (Jankins and Neumann [JN85] and Naimi [Nai94]; cf. Calegari and Walker

[CW11]). For any n > 2, partition JqJ̄ = {0, . . . , n} with 0 ∈ J , and (n+1)-tuple r∗/s∗ :=(r0/s0,

. . . , rn/sn) ∈ Qn+1 with r0/s0 ∈ Z and ri/si /∈ Z for i > 0, the trivial circle fibration M̂ over

an (n+ 1)-punctured S2 admits a co-oriented taut foliation F transverse to the boundary, with

slopes α(F ∩∂iM̂) = ri/si for i ∈ {0, . . . , n}, and with F extending to a co-oriented taut foliation

on the Dehn filling of ∂jM̂ of slope rj/sj for each j ∈ J , if and only if 0 = y− = y+ or 0 ∈ 〈y+, y−〉,
with

y− := max
16k6s

−1

k

(
1 +

∑
j∈J

⌊
rjk

sj

⌋
+
∑
̄∈J̄

(⌈
r̄k

s̄

⌉
− 1

))
,

y+ := min
16k6s

−1

k

(
−1 +

∑
j∈J

⌈
rjk

sj

⌉
+
∑
̄∈J̄

(⌊
r̄k

s̄

⌋
+ 1

))
,

(23)

where s is the least common positive multiple of the si.
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2.6 Dehn fillings and N̄-fillings
For any particular i ∈ {1, . . . , n} in the above theorem, if one fixes the remaining slopes, one
finds that the space of slopes in P(H1(∂iM̂)) for which the desired taut foliation exists is often
an interval. We now introduce some notation to describe such spaces of slopes in general.

Definition 2.6. If Y is a compact oriented three-manifold with torus boundary, then we define
the sets FL(Y ) ⊂ FD(Y ) ⊂ F(Y ) ⊂ P(H1(∂Y ;Z)) of rational foliation slopes as follows:

FL(Y ) :=

{
α(F ∩ ∂Y )

∣∣∣∣ F is a co-oriented taut foliation on Y transverse to ∂Y,

restricting to a rational co-oriented linear foliation on ∂Y

}
,

FD(Y ) := {µ | The Dehn filling Y (µ) admits a co-oriented taut foliation},
F(Y ) := {α(F ∩ ∂Y ) | F is a co-oriented taut foliation on Y transverse to ∂Y }.

All linear foliations, even irrational ones, are taut, but rational linear foliations are product
foliations, hence extend to co-oriented taut foliations on Dehn fillings of matching slope, implying
FL(Y ) ⊂ FD(Y ) ⊂ F(Y ). In fact, the work of Jankins and Neumann tells us that FL = FD
for manifolds Seifert fibered over the disk, and that the analogous result holds for manifolds
Seifert fibered over a punctured S2. Since the same also holds for manifolds Seifert fibered over a
punctured RP2 [BC14], and since Corollary 2.2 tells us that taut foliations on homology sphere
graph manifolds isotop to restrict to taut foliations transverse to boundaries on Seifert fibered
JSJ components, we additionally have FL = FD for any graph manifold with torus boundary
and b1 = 1.

In this latter case, it is natural to ask whether F(Y ) admits a description analogous to the
Dehn filling characterization for FL(Y ). That is, can F(Y ) be characterized in terms of taut
foliations on some closed union of Y with some other manifold? Boyer and Clay answer this
question affirmatively [BC14], as we shall see.

Let N̄ denote the regular fiber complement

N̄ := MS2(0,−1
2 ,

1
2)\(S1×D2

0), (24)

which Boyer and Clay call the ‘twisted I-bundle over the Klein bottle’, or N2. The manifold N̄
can play a role analogous to that of the solid torus for Dehn fillings.

Definition 2.7. Suppose Y is an oriented three-manifold with toroidal boundary component
∂iY . We call any union Y ∪ϕ N̄ with gluing map ϕ : ∂N̄ → −∂iY an N̄ -filling of Y along
µ ∈ P(H1(∂iY )), where µ := ϕP

∗(l) is the image of the rational longitude l of N̄ . If Y has (single)
torus boundary, we denote an N̄ -filling of Y along µ ∈ P(H1(∂Y )) by Y N̄ (µ).

More generally, if ∂Y =
∐n
i=1∂iY is a disjoint union of tori, then given a slope µ∗ := (µ1,

. . . , µn) ∈ ∏n
i=1 P(H1(∂iY )) and subset J̄ ⊂ {1, . . . , n}, we denote by Y N̄ (J̄ ;µ∗) any manifold

resulting from N̄ -filling Y along µ̄ in ∂̄Y for each ̄ ∈ J̄ .

We then have the following result for N̄ -fillings.

Proposition 2.8. Suppose Y is a prime compact oriented manifold with boundary a disjoint
union

∐n
i=1∂iY of tori, with some given slope µ∗ := (µ1, . . . , µn) ∈ ∏n

i=1 P(H1(∂iY )). Moreover,
suppose either that b1(Y (µ∗)) > 0 for the Dehn filling Y (µ∗), or that Y is a graph manifold,
and there is some (possibly empty) J̄ ⊂ {1, . . . , n}, and N̄ -filling Y N̄ (J̄ ;µ∗) of Y along µ̄
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in ∂̄Y for each ̄ ∈ J̄ , such that Y N̄ (J̄ ;µ∗) admits a co-oriented taut foliation F transverse
to the boundary, with α(F ∩ ∂jY ) = µj for each j ∈ J := {1, . . . , n}\J̄ .

Then, for every J̄ ⊂ {1, . . . , n}, every N̄ -filling Y N̄ (J̄ ;µ∗) (including Y := Y N̄ (∅;µ∗)) admits
a co-oriented taut foliation F transverse to the boundary, with α(F ∩ ∂jY ) = µj for each
j ∈ J := {1, . . . , n}\J̄ .

Proof. Part (2) of Gabai’s main theorem in [Gab83] tells us that any prime oriented three-
manifold with b1 > 0 and boundary a (possibly empty) union of tori admits a co-oriented taut
foliation transverse to the boundary. Thus, if b1(Y (µ∗)) > 0, then any N̄ -filling Y N̄ (µ∗) :=
Y N̄ ({1, . . . , n};µ∗) has b1 > 0, hence admits a co-oriented taut foliation F . Since each ∂iY is
an incompressible separating torus in this N̄ -filling, Proposition 2.1 allows us to isotop these
separating tori so that they are everywhere transverse to F . Restricting F to any sub-N̄ -filling
Y N̄ (J̄ ;µ∗) ⊂ Y N̄ (µ∗) then gives the desired taut foliation on Y N̄ (J̄ ;µ∗).

If, instead, Y is a graph manifold with b1(Y (µ∗)) = 0, and we are given J̄ ⊂ {1, . . . , n} and
a co-oriented taut foliation F on some N̄ -filling Y N̄ (J̄ ;µ∗), with F transverse to the boundary
and with α(F ∩ ∂jY ) = µj for each j ∈ J := {1, . . . , n}\J̄ , then Proposition 2.1 again allows
us to isotop each separating torus ∂̄Y so that F restricts to a co-oriented taut foliation on Y ,
transverse to ∂Y , with α(F ∩ ∂iY ) = µi for each i ∈ {1, . . . , n}.

We then apply the foliation gluing theorem of Boyer and Clay [BC14, Theorem 9.5.2]. That is,
for each i ∈ {1, . . . , n}, Theorem 2.5 computes that F(N̄i) = {li}, with li (of slope 0) the rational
longitude of the ith copy N̄i of N̄ . Thus, for any gluing maps ϕi : N̄i → −∂iY sending li 7→ µi in
homology, Boyer and Clay’s gluing theorem tells us that there exist co-oriented taut foliations F ′

on Y and Fi on N̄i, transverse to respective boundaries, with α(F ′∩∂iY ) = µi = ϕP
i∗(α(Fj∩∂N̄j))

for each i ∈ {1, . . . , n}, such that the Fi and F ′ glue together to form a co-oriented taut foliation
on the N̄ -filling Y N̄ (µ∗) specified by the ϕi. After isotoping the ∂iY to be transverse to this
foliation, we can restrict this foliation to any sub-N̄ -filling Y N̄ (J̄ ′;µ∗) ⊂ Y N̄ (µ∗). 2

In particular, for a graph manifold Y with torus boundary, we have µ ∈ F(Y ) if and only if
an N̄ -filling Y N̄ (µ) admits a co-oriented taut foliation.

3. L-space intervals

An L-space is a closed oriented three-manifold whose Heegaard Floer homology is trivial, in the
sense that for each Spinc structure, the hat Heegaard Floer homology looks like the singular
homology of a point. The reader unfamiliar with L-spaces could consult [OS06a, OS06b] for an
introduction to Heegaard Floer homology, or [RR15] for a treatment of L-space Dehn fillings. For
present purposes, we shall only need the classification of Seifert fibered L-spaces, some formal
properties of sets of L-space Dehn-filling slopes, and some basic gluing results, all of which we
catalog below.

3.1 L-space Dehn fillings and N̄-fillings
Definition 3.1. If Y is a compact oriented three-manifold with torus boundary, then we define
the L-space interval of Y to be

L(Y ) := {µ ∈ P(H1(∂Y ))|Y (µ) is an L-space}. (25)

We shall write L◦(Y ) for the interior of L(Y ) in P(H1(∂Y )).
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Thus, L(Y ) is analogous to, and often complementary to, FD(Y ), especially when Y has no
reducible non-L-space Dehn fillings. Moreover, since the set of slopes of co-oriented taut foliations
meeting a generalized rotation number condition is often the closure of the set of product foliation
slopes meeting that condition [CW11, Lemma 3.31], it is natural to ask if F(Y ) bears any relation
to the complement of L◦(Y ). In fact, we have the following result.

Proposition 3.2 [RR15]. If Y is a compact oriented three-manifold with torus boundary, then
an N̄ -filling Y N̄ (µ) is an L-space if and only if µ ∈ L◦(Y ).

Proof. In [RR15, Proposition 7.9], Rasmussen and the author prove the above result with N̄
replaced by any member of a more general class of manifolds dubbed generalized solid tori. Since
N̄ is a generalized solid torus as defined in [RR15], the result follows. 2

Thus L◦(Y ) can be regarded as the L-space N̄ -filling interval of Y .

3.2 L-space gluing
Our primary tool for characterizing when a union of three-manifolds along a torus boundary
gives an L-space is the following joint result of Rasmussen and the author [RR15]. Hanselman
and Watson have proven a similar result in [HW15].

Proposition 3.3 [RR15]. If each of Y1 and Y2 is a compact oriented three-manifold with torus
boundary, then for any gluing map ϕ : ∂Y1 → −∂Y2 with ϕP

∗(L◦(Y1)) ∩ L◦(Y2) 6= ∅, the union
Y1 ∪ϕY2 is an L-space if and only if P(H1(∂Y2)) = ϕP

∗(L◦(Y1)) ∪ L◦(Y2) if both Yi are boundary
incompressible, and if and only if P(H1(∂Y2)) = ϕP

∗(L(Y1)) ∪ L(Y2) otherwise.

Proof. Recall that a compact three-manifold with torus boundary is boundary incompressible
if and only if it is not a connected sum of a solid torus with a (possibly empty) closed three-
manifold. The above proposition replicates from [RR15, Theorem 6.2], except with the hypothesis
of boundary incompressibility of each Yi replacing an a priori more technical condition that
certain subsets Dτ (Yi) ⊂ H1(Yi) be non-empty. Thomas Gillespie has recently shown [Gil16]
these two conditions to be equivalent. None of our gluing arguments involving graph manifolds
actually make use of his result, but our later cabling results, which in principle require unions
with non-graph manifolds, do require Gillespie’s result. 2

We shall later show that in the case of non-solid-torus graph manifolds Yi with torus
boundary, various foliation results allow us to drop some of the above hypotheses, so that one
obtains an L-space if and only if P(H1(∂Y2)) = ϕP

∗(L◦(Y1)) ∪ L◦(Y2).
In rather the opposite direction, if Y is Seifert fibered over a punctured S2 or RP2, then a

Dehn filling Y ′ of Y fails to be a graph manifold if and only if Y ′ fails to be prime, if and only
if Y ′ 6= S1 × S2 and the Dehn filling, in some ∂iY , was along the fiber lift f̃i ∈ H1(∂iY ) of slope
πi(f̃i) =∞ (see the remark near the end of § 2.2). In this case, Y ′ is neither a graph manifold nor
a habitat for taut foliations, but since it has compressible boundary, its L-space gluing properties
simplify, due to the following result.

Proposition 3.4. Suppose that each of Y1 and Y2 is a compact oriented three-manifold with
torus boundary, and that Y1 has compressible boundary. Then the union Y1 ∪ϕY2 is an L-space
if and only if X1, . . . , XN are all L-spaces and ϕP

∗(l1) ∈ L(Y2), where l1 is the rational longitude
of Y1, and where Y1 decomposes as Y1 = (S1 ×D2)#(X1# · · ·#XN ).
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Proof. A union along toroidal boundaries with a solid torus is just a Dehn filling, so we have

Y1 ∪ϕY2 = Y2(ϕP
∗(l1))#X1# · · ·#XN , and a connected sum of closed manifolds is an L-space if

and only if each summand is an L-space. 2

The above result explains why not every graph manifold Y with torus boundary satisfies

FD(Y ) q L(Y ) = P(H1(∂Y )). That is, no reducible manifold (besides S1 × D2) admits a co-

oriented taut foliation, but there exist graph manifolds with reducible Dehn fillings which are

not S1 ×D2 or an L-space.

3.3 Floer simple manifolds and L-space intervals

It is not known, in general, what forms the sets F(Y ) or FD(Y ) can take for an arbitrary

compact oriented three-manifold Y with torus boundary, but the situation for L-spaces is better

understood. As shown in [RR15] by Rasmussen and the author, L(Y ) can only be empty, the set

of a single point, a closed interval, or the complement of the rational longitude in P(H1(∂Y )).

For historical reasons, we call Y Floer simple in the latter two cases. Equivalently, we could

define Floer simple manifolds as follows.

Definition 3.5. A compact oriented three-manifold Y with torus boundary is Floer simple if

L◦(Y ) 6= ∅.

In particular, if Y is Floer simple, then its space L(Y ) of L-space Dehn filling slopes can be

specified entirely in terms of the left-hand and right-hand endpoints of L(Y ), in a sense we can

make precise, prefaced with the introduction of an abbreviative notation for the closed interval

with infinite endpoint.

Definition 3.6. For y ∈ Q, we shall write [−∞, y], [y,+∞], [−∞, y〉, and 〈y,+∞] for the

following intervals in (Q ∪ {∞}) ⊂ (R ∪ {∞}):

[−∞, y] := {∞} ∪ 〈−∞, y], [−∞, y〉 := {∞} ∪ 〈−∞, y〉,
[y,+∞] := [y,+∞〉 ∪ {∞}, 〈y,+∞] := 〈y,+∞〉 ∪ {∞}.

Definition 3.7. If y−, y+∈ Q∪{∞}, then we define the L-space interval from y− to y+, denoted

[[y−, y+]] ⊂ Q ∪ {∞}, as follows:

[[y−, y+]] :=



〈−∞,+∞〉, ∞ = y−, y+ =∞,
〈y−,+∞] ∪ [−∞, y+〉, Q 3 y− = y+ ∈ Q,
[y−,+∞] ∪ [−∞, y+], Q 3 y− > y+ ∈ Q,
[y−,+∞] ∩ [−∞, y+], Q 3 y− < y+ ∈ Q,
[−∞, y+], ∞ = y−, y+ ∈ Q,
[y−,+∞], Q 3 y−, y+ =∞.

(26)

In other words, [[y−, y+]] is the unique interval with left-hand endpoint y− and right-hand

endpoint y+ which is closed if y− 6= y+ and open otherwise.

Remark. In practice, we extend the above definition to allow y− = −∞ or y+ = +∞, which we

treat as identical to the respective cases of y− =∞ or y+ =∞.
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Proposition 3.8. Suppose, for some compact oriented three-manifold Y with torus boundary,
that we are given an identification P(H1(∂Y )) ∼= Q ∪ {∞}. If Y is Floer simple, then there
are unique y−, y+ ∈ Q ∪ {∞} such that L(Y ) = [[y−, y+]] ⊂ Q ∪ {∞}. Conversely, if there are
y−, y+∈ Q ∪ {∞} for which L(Y ) = [[y−, y+]], then Y is Floer simple.

The above follows from the aforementioned result, proven in [RR15], that if L(Y ) contains
more than one point, then L(Y ) is either a closed interval or the complement of a point
in P(H1(∂Y )). The following computation of L-space intervals for Seifert fibered spaces
demonstrates one use of this ‘[[·, ·]]’ notation.

Proposition 3.9. If Y is a regular fiber complement in a Seifert fibered rational homology
sphere, then L◦(Y ) q F(Y ) = P(H1(∂Y )). If Y has non-orientable base, we have L(Y ) = 〈−∞,
+∞〉 and FD(Y ) = ∅ (unless Y is the twisted S2-bundle over the Möbius strip, in which case
FD(Y ) = {∞}). If Y is a regular fiber complement in MS2(y∗), for some y∗ = (y0, . . . , yn) ∈Qn+1,
then P(H1(∂Y ))\FD(Y ) = L(Y ) = [[y−, y+]], where

y− := max
k>0
−1

k

(
1 +

n∑
i=0

byikc
)
, y+ := min

k>0
−1

k

(
−1 +

n∑
i=0

dyike
)
, (27)

unless Y is a solid torus, in which case y− := y+ := −∑n
i=0 yi is the rational longitude of Y .

Proof. For the case of Y with non-orientable base, see the work of Boyer, Gordon, and Watson
[BGW13] and Boyer and Clay [BC14]. For Y with orientable base, the foliations result is due
to Jankins, Neumann, and Naimi [JN85, Nai94], and the L-space result is originally due to the
combined work of Jankins, Neumann, and Naimi [JN85, Nai94], Eliashberg and Thurston [ET98],
Ozsváth and Szabó [OS04], Lisca and Matić [LM04], and Lisca and Stipsicz [LS07]. Alternatively,
Rasmussen and the author offer a recent stand-alone proof of the L-space result [RR15]. 2

4. L-space intervals and foliation slopes for graph manifolds

This is the section in which we prove most of our main results. We begin, however, by introducing
the notion of L/NTF-equivalence, the presence of which makes gluing easier. We further pause
in § 4.2 to establish some conventions for graph manifolds with torus boundary and b1 = 1.

4.1 L/NTF-equivalence and gluing
For a pair of manifolds spliced together along torus boundaries, we can often prove stronger gluing
results about the existence of co-oriented taut foliations or non-trivial Heegaard Floer homology
if we are able to use gluing theorems from both areas of mathematics. In general, however, this
strategy only works if we know that each manifold behaves in a suitably complementary manner
with respect to co-oriented taut foliations and L-space Dehn fillings, a notion which we now
make precise.

Definition 4.1. If Y is a prime compact oriented three-manifold with torus boundary, then we
say that Y is L/NTF-equivalent if F(Y )q L◦(Y ) = P(H1(∂Y )).

In certain circumstances, one can characterize L/NTF-equivalence in terms of N̄ -fillings.

Proposition 4.2. Suppose Y is a prime compact oriented three-manifold with torus boundary.
If b1(Y ) > 1 or Y is a graph manifold, then Y is L/NTF-equivalent if and only if each N̄ -filling
of Y is an L-space precisely when it fails to admit a co-oriented taut foliation.

1024

https://doi.org/10.1112/S0010437X16008319 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008319


L-space intervals for graph manifolds and cables

Proof. This follows immediately from Propositions 2.8 and 3.2. 2

There are some classes of manifold which we already know to be L/NTF-equivalent.

Proposition 4.3. Suppose Y is a prime compact oriented three-manifold with torus boundary.

If b1(Y ) > 1, or if Y is the union of a Seifert fibered space with zero or more copies of N̄ , then

Y is L/NTF-equivalent.

Proof. If b1(Y ) > 1, then since no Dehn filling of Y is a rational homology sphere, we have

L(Y ) = ∅, implying L◦(Y ) = ∅. Correspondingly, Proposition 2.8 implies F(Y ) = P(H1(∂Y )).

Suppose Y has b1(Y ) = 1 and is the union of a Seifert fibered space with zero or more copies

of N̄ . Then, using [RR15, Proposition 7.9] of Rasmussen and the author to replace Boyer’s and

Clay’s ‘Nt’ manifolds with N̄ , we invoke the ‘slope detection’ theorem of Boyer and Clay [BC14,

Theorem 8.1] to deduce L/NTF-equivalence for Y .

Alternatively, one could prove the same result by inductively performing N̄ -fillings in regular

fiber complements, starting with Proposition 3.9 for the Seifert fibered base case, and using the

gluing result in Proposition 4.4 below, together with (21) and (22), to evolve (27) to match (23).

Similar inductive arguments appear in the proof of Theorem 4.6. 2

Remark. We later prove L/NTF-equivalence for all graph manifolds with torus boundary.

We are now ready to state our main gluing result.

Proposition 4.4. Suppose Y1 and Y2 are non-solid-torus L/NTF-equivalent graph manifolds

with torus boundary. Then for any union Y1∪ϕY2, ϕ : ∂Y1 → −∂Y2, the following are equivalent:

(i) Y1 ∪ϕY2 is an L-space;

(ii) Y1 ∪ϕY2 does not admit a co-oriented taut foliation;

(iii) ϕP
∗(L◦(Y1)) ∪ L◦(Y2) = P(H1(∂Y2)).

Proof. Suppose (iii) holds, so that Proposition 3.3 implies Y1 ∪ϕY2 is an L-space. Ozsváth and

Szabó have shown [OS04] that an L-space does not admit C2 co-oriented taut foliations, and this

result has been improved to C0 co-oriented taut foliations by Bowden [Bow15] and independently

by Kazez and Roberts [KR15].

Suppose (iii) fails to hold. If b1(Y1∪ϕY2)> 0, then Gabai [Gab83] tells us there is a co-oriented

taut foliation on Y1 ∪ϕ Y2, and we also know that Y1 ∪ϕ Y2 is not an L-space. Suppose instead

that b1(Y1∪ϕY2) = 0. Then L/NTF-equivalence implies ϕP
∗(F(Y1))∩F(Y2) 6= ∅, and so there are

co-oriented taut foliations Fi on Yi transverse to ∂Yi such that ϕP
∗(α(F1 ∩ ∂Y1)) = α(F2 ∩ ∂Y2).

By Corollary 2.2, we can isotop the incompressible tori in Y1 and Y2 so that each Fi restricts to

boundary-transverse co-oriented taut foliations on each of the JSJ components of each Yi. This

means that the JSJ components of Y1 ∪ϕ Y2 each admit boundary-transverse co-oriented taut

foliations which restrict to boundary foliations of matching slopes with respect to boundary-

gluing maps. We can therefore invoke the foliation gluing theorem of Boyer and Clay [BC14,

Theorem 9.5.2] to assert the existence of a co-oriented taut foliation on all of Y1 ∪ϕ Y2. Again,

this co-oriented taut foliation implies that Y1 ∪ϕY2 is not an L-space. 2
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4.2 Graph manifold conventions
Any closed graph manifold can be regarded as a Dehn filling of a graph manifold Y with torus
boundary. If b1(Y ) > 1, then L(Y ) = L◦(Y ) = ∅ and F(Y ) = P(H1(∂Y )) (see Proposition 4.3),
which is not very interesting.

If b1(Y ) = 1, then we call Y a tree manifold, since Y admits a rational homology sphere
Dehn filling, corresponding to a tree graph. Rooting the tree graph for Y at the Seifert fibered
piece containing ∂Y provides a recursive construction for Y ,

Y = M̂ ∪
( nd∐
i=1

(S1 ×D2
i ) q

ng∐
i=1

Yi

)
, (28)

where each of Y1, . . . , Yng is a non-solid-torus tree manifold with torus boundary. Since b1(Y ) = 1,
M̂ is the trivial circle fibration over an (n + 1)-punctured S2 or the twisted circle fibration
over an (n + 1)-punctured RP2, with boundary components ∂di M̂ := ∂iM̂ for i ∈ {1, . . . , nd},
∂gi M̂ := ∂nd+iM̂ for i ∈ {1, . . . , ng}, and ∂Y := ∂n+1M̂ =: ∂gng+1M̂ =: ∂dnd+1M̂ , with n := nd+ng.

We shall sometimes call M̂ the ‘foundation’ for Y .
Since edges in the graph for Y correspond to gluings along incompressible tori, each gluing

map ϕi : ∂Yi → −∂gi M̂ , for i ∈ {1, . . . , ng}, labels one of the ng edges descending from the root
of the graph for Y . We call Y1, . . . , Yng the daughter subtrees of Y . Each Yi is a tree manifold
with torus boundary and b1(Yi) = 1, with tree rooted at the Seifert fibered piece containing ∂Yi,
giving rise to a recursive description for Yi analogous to that for Y in (28). For any i ∈ {1, . . . , ng}
for which Yi is Floer simple, i.e. for which L◦(Yi) 6= ∅, we invoke Proposition 3.8 to write

[[ygi−, y
g
i+]] := ϕP

i∗(L(Yi)). (29)

If, instead, L(Yi) 6= ∅ for some non-Floer-simple Yi, then we write

{ygi−} := {ygi+} := ϕP
i∗(L(Yi)). (30)

Since the nd solid tori glued to M̂ create the exceptional fibers of the Seifert fibered ‘root’
M̂ ∪∐nd

i=1(S1×D2
i ) of our tree, we record the Seifert data of this Seifert fibered space by labeling

the root vertex with the Dehn filling slopes yd1 , . . . , y
d
nd
∈ Q. More explicitly, to each solid torus

S1×D2
i in (28) we associate the gluing map ϕd

i : ∂(S1×D2
i ) → −∂di M̂ , and set ydi := ϕdP

i∗ (li), for
li the rational longitude of S1 ×D2

i . As usual, we demand that each ydi 6=∞. We stray slightly
from our earlier convention by allowing ydi ∈ Z, but this allows us to fix e0 := yd0 := 0 and then
forget the zeroth fiber complement altogether, without loss of generality.

4.3 Statement of main results
We first show that all graph manifolds with torus boundary are L/NTF-equivalent, making our
main gluing tool, Proposition 4.4, applicable for all such non-solid-torus graph manifolds. We
then can make the inductive gluing arguments necessary to calculate L-space intervals for graph
manifolds with torus boundary.

Theorem 4.5. Every graph manifold Y with torus boundary is L/NTF equivalent, i.e. satisfies
F(Y )qL◦(Y ) = P(H1(∂Y )). Moreover, if we let R(Y ) denote the set of slopes of reducible (and
not S1 ×D2) Dehn fillings of Y, then FD(Y )q (L(Y ) ∪R(Y )) = P(H1(∂Y )).

The above also implies that the following calculation of L(Y ) for graph manifolds Y with
torus boundary completely determines both F(Y ) and FD(Y ).
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Theorem 4.6. Suppose Y is a graph manifold with torus boundary and non-empty L(Y ). If the

Seifert fibered component of Y containing ∂Y has non-orientable base, then L(Y ) = 〈−∞,+∞〉.
Otherwise, we have

L(Y ) =

{
[[y−, y+]], Y Floer simple,

{y−} = {y+}, Y not Floer simple,

where, for nd, ng, y
d
i , y

g
i−, and ygi+ as defined in § 4.2, we define y−, y+ ∈ Q ∪ {∞} as

y− := max
k>0
−1

k

(
1 +

nd∑
i=1

bydi kc+

ng∑
i=1

(dygi+ke − 1)

)
,

y+ := min
k>0
−1

k

(
−1 +

nd∑
i=1

dydi ke+

ng∑
i=1

(bygi−kc+ 1)

)
,

unless Y is a solid torus, in which case y− := y+ := −∑nd
i=1 y

d
i .

Remark. The above formulas for y∓ are finitely computable. In particular, the maximum

(respectively, minimum) is realized for k 6 s±, where s± is the least common positive multiple of

the denominators of yd1 , . . . , y
d
nd

and yg1±, . . . , y
g
ng±, with ∓ and ± cases taken respectively from

top to bottom. If computation is not the goal, then one can avoid treating the solid torus case

separately by replacing ‘max’ with ‘sup’ and ‘min’ with ‘inf’.

Unlike the case of oriented Seifert fibered spaces over the Möbius strip or disk, not all

graph manifolds with torus boundary are Floer simple. We therefore need a companion result to

characterize precisely when L◦ or L is non-empty.

Proposition 4.7. Suppose Y is a graph manifold with torus boundary. If b1(Y ) > 1, then

L(Y ) = ∅. Suppose b1(Y ) = 1, so that Y admits the recursive description in § 4.2.

If the JSJ component containing ∂Y has non-orientable base, then L(Y ) 6= ∅ if and only if

Y is Floer simple, if and only if the following holds:

(fs0) All daughter subtrees Y1, . . . , Yng are Floer simple;

∞ ∈ ([[ygi−, y
g
i+]])◦ for all i ∈ {1, . . . , ng}.

If the JSJ component containing ∂Y has orientable base, then Y is Floer simple if and only

if the daughter subtrees Y1, . . . , Yng are each Floer simple and one of the following holds:

(fs1) [[ygj−, y
g
j+]] = 〈−∞,+∞〉 for some j ∈ {1, . . . , ng};

∞ ∈ ([[ygi−, y
g
i+]])◦ for all i ∈ {1, . . . , ng}\{j}.

(fs2) −∞ < ygj− < ygj+ < +∞, for some j ∈ {1, . . . , ng};
∞ ∈ ([[ygi−, y

g
i+]])◦ for all i ∈ {1, . . . , ng}\{j};

y− < y+.

(fs3) At least one of {i : [[ygi−, y
g
i+]] = [−∞, ygi+]} and {i : [[ygi−, y

g
i+]] = [ygi−,+∞]} is the empty

set;

∞ ∈ [[ygi−, y
g
i+]] for all i ∈ {1, . . . , ng}.

If the JSJ component containing ∂Y has orientable base, then L(Y ) 6= ∅ with Y not Floer

simple if and only if one of the following holds:
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(nfs1) ng = 1, |{i : ydi ∈ Q\Z}| 6 1;
ϕP

1∗(L(Y1)) = {yg1 } for some yg1 ∈ Q;∑nd
i=1 y

d
i + yg1 ∈ Z or all yd1 , . . . , y

d
nd
∈ Z.

(nfs2) All daughter subtrees Y1, . . . , Yng are Floer simple;
−∞ < ygj− < ygj+ < +∞, for some j ∈ {1, . . . , ng};
∞ ∈ ([[ygi−, y

g
i+]])◦ for all i ∈ {1, . . . , ng}\{j};

y− = y+.

(nfs3) All daughter subtrees Y1, . . . , Yng are Floer simple;
{i : [[ygi−, y

g
i+]] = [−∞, ygi+]} 6= ∅ and {i : [[ygi−, y

g
i+]] = [ygi−,+∞]} 6= ∅;

∞ ∈ [[ygi−, y
g
i+]] for all i ∈ {1, . . . , ng}.

(nfs4) ϕP
j∗(L(Yj)) = {∞} for some j ∈ {1, . . . , ng};
∞ ∈ ϕP

i∗(L(Yi)) for all i ∈ {1, . . . , ng}.

Note that all eight (fs) and (nfs) conditions are mutually exclusive. Note also that the
isolated L-space fillings described in (nfs3) and (nfs4) are not graph manifolds.

We now proceed to prove our main results, starting with that of L/NTF-equivalence.

4.4 Proof of Theorem 4.5
Proposition 4.3 gives the desired result for b1(Y ) > 1.

We therefore restrict attention to graph manifolds Y with b1(Y ) = 1 and torus boundary
∂Y , so that Y admits the recursive description in (28), with tree graph rooted at the Seifert
fibered piece containing ∂Y . Inductively assume that any such Y with tree height less than or
equal to k − 1 is L/NTF-equivalent and satisfies F(Y ) q (L(Y ) ∪ R(Y )) = P(H1(∂Y )), noting
that Proposition 3.9 covers the case of trees of height zero. Fix an arbitrary tree manifold Y
with b1(Y ) = 1, torus boundary, and tree height k > 0, and parameterize its data as in § 4.2.

To each j ∈ {1, . . . , ng}, yj∗ := (yjj+1, . . . , y
j
ng+1) ∈ (Q ∪ {∞})ng+1−j , and θ ∈ {0, 1} we

associate a manifold Y j
θ [yj∗], constructed as follows. Starting with M̂ , first perform Dehn fillings of

slopes yd1 , . . . , y
d
nd

along the respective boundary components ∂d1 M̂, . . . , ∂dnd
M̂ in M̂ . Next, attach

the graph manifolds Y1, . . . , Yj−1, via the respective gluing maps ϕ1, . . . , ϕj−1, to the resulting

manifold. Leaving the boundary component ∂gj M̂ =: ∂Y j [yj∗] unfilled, lastly perform N̄ -fillings

of slopes yjj+1, . . . , y
j
ng+1 along the respective boundary components ∂gj+1M̂, . . . , ∂gng+1M̂ of the

resulting manifold, and call the result Y j
0 [yj∗]. To form Y j

1 [yj∗], replace the N̄ -filling of slope

yjng+1 in ∂gng+1M̂ ⊂ Y j
0 [yj∗] with the Dehn filling of slope yjng+1. In addition, set yng+1

∗ := ∅ and

Y ng+1
0 [∅] := Y .

For positive j 6 ng, inductively assume that for any yj∗ ∈ (Q ∪ ∞)ng+1−j and θ ∈ {0, 1},
any manifold of the form Y j

θ [yj∗] is L/NTF-equivalent if it is prime, noting that Proposition 4.3

covers the base case of j = 1. For any y ∈ Q∪{∞}, yj+1
∗ := (yjj+2, . . . , y

j
ng+1) ∈ (Q∪{∞})ng+1−j ,

θ ∈ {0, 1}, and manifold of the form Y j+1
θ [yj+1

∗ ], we can make matching choices of N̄ -filling gluing
maps to obtain

Y j+1
θ [yj+1

∗ ]N̄ (y) = Yj ∪ Y j
θ [(y, yj+1

∗ )]. (31)

Suppose Y j+1
θ [yj+1

∗ ]N̄ (y) is prime, implying Y j
θ [(y, yj+1

∗ )] is prime and hence L/NTF-equivalent

by inductive assumption. Since Y j
θ [(y, yj+1

∗ )] and Yj are L/NTF-equivalent non-solid-torus graph

manifolds with torus boundary, Proposition 4.4 makes Y j+1
θ [yj+1

∗ ]N̄ (y) an L-space if and only
if it fails to admit a co-oriented taut foliation. Since this holds for arbitrary y ∈ Q ∪ {∞},
Proposition 4.2 tells us Y j+1

θ [yj+1
∗ ] is L/NTF-equivalent.
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Completing our induction on j, we conclude that Y := Y ng+1
0 [∅] is L/NTF-equivalent, and

that Y ng
1 [y] is L/NTF-equivalent for any y ∈ Q ∪ {∞} for which Y ng

1 [y] is prime. Thus, for any
prime Dehn filling Y (y), Proposition 4.4 tells us that the union

Y (y) = Yng ∪ϕng
Y ng

1 [y] (32)

is an L-space if and only if it fails to admit a co-oriented taut foliation, and so

P(H1(∂Y ))\(L(Y ) ∪R(Y )) = F(Y )\R(Y ) = F(Y ). (33)

Inducting on tree height k then completes the proof. 2

We next prove Theorem 4.6 and Proposition 4.7 in tandem over the course of §§ 4.5–4.8. The
inductive program laid out in § 4.5 spans all three of the subsequent subsections.

4.5 Inductive set-up for proof of Theorem 4.6 and Proposition 4.7
Both results hold automatically when b1(Y )> 1. This leaves the case of b1(Y ) = 1, so that Y
admits the recursive description in (28), with tree rooted at the Seifert fibered piece containing
∂Y .

Inductively assume that both Theorem 4.6 and Proposition 4.7 hold for all tree manifolds
with torus boundary, b1 = 1, and tree height less than or equal to k−1, noting that Proposition 3.9
covers the height zero case. In addition, inductively assume that Theorem 4.6 and Proposition 4.7
hold for any tree manifold with torus boundary, b1 = 1, tree height less than or equal to k, and
up to ng−1 daughter subtrees, noting that Proposition 3.9 also covers the case of zero daughter
subtrees.

For the remainder of the proof, we fix an arbitrary height k tree manifold Y with torus
boundary and b1(Y ) = 1, as described in § 4.2. Thus, Y has ng daughter subtrees Y1, . . . , Yng ,
attached via respective gluing maps ϕ1, . . . , ϕng , and the Seifert fibered piece containing ∂Y , at
which we root the tree for Y , is the Dehn filling of slope yd∗ = (yd1 , . . . , y

d
nd

) of the ‘foundation’

M̂ of Y, where M̂ is either the trivial S1-fibration over an (n := nd + ng + 1)-punctured S2 or
the twisted S1-fibration over an n-punctured RP2. For any y ∈ Q ∪ {∞}, let Ŷ [y] denote the
complement of Yng\∂Yng in the Dehn filling Y (y), so that we regard Y (y) as the union

Y (y) = Ŷ [y] ∪ϕng
Yng . (34)

For any y ∈ Q, our inductive assumptions make Theorem 4.6 and Proposition 4.7 hold for Ŷ [y]
and Yng , since Yng has tree height less than or equal to k − 1, and since for y 6= ∞, Ŷ [y] is a
b1 = 1 tree manifold with torus boundary, ng − 1 daughter subtrees, and tree height less than
or equal to k.

4.6 Non-orientable base

Consider the case in which M̂ is S1-fibered over a punctured RP2. First note that since the regular
fiber class is torsion, its primitive lift f̃gng

∈ H1(∂Y ), of slope ∞, is the rational longitude, which
means that ∞ /∈ L(Y ).

Suppose there is some y 6= ∞ for which L(Ŷ [y]) 6= ∅. Then, by inductive assumption,
Proposition 4.7 tells us that the daughter subtrees Y1, . . . , Yng−1 are Floer simple, with∞ 6= ygi− >
ygi+ 6=∞ for all i ∈ {1, . . . , ng − 1}, where [[ygi−, y

g
i+]] := ϕi(L(Yi)). This conversely implies that

Ŷ [y] is Floer simple for all y ∈ 〈−∞,+∞〉. Now, for each y ∈ 〈−∞,+∞〉, Ŷ [y] is a non-solid-torus
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graph manifold, and so Proposition 4.4 tells us that the union Y (y) = Ŷ [y] ∪ Yng in (34) is an
L-space if and only if

L◦(Ŷ [y]) ∪ ϕP
ng∗(L◦(Yng)) = P(H1(∂gng

M̂)). (35)

Since, by inductive assumption, Theorem 4.6 implies L◦(Ŷ [y])=〈−∞,+∞〉 for all y∈〈−∞,+∞〉,
(35) holds if and only if Yng is Floer simple and has ∞ 6= ygng− > ygng+ 6= ∞, in which case we
consequently have L(Y ) = 〈−∞,+∞〉.

Conversely, suppose that L(Ŷ [y]) = ∅ for all y ∈ Q. Then for all y ∈ Q, Proposition 4.4
implies that Y (y) = Ŷ [y] ∪ Yng is not an L-space, and so L(Y ) = ∅. Moreover, since there is
y ∈ Q with L(Ŷ [y]) = ∅, our inductive assumption for Proposition 4.7 tells us that either there
is some i ∈ {1, . . . , ng − 1} for which Yi is not Floer simple, or there is some Floer simple Yi
failing to satisfy ∞ 6= ygi− > ygi+ 6=∞.

Thus, in either case, both Theorem 4.6 and Proposition 4.7 hold for Y .

4.7 Orientable base: cases in which Ŷ [y] is never a solid torus
From now on, we assume that the JSJ component of Y containing ∂Y has orientable base.

In this subsection of the proof, we consider the case in which Ŷ [y] is not a solid torus for
any y ∈ Q ∪ {∞}. More precisely, we consider the case of a fixed tree manifold Y with torus
boundary and b1(Y ) = 1, parameterized as in § 4.2, with tree height k > 0 and ng > 0 daughter
subtrees, where we demand that if ng − 1 = 0, then ydi /∈ Z for at least two distinct values of
i ∈ {1, . . . , nd}.

We begin by fixing some notation. For all k ∈ Z>0, define ŷ0
−(k), ŷ0

+(k) ∈ Q ∪ {∞} by

ŷ0
−(k) := −1

k

(
1 +

nd∑
i=1

bydi kc+

ng−1∑
i=1

(dygi+ke − 1)

)
,

ŷ0
+(k) := −1

k

(
−1 +

nd∑
i=1

dydi ke+

ng−1∑
i=1

(bygi−kc+ 1)

)
.

(36)

The endpoints y−, y+ ∈ Q ∪ {∞} defined in Theorem 4.6 are then given by

y− := max
k>0

(
ŷ0
−(k)− 1

k
(dygng+ke − 1)

)
, y+ := min

k>0

(
ŷ0

+(k)− 1

k
(bygng−kc+ 1)

)
. (37)

Moreover, if we define the functions ŷ−, ŷ+ ∈ Q ∪ {∞} of y ∈ Q ∪ {∞} by

ŷ− := max
k>0

(
−1

k
bykc+ ŷ0

−(k)

)
, ŷ+ := min

k>0

(
−1

k
dyke+ ŷ0

+(k)

)
, (38)

then by inductive assumption, we have

L(Ŷ [y]) =

{
{ŷ−} = {ŷ+}, Ŷ [y] not Floer simple,

[[ŷ−, ŷ+]], Ŷ [y] Floer simple,
(39)

for all y ∈ Q for which L(Ŷ [y]) 6= ∅. Since Ŷ [y] and Yng are each non-solid-torus graph manifolds
for all y ∈ Q, Proposition 4.4 then implies, for each y ∈ Q, that

y ∈ L(Y ) ⇐⇒ L◦(Ŷ [y]) ∪ ϕP
ng∗(L◦(Yng)) = Q ∪ {∞} (40)

for all y ∈ Q. Note that Ŷ [∞] is not a graph manifold, being a non-solid-torus with compressible
boundary, hence not prime.

We next prove some basic rules about the behavior of y− and y+.
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Claim 1. If ygng+, ŷ−, y−, y ∈ Q, then

ygng+ > ŷ− ⇐⇒ y ∈ [y−,+∞]. (41)

If ygng−, ŷ+, y+, y ∈ Q, then

ygng− < ŷ+ ⇐⇒ y ∈ [−∞, y+]. (42)

Proof of Claim 1. Suppose that ygng+, ŷ−, y−, y ∈ Q. Then

ygng+ > ŷ−

⇐⇒ ygng+ > −1

k
bykc+ ŷ0

−(k) ∀k ∈ Z>0 (43)

⇐⇒ dygng+ke − 1 > −bykc+ ŷ0
−(k)k ∀k ∈ Z>0 (44)

⇐⇒ yk > ŷ0
−(k)k − (dygng+ke − 1) ∀k ∈ Z>0 (45)

⇐⇒ y > y−, (46)

where (37) implies (43), (22) implies (44), (21) implies (45), and (38) implies (46). The proof of
(42) is nearly identical, but with signs reversed. 2

Claim 2. If yd1 , . . . , y
d
nd
, yg1+, . . . , y

g
ng+ ∈ Q, then

y− > −
nd∑
i=1

ydi −
ng∑
i=1

ygi+. (47)

If yd1 , . . . , y
d
nd
, yg1−, . . . , y

g
ng− ∈ Q, then

y+ < −
nd∑
i=1

ydi −
ng∑
i=1

ygi−. (48)

Proof of Claim 2. Writing [·] : Q → [0, 1〉 for the map sending q 7→ [q] := q − bqc, define

y′−(k) :=
1

k

(
−1 +

nd∑
i=1

[ydi k] +

ng∑
i=1

(1− [−ygi+k])

)
(49)

for each k ∈ Z>0, so that

y− = −
nd∑
i=1

ydi −
ng∑
i=1

ygi+ + max
k>0

y′−(k). (50)

In addition, let

s+ := min{k ∈ Z>0 | yd1k, . . . , ydnd
k, yg1+k, . . . , y

g
ng+k ∈ Z} (51)

denote the least common positive multiple of the denominators of the {ydi } and {ygi+}.
Suppose (47) fails to hold. Then since y′−(k) 6 0 for all k ∈ Z>0, we have

0 > y′−(1) + (s+ − 1)y′−(s+ − 1)

= −2 +

nd∑
i=1

([ydi ] + [−ydi ]) +

ng∑
i=1

(1 + (1− [−ygi+]− [ygi+]))

> −2 + |{i : ydi ∈ Q\Z}|+ ng, (52)
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and likewise, we have

0 > s+y
′
−(s+) = −1 +

ng∑
i=1

1 = ng − 1. (53)

The hypotheses of § 4.7, however, demand that either |{i : ydi ∈ Q\Z}| > 2 and ng = 1,
contradicting (52), or ng>1, contradicting (53). Thus (47) holds, and a similar argument proves
(48). 2

For the proof that Theorem 4.6 and Proposition 4.7 hold for Y , we divide our argument into
two main cases, depending on whether or not ∞ ∈ L(Y ).

Proposition 4.8. ∞ ∈ L(Y ) if and only if either condition (fs3) from Proposition 4.7 holds,
in which case ∞ ∈ L(Y ) = [[y−, y+]], or condition (nfs3) or (nfs4) from Proposition 4.7 holds,
in which case L(Y ) = {y−} = {y+} = {∞}.

Proof. Since Ŷ [∞] is not a graph manifold, our inductive assumptions fail to hold for Ŷ [∞], but
fortunately, Y (∞) has a simple structure. The remark in § 2.2 implies

Y (∞) =

(
nd

#
i=1

L(sdi , r
d
i )

)
#

(
ng

#
i=1

Yi
(
(ϕP

i∗)
−1(∞)

))
, (54)

where we have written ydi = rdi /s
d
i , L(sdi , r

d
i ) denotes the lens space of slope sdi /r

d
i , and

Yi((ϕ
P
i∗)
−1(∞)) is the Dehn filling of the inverse image of the slope ∞. Thus,

∞ ∈ L(Y ) ⇐⇒ ∞ ∈ ϕP
i∗(L(Yi)) for all i ∈ {1, . . . , ng}. (55)

Conditions (nfs3) and (fs3) jointly exhaust the cases in which the right-hand condition of
(55) holds and all daughter subtrees Y1, . . . , Yng are Floer simple. Condition (nfs4), on the other
hand, describes all cases in which the right-hand condition of (55) holds and at least one Yj is
not Floer simple.

If (nfs4) holds, then, permuting the daughter subtrees without loss of generality so that
ϕP
ng∗(L(Yng)) = {∞}, we have L◦(Yng) = ∅, which, by (40), implies L(Y ) ∩ Q = ∅, so that
L(Y ) = {∞}. Moreover, the fact that ϕP

ng∗(L(Yng)) = {∞} implies, by inductive assumption,
that ygng− = ygng+ =∞. Thus y− and y+ each have infinite summands, and so y− = y+ =∞.

Next suppose that (nfs3) holds, and set

I−∞ := {i : [[ygi−, y
g
i+]] = [−∞, ygi+]}, I+∞ := {i : [[ygi−, y

g
i+]] = [ygi−,+∞]}. (56)

We can also define the analogous sets for Ŷ [y]:

I
Ŷ [y]
−∞ := I−∞ ∩ {1, . . . , ng − 1}, I

Ŷ [y]
+∞ := I+∞ ∩ {1, . . . , ng − 1}. (57)

Since I−∞ and I+∞ are non-empty for (nfs3), we know that y− and y+ each have infinite
summands, implying y− = y+ = ∞. Assume without loss of generality that ng ∈ I+∞. Thus

I
Ŷ [y]
−∞ 6= ∅, and I

Ŷ [y]
+∞ is either empty or not. By inductive assumption, Proposition 4.7 holds for

Ŷ [y] for all y ∈ Q. Thus, for each y ∈ Q, either I
Ŷ [y]
−∞ and I

Ŷ [y]
+∞ are both non-empty, making

(nfs3) hold for Ŷ [y], so that L(Ŷ [y]) = {∞}; or I
Ŷ [y]
−∞ 6= ∅ and I

Ŷ [y]
+∞ = ∅, making (fs3) hold for

Ŷ [y], so that L(Ŷ [y]) = [ŷ−,+∞]. In both cases, the right-hand side of (40) fails to hold for all
y ∈ Q, and we are left with L(Y ) = {∞} = {y−} = {y+}.
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This leaves us with the case in which (fs3) holds, for which we first consider the subcase
I+∞ = ∅ and I−∞ 6= ∅, implying [[y−, y+]] = [y−,+∞]. Without loss of generality, assume
ng ∈ I−∞, so that [[ygng−, y

g
ng+]] = [−∞, ygng+]. Since L(Ŷ [y]) = [[ŷ−, ŷ+]] for all y ∈Q by inductive

assumption, we know that either:

(a) I
Ŷ [y]
−∞ = I

Ŷ [y]
+∞ = ∅; or

(b) I
Ŷ [y]
−∞ 6= ∅, with L(Ŷ [y]) = [ŷ−,+∞].

In case (a), the condition I
Ŷ [y]
−∞ = I

Ŷ [y]
+∞ = ∅, together with (55), implies

∞ 6= ygi− > ygi+ 6=∞ for all i ∈ {1, . . . , ng − 1}. (58)

Thus, if we apply Claim 2 to (38), respectively substituting ŷ−, ŷ+, nd + 1, ng − 1, and
(y, yd1 , . . . , y

d
nd

) for y−, y+, nd, ng and (yd1 , . . . , y
d
nd

) in the statement of the claim, then we
obtain

∞ 6= ŷ− > −y −
nd∑
i=1

ydi −
ng−1∑
i=1

ygi+ > −y −
nd∑
i=1

ydi −
ng−1∑
i=1

ygi− > ŷ+ 6=∞, (59)

with the outer, strict, inequalities resulting from Claim 2, and the middle, non-strict, inequality
resulting from (58). Thus, for any y ∈ Q, we have

L◦(Ŷ [y]) ∪ ϕP
ng∗(L◦(Yng)) = (〈ŷ−,+∞] ∪ [−∞, ŷ+〉) ∪ 〈−∞, ygng+〉 (60)

by inductive assumption, and so (40) implies that y ∈ L(Y ) if and only if ygng+ > ŷ−, which, by

Claim 1, occurs if and only if y ∈ [y−,+∞]. On the other hand, in case (b), with L◦(Ŷ [y]) = 〈ŷ−,
+∞〉, (40) again implies, for any y ∈Q, that y ∈ L(Y ) if and only if ygng+ > ŷ−, which again occurs
if and only if y ∈ [y−,+∞]. Thus, whether case (a) or (b) holds, we always have∞∈ L(Y ) = [y−,
+∞] = [[y−, y+]].

If (fs3) holds with I+∞ 6= ∅ and I−∞ = ∅, then an argument precisely analogous to that in
the preceding paragraph shows that ∞ ∈ L(Y ) = [−∞, y+] = [[y−, y+]].

Lastly, suppose that (fs3) holds with I+∞ = I−∞ = ∅. This, as well as the fact that ∞ ∈
[[ygi−, y

g
i+]] for each i ∈ {1, . . . , ng}, implies that ∞ 6= ygi− > ygi+ 6= ∞ for all i ∈ {1, . . . , ng},

which, by Claim 2, implies that ∞ 6= y− > y+ 6= ∞. Moreover, applying Claim 2 to (38) as in
case (a) above yields (59), so that we also have ∞ 6= ŷ− > ŷ+ 6= ∞. By inductive assumption,
we then have

L◦(Ŷ [y]) ∪ ϕP
ng∗(L◦(Yng)) = (〈ŷ−,+∞] ∪ [−∞, ŷ+〉) ∪ (〈ygng−,+∞] ∪ [−∞, ygng+〉) (61)

for any y ∈ Q, and so (40) implies that y ∈ L(Y ) if and only if ygng+ > ŷ− or ygng− < ŷ+ which,
by Claim 1, occurs if and only if y ∈ [y−,+∞] ∪ [−∞, y+]. We therefore have ∞ ∈ L(Y ) =
[[y−, y+]] = [y−,+∞] ∪ [−∞, y+], completing our proof. 2

Proposition 4.9. Suppose ∞ /∈ L(Y ). Then L(Y ) 6= ∅ if and only if either (nfs2) holds for Y ,
in which case L(Y ) = {y−} = {y+}, or (fs1) or (fs2) holds for Y , in which case L(Y ) = [[y−, y+]].

Proof. We first observe that if any daughter subtree of Y fails to be Floer simple, then L(Y ) = ∅.
That if we choose Yng to be non-Floer-simple, then by (40), L◦(Yng) = ∅ implies L(Y ) ∩Q = ∅,
which, since ∞ /∈ L(Y ), implies L(Y ) = ∅. Thus, we henceforth assume the daughter subtrees
Y1, . . . , Yng are all Floer simple.
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Let I±∞, I∩ ⊂ {1, . . . , ng} denote the sets

I±∞ := {i : [[ygi−, y
g
i+]] = 〈−∞,+∞〉},

I∩ := {i : [[ygi−, y
g
i+]] = [ygi−,+∞] ∩ [−∞, ygi+]}. (62)

Then by (55) from the proof of Proposition 4.8, we know that

I±∞ ∪ I∩ 6= ∅. (63)

Suppose I±∞ 6= ∅. We claim that in this case, L(Y ) 6= ∅ if and only if (fs1) holds for Y , in
which case L(Y ) = [[y−, y+]]. First note that Y fails to satisfy any of the conditions for non-empty
L(Y ) in Proposition 4.7, except possibly (fs1). Suppose that Y satisfies (fs1). Then for each
i ∈ {1, . . . , ng − 1}, we have ∞ ∈ [[ygi−, y

g
i+]]◦, implying ∞ 6= ygi− > ygi+ 6=∞, which by Claim 2

implies ∞ 6= ŷ− > ŷ+ 6=∞ for all y ∈ Q. By inductive assumption, we then have ∞ ∈ L◦(Ŷ [y])
for all y ∈ Q. Thus, since (40) tells us that

L◦(Ŷ [y]) ∪ 〈−∞,+∞〉 = Q ∪ {∞} ⇐⇒ y ∈ L(Y ), (64)

we have L(Y ) = Q = 〈−∞,+∞〉 = [[y−, y+]]. Suppose instead we are given that L(Y ) 6= ∅. Then
(64) tells us that ∞ ∈ L◦(Ŷ [y]) for all y ∈ L(Y ). By inductive assumption this implies, for each
y ∈ L(Y ), that (fs3) holds for Ŷ [y], with ∞ ∈ [[ŷ−, ŷ+]]◦. Since ∞ 6= {ŷ−, ŷ+}, we know that ŷ−

and ŷ+ cannot have infinite summands, and so I
Ŷ [y]
−∞ = I

Ŷ [y]
+∞ = ∅. This, in addition to the fact

that (fs3) holds for Ŷ [y], implies that∞ ∈ [[ygi−, y
g
i+]]◦ for all i ∈ {1, . . . , ng−1}, and thus (fs1)

holds for Y .
Next, consider the case in which I±∞ = ∅, so that by (63), we have I∩ 6= ∅. Assume, without

loss of generality, that ng ∈ I∩. Then since ∞ /∈ [[ygng−, y
g
ng+]]◦, the L-space gluing condition in

(40) again tells us that ∞ ∈ L◦(Ŷ [y]) for all y ∈ L(Y ). Just as in the preceding paragraph, we
deduce from this that ∞ ∈ [[ygi−, y

g
i+]]◦ for all i ∈ {1, . . . , ng − 1}, and that this implies that

L◦(Ŷ [y]) = [[ŷ−, ŷ+]], with ∞ 6= ŷ− > ŷ+ 6= ∞, for all y ∈ Q. Since y− and y+ have only finite
summands, we also know that y−, y+ ∈ Q. We therefore have

y ∈ L(Y ) ⇐⇒ (〈ŷ−,+∞] ∪ [−∞, ŷ+〉) ∪ (〈ygng−,+∞] ∩ [−∞, ygng+〉) = Q ∪ {∞}
⇐⇒ ygng+ > ŷ− and ygng− < ŷ+

⇐⇒ y ∈ [y−,+∞] ∩ [−∞, y+], (65)

where the first line is due to (40), and the third line is due to Claim 1. Thus, if y− > y+, then
L(Y ) = ∅; if y− = y+, then (nfs2) holds for Y , with L(Y ) = {y−} = {y+}; and if y− < y+, then
(fs2) holds for Y , with L(Y ) = [[y−, y+]] = [y−, y+]. 2

4.8 Orientable base: cases involving solid tori Ŷ [y]
In this final subsection of the proof of Theorem 4.6 and Proposition 4.7, we consider all cases of Y
for which Ŷ [y], defined in (34), is a solid torus for some y ∈ Q∪{∞}. Recall that we have fixed a
tree manifold Y with torus boundary, b1(Y ) = 1, tree height k > 0, and ng > 0 daughter subtrees,
as parameterized in § 4.2. Since Ŷ [y] contains no incompressible tori, we must have ng − 1 = 0.
Thus, for any y ∈ Q, Ŷ [y] is Seifert fibered over the disk, and is a solid torus if and only if it
has one or fewer exceptional fibers. This occurs for y ∈ Z if and only if the set {yd1 , . . . , ydnd

}
contains one or fewer non-integers. Since Ŷ [y] and Y are invariant under reparameterizations
(yd1 , . . . , y

d
nd

) 7→ (yd1 +z1, . . . , y
d
nd

+znd) with
∑nd

i=1 zi = 0 and each zi ∈ Z, or under the operation
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of forgetting a fiber complement with Dehn filling of slope πi(−h̃i) = 0, we may assume, without
loss of generality, that nd = 1. Thus ng = nd = 1.

If the unique daughter subtree Y1 satisfies L(Y1) = ∅, then the gluing Propositions 4.4 and 3.4
imply that L(Y ) = ∅, as predicted for Y by Proposition 4.7.

We therefore henceforth assume L(Y1) 6= ∅. Since Y has tree height k, Y1 has tree height k−1.
Thus, by inductive assumption as laid out in § 4.5, Y1 satisfies Theorem 4.6 and Proposition 4.7,
with

L(Y1) =

{
{yg1−} = {yg1+}, Y1 not Floer simple,

[[yg1−, y
g
1+]], Y1 Floer simple.

(66)

We proceed, once again, by fixing some notation. Recall the definitions of y− and y+:

y− := max
k>0
−1

k
(1 + byd1kc+ (dyg1+ke − 1)),

y+ := min
k>0
−1

k
(−1 + dyd1ke+ (byg1−kc+ 1)),

(67)

where, as always, we define y− or y+ to be infinite if any of its summands is infinite.
For any y 6=∞, Ŷ [y] is Seifert fibred over the disk, hence is Floer simple, allowing us to write

[[ŷ−, ŷ+]] := L(Ŷ [y]). Moreover, when Ŷ [y] is not a solid torus, we have

{y, yd1} ∩ Z = ∅;
ŷ− = max

k>0
−1

k
(1 + bykc+ byd1kc),

ŷ+ = min
k>0
−1

k
(−1 + dyke+ dyd1ke),

(68)

but when Ŷ [y] is a solid torus, we have

{y, yd1} ∩ Z 6= ∅; ŷ− = ŷ+ = −y − yd1 . (69)

We next prove the analogs of Claims 1 and 2 from § 4.7.

Claim 3. For any yd1 , y ∈ Q, we have

y ∈ [y−,+∞] ⇐⇒
{
yg1+ > ŷ− if {y, yd1} ∩ Z = ∅

yg1+ > ŷ− if {y, yd1} ∩ Z 6= ∅
if yg1+ ∈ Q; (70)

y ∈ [−∞, y+] ⇐⇒
{
yg1− < ŷ+ if {y, yd1} ∩ Z = ∅

yg1− 6 ŷ+ if {y, yd1} ∩ Z 6= ∅
if yg1− ∈ Q. (71)

Proof of Claim 3. To understand (70), note that due to (21), we have y > y− if and only if

bykc > −(byd1kc+ dyg1+ke), for all k > 0. (72)

When {y, yd1} ∩ Z = ∅, (22) implies that (72) holds if and only if yg1+ > ŷ−. On the other hand,
if {y, yd1} ∩ Z 6= ∅, then bykc+ byd1kc = b(y + yd1 )kc, and so applying (21) to (72) yields

y + yd1 > max
k>0
−1

k
dyg1+ke = −yg1+, (73)

which is equivalent to the inequality yg1+ > ŷ−, completing the proof of (70). One can then obtain
(71) by replacing y, yg1+, and yd1 in (70) with −y, −yg1−, and −yd1 , respectively. 2
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Claim 4. If yd1 , y
g
1+ ∈ Q, then

−yd1 − yg1+ 6 y− 6 −byd1 + yg1+c, with

−yd1 − yg1+ = y− ⇐⇒ yd1 ∈ Z or yd1 + yg1+ ∈ Z.

If yd1 , y
g
1− ∈ Q, then

−dyd1 + yg1−e 6 y+ 6 −yd1 − yg1−, with

y+ = −yd1 − yg1− ⇐⇒ yd1 ∈ Z or yd1 + yg1− ∈ Z.

Proof of Claim 4. Just as in the proof of Claim 2, we define

y′−(k) :=
1

k
([yd1k]− [−yg1+k]) (74)

for each k ∈ Z>0, so that
y− = −yd1 − yg1++ max

k>0
y′−(k). (75)

Demanding yd1 , y
g
1+ ∈ Q, we again set s+ := min{k ∈ Z>0 | yd1k, yg1+k ∈ Z}.

Since y′−(s+) = 0, we already know that y− > −yd1 − yg1+ for all yd1 , y
g
1+ ∈ Q. If ydi ∈ Z, then

y′−(k) 6 0 for all k ∈ Z>0, implying y− > −yd1 − yg1+. Suppose that y− = −yd1 − yg1+ for some
ydi ∈ Q\Z. Then since y′−(k) 6 0 for all k ∈ Z>0, we have

0 > y′−(1) + (s+ − 1)y′−(s+ − 1)

= ([yd1 ] + [−yd1 ])− ([−yg1+] + [yg1+])

> 0. (76)

Thus, the top line of (76) must be an equality, which, since y′−(k) 6 0 for all k ∈ Z>0, implies
y′−(1) = y′−(s+ − 1) = 0. In particular, the fact that y′−(1) = 0 implies that yd1 + yg1+ ∈ Z.
Conversely, if yd1 + yg1+ ∈ Z, then y′−(k) ≡ 0 for all k ∈ Z>0, implying y− = −yd1 − yg1+.

We have shown that y− > −yd1 − yg1+, with equality if and only if yd1 ∈ Z or yd1 + yg1+ ∈ Z,
and so it remains to show that y− 6 −byd1 + yg1+c. Note that for each k ∈ Z>0, we have

y′−(k) =


1

k
[yd1k + yg1+k], yg1+k ∈ Z,

1

k
([yd1k] + [yg1+k]− 1), yg1+k /∈ Z,

6
1

k
[(yd1 + yg1+)k]

6 [yd1 + yg1+]. (77)

Thus, by (75), we have

y− 6 −yd1 − yg1+ + [yd1 + yg1+] = −byd1 + yg1+c. (78)

A similar argument proves all of the analogous results for y+. 2

For the proof that Theorem 4.6 and Proposition 4.7 hold for Y , we divide our argument into
three main cases, first according to whether or not Y1 is Floer simple, and then according to
whether ∞ ∈ L(Y ).

Proposition 4.10. Suppose L(Y1) 6= ∅ with Y1 not Floer simple. Then L(Y ) 6= ∅ if and only if
condition (nfs1) or (nfs4) from Proposition 4.7 holds, in which case L(Y ) = {y−} = {y+}.

1036

https://doi.org/10.1112/S0010437X16008319 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008319


L-space intervals for graph manifolds and cables

Proof. For brevity, set yg1 := yg1− = yg1+, so that ϕP
1∗(L(Y1)) = {yg1 }. We first note that if

Ŷ [y] has incompressible boundary, in which case Ŷ [y] is a non-solid-torus graph manifold, then
Proposition 4.4 implies that the union Y (y) = Ŷ [y]∪ϕ1Y1 is not an L-space. Ŷ [y] has compressible
boundary if and only if yd1 ∈ Z or y ∈ Z ∪ {∞}. Thus, for any y ∈ Q ∪ {∞}, Proposition 3.4
implies

y ∈ L(Y ) ⇐⇒ ŷ− = ŷ+ = yg1 and yd1 ∈ Z or y ∈ Z ∪ {∞}. (79)

Condition (nfs4) holds if and only if yg1 =∞. Since ŷ− = ŷ+ =∞ if and only if y =∞, we
then have L(Y ) = {∞} = {y−} = {y−} when yg1 =∞.

We henceforth demand yg1 ∈ Q. If yd1 ∈ Z, then (nfs1) holds, and we have

ŷ− = ŷ+ = −yd1 − y, y− = y+ = −yd1 − yg1 . (80)

Statement (79) then tells us that y ∈ L(Y ) if and only if −yd1 − y = yg1 , which occurs if and only
if y = −yd1 − yg1 = y− = y+, which means that L(Y ) = {y−} = {y+}.

Lastly, suppose that yd1 ∈ Q\Z, with yg1 ∈ Q. Since ŷ− = ŷ+ =∞ 6= yg1 when y =∞, (79) tells
us that∞ /∈ L(Y ). Thus y ∈ L(Y ) if and only if y ∈ Z and ŷ− = ŷ+ = yg1 . Since ŷ− = ŷ+ = −yd1−y
when y ∈ Z, this means y ∈ L(Y ) if and only if −yd1 − yg1 = y ∈ Z. That is,

L(Y ) =

{
−yd1 − yg1 , −yd1 − yg1 ∈ Z,
∅, −yd1 − yg1 /∈ Z.

(81)

Thus, if yd1 ∈ Q\Z and yg1 ∈ Q, then L(Y ) is non-empty if and only if (nfs1) holds, in which
case, since yd1 + yg1 ∈ Z, Claim 4 implies y− = y+ = −yd1 − yg1 , so that L(Y ) = {y−} = {y+}. 2

We henceforth demand that Y1 be Floer simple, in which case Propositions 4.4 and 3.4 tell
us that for any y ∈ Q ∪ {∞}, the union Y (y) = Ŷ [y] ∪ϕ1 Y1 is an L-space if and only if{

[[ŷ−, ŷ+]]◦ ∪ [[yg1−, y
g
1+]]◦ = Q ∪ {∞} if Ŷ [y] has incompressible boundary,

ŷ− = ŷ+ ∈ [[yg1−, y
g
1+]] if Ŷ [y] has compressible boundary.

(82)

Note that Ŷ [y] has compressible boundary if and only if {y, yd1} ∩ Z 6= ∅ or y = ∞, with the
former condition accounting for the case of solid torus Ŷ [y], and the latter condition accounting
for the case in which Ŷ [∞] is either a solid torus (when yd1 ∈ Z) or the connected sum of a solid
torus with a lens space (when yd1 /∈ Z).

Proposition 4.11. Suppose Y1 is Floer simple. Then ∞ ∈ L(Y ) if and only if condition (fs3)
from Proposition 4.7 holds, in which case L(Y ) = [[y−, y+]].

Proof. The first part of the statement is immediate. That is, since Ŷ [∞] has compressible
boundary, with ŷ− = ŷ+ = ∞, we have ∞ ∈ L(Y ) if and only if ∞ ∈ [[yg1−, y

g
1+]], which occurs

if and only if (fs3) holds. For the remainder of the proof, we assume (fs3) holds.
Consider the case in which yg1− 6= yg1+. Since ∞ ∈ [[yg1−, y

g
1+]], [[yg1−, y

g
1+]] takes one of the

forms (a) [yg1−,+∞], (b) [−∞, yg1+], or (c) [yg1−,+∞]∪ [−∞, yg1+], in which cases [[y−, y+]] takes
the respective forms (a) [−∞, y+], (b) [y−,+∞], (c) [y−,+∞] ∪ [−∞, y+], with case (c) due to
the fact that ∞ 6= yg1− > yg1+ 6= ∞ implies ∞ 6= y− > y+ 6= ∞ by Claim 4. Thus, for y ∈ Q,
the condition y ∈ [[y−, y+]] is respectively equivalent to the right-hand conditions of (a) (70),
(b) (71), or (c) (70) or (71) from Claim 3, each of which conditions, given the respective form of
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[[yg1−, y
g
1+]], is equivalent to (82), which holds if and only if Y (y) is an L-space, and we conclude

that L(Y ) = [[y−, y+]].
Next, suppose that (fs3) holds with yg1− = yg1+ =: yg1 . Since [[yg1−, y

g
1+]] = [[yg1−, y

g
1+]]◦ =

Q ∪ {∞}\yg1 , the L-space condition in (82) takes the following form. For any y ∈ Q,

y ∈ L(Y ) ⇐⇒
{
yg1 ∈ [[ŷ−, ŷ+]]◦, {yd1 , y} ∩ Z = ∅,

y 6= −yd1 − yg1 , {yd1 , y} ∩ Z 6= ∅.
(83)

The derivation of the {yd1 , y} ∩ Z = ∅ case from (82) is immediate. In the {yd1 , y} ∩ Z 6= ∅ case,
(82) tells us that y ∈ L(Y ) if and only if ŷ− 6= yd1 . Since ŷ− = ŷ+ = −yd1 − y, this occurs if and
only if y 6= −yd1 − yg1 , completing the proof of (83).

Now, since (fs3) demands that ∞ ∈ [[yg1−, y
g
1+]], implying yg1 ∈ Q, Claim 4 tells us that

y+ 6 −yd1 − yg1 6 y−, with y− = y+ if and only if yd1 ∈ Z or yd1 + yg1 ∈ Z. If yd1 ∈ Z, then (83)
implies L(Y ) = Q ∪ {∞}\{−yd1 − yg1 } = [[y−, y+]]. Suppose instead that yd1 /∈ Z. If yd1 + yg1 ∈ Z,
then for each y ∈ [[y−, y+]]∩Q, either y /∈ Z, in which case, the fact that y ∈ [y−,+∞]∪ [−∞, y+]
makes Claim 3 tell us that yg1 ∈ [[ŷ−, ŷ+]]◦, so that (83) implies y ∈ L(Y ); or y ∈ Z, in which
case (83) tells us that y ∈ L(Y ) if and only if y 6= −yd1 − yg1 = y− = y+. Combining these two
results makes L(Y ) = [[y−, y+]].

Lastly, consider the case in which yg1− = yg1+ =: yg1 ∈ Q, yd1 /∈ Z, and yd1 + yg1 /∈ Z. Since in
this case y ∈ Z automatically implies y 6= −yd1 − yg1 , we deduce that the second line of (83) is
vacuous. That is, y ∈ L(Y ) for all y ∈ Z. Accordingly, since Claim 4 tells us that

−dyd1 + yg1 e 6 y+ < −yd1 − yg1 < y− 6 −byd1 + yg1 c, (84)

we observe that the complement of [[y−, y+]] contains no integers, and so Z ⊂ [[y−, y+]]. On
the other hand, for any y ∈ Q\Z, (83) tells us that y ∈ L(Y ) if and only if yg1 ∈ [[ŷ−, ŷ+]]◦,
which, by Claim 3, occurs if and only if y ∈ [y−,+∞] ∪ [−∞, y+] = [[y−, y+]]. Thus, once again,
L(Y ) = [[y−, y+]], completing the proof of the proposition. 2

Proposition 4.12. Suppose Y1 is Floer simple and ∞ /∈ L(Y ). Then L(Y ) 6= ∅ if and only
if either condition (nfs2) from Proposition 4.7 holds, in which case L(Y ) = {y−} = {y+}, or
condition (fs1) or (fs2) holds, in which case L(Y ) = [[y−, y+]].

Proof. Since Y1 is Floer simple, and since ∞ /∈ L(Y ) implies that (fs3) fails to hold, we know
that ∞ /∈ [[yg1−, y

g
1+]]. Thus, [[yg1−, y

g
1+]] = 〈−∞,+∞〉 or [[yg1−, y

g
1+]] = [yg1−, y

g
1+].

Suppose that [[yg1−, y
g
1+]] = 〈−∞,+∞〉, which occurs if and only if condition (fs1) holds. For

any y ∈ Q, we have ∞ 6= ŷ− > ŷ+ 6=∞, implying condition (82) holds, making Y (y) an L-space.
Thus, since yg1− = yg1+ =∞ implies y− = y+ =∞, we have L(Y ) = Q = 〈−∞,+∞〉 = [[y−, y+]].

Lastly, suppose [[yg1−, y
g
1+]] = [yg1−, y

g
1+]. For any y ∈ Q, we have y ∈ [y−,+∞] ∩ [−∞, y+]

if and only if the right-hand conditions of (70) and (71) from Claim 3 hold, which, since [[yg1−,
yg1+]] = [yg1−,+∞]∩ [yg1−, y

g
1+] 6= ∅, occurs if and only if (82) holds, which happens precisely when

Y (y) is an L-space. Thus, L(Y ) = [y−,+∞] ∩ [−∞, y+], or in other words,

L(Y ) =


[[y−, y+]], y− < y+,

{y−} = {y+}, y− = y+,

∅, y− > y+.

(85)

That is, L(Y ) is non-empty if and only if either (fs2) holds, in which case L(Y ) = [[y−, y+]], or
(nfs2) holds, in which case L(Y )={y−}={y+}. 2
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The combined results of §§ 4.6, 4.7, and 4.8 prove that Theorem 4.6 and Proposition 4.7 hold
for any graph manifold Y with torus boundary, b1 = 1, tree height k > 0, and ng > 0 daughter
subtrees, given the inductive assumptions, laid out in § 4.5, that Theorem 4.6 and Proposition 4.7
hold for any graph manifold with torus boundary, b1 = 1, and either tree height k and up to
ng − 1 daughter subtrees, or tree height less than or equal to k − 1.

For graph manifolds Y with torus boundary, b1 = 1, and tree height k, inducting on the
number of daughter subtrees ng yields the result that any graph manifold with torus boundary,
b1 = 1, and tree height k satisfies Theorem 4.6 and Proposition 4.7. Inducting on tree height k
then completes the proof of Theorem 4.6 and Proposition 4.7. 2

4.9 Some technical results for y− and y+

We conclude this section with the proof of some basic facts about y− and y+ for later use.
Recall that y− and y+ are defined by y− := maxk>0 y−(k) and y+ := mink>0 y+(k), where

y−(k) := −1

k

(
1 +

nd∑
i=1

bydi kc+

ng∑
i=1

(dygi+ke − 1)

)
,

y+(k) := −1

k

(
−1 +

nd∑
i=1

dydi ke+

ng∑
i=1

(bygi−kc+ 1)

)
.

(86)

Let k−, k+ ∈ Z>0 denote the lowest values of k for which these extrema occur. That is, set

k− := min{k ∈ Z>0 | y−(k) = y−}, k+ := min{k ∈ Z>0 | y+(k) = y+}. (87)

We then have the following result.

Proposition 4.13. If Y is not a solid torus, and y−, y+ ∈ Q, then k− and k+ are the respective
denominators of y− and y+. That is,

k− := min{k ∈ Z>0 | y−k ∈ Z}, k+ := min{k ∈ Z>0 | y+k ∈ Z}. (88)

Proof. Since this question is unaffected by an overall translation of y− by an integer, we assume
without loss of generality that ydi ∈ 〈0, 1〉 for all i ∈ {1, . . . , nd} and that ygi+ ∈ [0, 1〉 for all
i ∈ {1, . . . , ng}. In addition, we permute the daughter subtrees Y1, . . . , Yng so that ygi+ ∈ 〈0, 1〉
for all i ∈ {1, . . . , n̄g}, and ygi+ = 0 for all i ∈ {n̄g + 1, . . . , ng}, for some n̄g 6 ng.

Setting Ng := ng − n̄g, we note that if Ng > 0, then we obtain

y−(k) :=
1

k

(
Ng − 1−

nd∑
i=1

bydi kc −
n̄g∑
i=1

(dyg1+ke − 1)

)
,

6
1

k
(Ng − 1) 6 Ng − 1 = y−(1) (89)

for all k > 0, making y− = y−(1). On the other hand, if Ng = 0, then the top line of (89) implies
y−(k) 6 −1/k < 0 for all k > 0, which, since y− ∈ Z, implies y− 6 −1 = y−(1). Thus, in either
case, we have k− = −1, and a similar argument shows k+ = 1 when y+ ∈ Z.

If ng = 0 and nd 6 1, then Y is a solid torus, a case excluded by hypothesis. Suppose nd = 0
and ng = 1. If yg1+ ∈ Z, then the above argument shows y− ∈ Z and k− = 1. If yg1+ =: rg1+/s

g
1+ ∈

〈0, 1〉 with rg1+, s
g
1+ ∈ Z>0 relatively prime, then for all k > 0, we have

y−(k) = −yg1+ −
1

k
[−yg1+] 6 −yg1+ = y−(sg1+). (90)
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Thus y− = −yg1+ = y−(sg1+), and since y−(k) < y− for all k ∈ {1, . . . , sg1+ − 1}, we also have
k− = sg1+, which is the denominator of y−. A similar argument shows that (88) also holds for k+

when nd = 0 and ng = 1.
Finally, suppose we exclude all cases considered in the preceding paragraph, and all cases in

which y− ∈ Z. Since y− ∈ Q by hypothesis, the second paragraph implies we also have ygi+ ∈ Q\Z
for all i ∈ {1, . . . , ng}. Since the problem is still unaffected by an overall integer translation
of y−, we demand without loss of generality that ydi , y

g
j+ ∈ 〈0, 1〉 for all i ∈ {1, . . . , nd} and

j ∈ {1, . . . , ng}. Thus, after removing one more regular fiber neighborhood ν(f0) from the JSJ
component containing ∂Y , and Dehn-filling this complement with slope yd0 := −1, we may appeal
to Theorem 3 from Jankins and Neumann [JN85], which is equivalent to the following statement.

If y− := maxk>0 y−(k), where

y−(k) := 1− 1

k

(
1 +

nd∑
i=1

bydi kc+

ng∑
i=1

(dygi+ke − 1)

)
(91)

(with the initial 1 coming from −yd0 ), and if k− is defined as in (87), then there is a positive integer
c < k− with gcd(c, k−) = 1, a permutation π on nd +ng + 1 elements, and an (nd +ng + 1)-tuple
a∗ = (c, k− − c, 1, . . . , 1), such that

bydi k−c+ 1 = aπ(i), dygj+k−e = aπ(nd+j), y− =
aπ(nd+ng+1)

k−
(92)

for all i ∈ {1, . . . , nd} and j ∈ {1, . . . , ng}. In particular, gcd(aπ(nd+ng+1), k−) = 1, making k−
satisfy (88). A similar argument shows that (88) holds for k+, completing the proof. 2

The above result is useful for proving the following proposition, but first, we define

Ng := |{i : ygi+ ∈ Z}|+ |{i : ygi− ∈ Z}|, n̄d := |{i : ydi ∈ Q\Z}|. (93)

Proposition 4.14. Suppose that n̄d + Ng > 0, with Y not a solid torus. If y− = y+ ∈ Q, then
y− = y−(1) = y+(1) = y+ ∈ Z.

Proof. Since y− = y+, we have

0 = y− − y+ = max
k1>0

y−(k1)− min
k2>0

y+(k2) = max
k1,k2>0

(y−(k1)− y+(k2)), (94)

with y−(k) and y+(k) as defined in (86). Defining k−, k+ ∈ Z>0 as in (87), we observe that since
y− = y+, Proposition 4.13 implies k− = k+. In particular, the set of (k1, k2) ∈ Z>0×Z>0 for which
y−(k1) − y+(k2) is maximized has non-trivial intersection with the set of (k1, k2) ∈ Z>0 × Z>0

for which k1 = k2. We therefore have

0 = max
k>0

(y−(k) + y+(k))

= max
k>0

1

k

(
−2 +

nd∑
i=1

(dydi ke − bydi kc)−
ng∑
i=1

(dygi+ke − 1 + d−ygi−ke − 1)

)

= −
ñg∑
i=1

bỹgi c+ max
k>0

1

k

(
Ng − 2 +

nd∑
i=1

(dydi ke − bydi kc)−
ñg∑
i=1

(d[ỹgi ]ke − 1)

)
, (95)

where the second line uses the fact that −bqc = d−qe for all q ∈ Q, and where in the third
line, if we set ñg := 2ng − Ng, then ỹg∗ ∈ Qñg is the ñg-tuple obtained from deleting the Ng
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integer-valued entries from the 2ng-tuple (yg1+, . . . , y
g
ng+,−yg1−, . . . ,−ygng−). The third line also

makes use of the notation [·] : Q → [0, 1〉, q 7→ [q] := q − bqc.
Since n̄d +Ng > 0, we know that n̄d +Ng − 1 > 0. Thus for all k > 0, we have

y−(k) + y+(k) < −
ñg∑
i=1

bỹgi c+
1

k
(n̄d +Ng − 1)

6 −
ñg∑
i=1

bỹgi c+ n̄d +Ng − 1

= y−(1) + y+(1) + 1 ∈ Z, (96)

which, since maxk>0(y−(k)+y+(k)) ∈ Z, implies that y−(k)+y+(k) is maximized at k = 1. Thus,
y−(k1) and y+(k2) are respectively maximized and minimized at k1 = 1 and k2 = 1, completing
the proof of the proposition. 2

5. Cabling

The (p, q)-cable Y (p,q) ⊂ k of a knot complement Y := X\ν(K) ⊂ X is given by the knot
complement Y (p,q) := X\ν(K(p,q)), where K(p,q) ⊂ X is the image of the (p, q)-torus knot
embedded in the boundary of Y. I recently made the mundane, and almost certainly not novel,
observation that one can realize any cable of Y ⊂ X by gluing on an appropriate Seifert fibered
space.

5.1 Cabling via gluing
Suppose Y := X\ν(K) is the knot complement of an arbitrary knot K ⊂ X in an arbitrary
closed oriented three-manifold X. We construct the (p, q)-cable Y (p,q) ⊂ X of Y ⊂ X as follows.

Let µ ∈ H1(∂Y ) denote the meridian of K, and let λ ∈ H1(∂Y ) denote a choice of longitude,
so that X = Y (µ) and µ · λ = 1. Choosing p∗, q∗ ∈ Z such that pp∗− qq∗ = 1, let Y(−q∗,p) denote
the regular fiber complement

Y(−q∗,p) := MS2(0; −q∗/p)\ν(f), (97)

so that Y(−q∗,p) is a solid torus whose compressing disk has boundary of slope q∗/p.

To construct the (p, q)-cable Y (p,q) ⊂ X, we form the union

Y (p,q) := Ŷ(−q∗,p) ∪ϕ Y, ϕ : ∂Y → −∂1Ŷ(−q∗,p), (98)

where Ŷ(−q∗,p) is a regular fiber complement in Y(−q∗,p), with ∂1Ŷ(−q∗,p) := ∂Y(−q∗,p), and where
ϕ is chosen to induce the map ϕ∗ on homology defined by

ϕ∗(µ) := −q∗f̃1 + ph̃1, ϕ∗(λ) := p∗f̃1 − qh̃1. (99)

Proposition 5.1. Y (p,q) ⊂ Y (p,q)(0) = X is the (p, q)-cable of the knot complement Y ⊂ X.

Proof. To verify that Y (p,q)(0) = X, note that Y (p,q)(0) is a union of Y with the solid torus
Y(−q∗,p), such that µ is sent to the slope q∗/p bounding the compressing disk of Y(−q∗,p). In other

words, Y (p,q)(0) is the Dehn filling Y (µ) =: X.
Since Y (p,q) = X\ν(f) is the complement of the regular fiber f , we next must verify that, in

the boundary of the solid torus (st) to which Y is glued, the regular fiber is of class pmst+qlst ∈
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H1(∂Y(−q∗,p)) in terms of the basis lst := ϕ∗(µ), mst := ϕ∗(λ) specified by the meridian µ and
longitude λ of K. Indeed, we have

pmst + qlst = pϕ∗(λ) + qϕ∗(µ) = (pp∗ − qq∗)f̃1 = f̃1. (100)

2

5.2 L-space intervals for cables
Supposing Y ⊂ X is Floer simple and boundary incompressible, write a−µ+ b−λ and a+µ+ b+λ
for respective representatives in H1(∂Y ) of the left-hand and right-hand endpoints of the L-space
interval L(Y ) ⊂ P(H1(∂Y )). Now, ϕ is an orientation-reversing map, but since we change from
a positively-oriented basis to a negatively-oriented basis, the induced map ϕP

∗ is orientation-
preserving. We therefore have

ϕP
∗(L(Y )) = [[y1−, y1+]], y1± :=

a±q
∗ − b±p∗

a±p− b±q
=
q∗

p

(
1− b±

q∗(a±p− b±q)

)
. (101)

For k ∈ Z>0, define

y−(k) := −1

k

(⌊
−q
∗

p
k

⌋
+ dy1+ke

)
, y+(k) := −1

k

(⌈
−q
∗

p
k

⌉
+ by1−kc

)
, (102)

which simplifies to

y−(k) :=
1

k

(⌈
q∗

p
k

⌉
− dy1+ke

)
, y+(k) :=

1

k

(⌊
q∗

p
k

⌋
− by1−kc

)
. (103)

As usual, we also define

y− := max
k>0

y−(k), y+ := min
k>0

y+(k). (104)

Since Y is Floer simple and boundary incompressible, and since every Dehn filling of Ŷ(−q∗,p)
along ∂Y (p,q) is Floer simple, we can still invoke Theorem 4.6 and Proposition 4.7 to compute
the L-space interval for Y (p,q) (see Corollary 6.2 for justification of this generalization). Thus, in
terms of the Seifert basis (f̃ ,−h̃), Ŷ(−q∗,p) has L-space interval [[y−, y+]] if it is Floer simple, and
{y−} = {y+} if it has an isolated L-space filling.

It is often more natural, however, to express this L-space interval in terms of the surgery basis
for the cabled knot. Recall that Ŷ(−q∗,p) = X\ν(f). The natural surgery basis associated to the

complement of the regular fiber is given by the meridian µ(p,q) := −h̃ and longitude λ(p,q) = f̃ ,
yielding the following result.

Theorem 5.2. Suppose Y =X\ν(K) is a boundary incompressible Floer simple knot
complement with L-space interval L(Y ) = [[a−/b−, a+/b+]] in terms of the surgery basis µ,
λ ∈ H1(∂Y ) for K, with µ the meridian of K and λ a choice of longitude. Then in terms of the
surgery basis produced by cabling, the (p, q)-cable Y (p,q) ⊂ X of Y ⊂ X has L-space interval

L(Y (p,q)) =


∅, ∞ 6= y1− < y1+ 6=∞ and y− > y+,

{1/y−} = {1/y+}, ∞ 6= y1− < y1+ 6=∞ and y− = y+,

[[1/y+, 1/y−]], otherwise.

(105)
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5.3 Knots in S3

As an illustration, we apply the above result to an arbitrary boundary incompressible Floer
simple knot complement Y := S3\ν(K) in S3. The surgery basis for a knot complement in S3

conventionally takes λ to be the rational longitude, which in S3 is Seifert framed. The meridian
µ of K is automatically dual to this λ.

Without loss of generality (up to replacing K with its mirror image), we demand that K be
positive, by which we mean that there exist positive u, v ∈ Z such that the Dehn filling Y (uµ+vλ)
is an L-space. In terms of the projectivization map xµ+yλ 7→ x/y ∈ Q∪{∞}, it is easy to show
(see ‘example’ in [RR15, § 4]) that Y has L-space interval

L(Y ) = [N,+∞], N := 2g(K)− 1 = deg(∆(K))− 1, (106)

where g(K) and ∆(K) are the genus and Alexander polynomial of K.
Choosing q∗, p∗ ∈ Z such that pp∗ − qq∗ = 1, and demanding 0 6 q∗ < p, we then have

ϕP
∗(L(Y )) = [[y1−, y1+]], y1− :=

Nq∗ − p∗
Np− q =

q∗

p
+

1

p(q −Np) , y1+ :=
q∗

p
. (107)

From (103) and (104), we immediately compute that y− = 0. For y+, we have

y+ = min
k>0

y+(k), y+(k) :=
1

k

(⌊
q∗

p
k

⌋
−
⌊(

q∗

p
+

1

p(q −Np)

)
k

⌋)
. (108)

If q −Np < 0, then y+(k) > 0 for all k > 0, and so y+(k) is minimized at y+ = y+(1) = 0.
Since∞ 6= y1− < y1+ 6=∞ in this case, we then have L(Y (p,q)) = {0}. If q−Np = 0, then y+ =∞,
yielding L(Y (p,q)) = [0,∞]. If q−Np > 0, then y+(k) 6 0 for all k > 0, and it is straightforward
to show that y+(k) is minimized at the lowest value of k+ > 0 for which bq∗/pk+c 6= by1−k+c.
Since y1− − q∗/p < 1/p, a necessary condition for this to occur is to have(

y1− −
q∗

p

)
k+ >

1

p
, which implies k+ > q −Np. (109)

Since y1+(q −Np) = p∗ −Nq∗ ∈ Z, setting k+ = q −Np is also sufficient:

y+ = y+(k+) =
1

q −Np((p∗ −Nq∗ − 1)− (p∗ −Nq∗)) = − 1

q −Np, (110)

and we have L(Y (p,q)) = [[0,−1/(q −Np)]].
As a final step, we re-express L(Y (p,q)) in terms of the conventional basis for knot

complements in S3. We again use the meridian µ(p,q) := −h̃, but the rational longitude is

l(p,q) = −
(
−q
∗

p
+ ϕP

∗([λ])

)
= −

(
−q
∗

p
+
p∗

q

)
= − 1

pq
, (111)

for which we choose the representative λQ := f̃ + pqh̃ to achieve µ(p,q) · λQ = 1. Performing the
requisite change of basis on L(Y (p,q)) for the three cases described in the preceding paragraph
then recovers the following result of Hedden [Hed09] and Hom [Hom11].

Corollary 5.3. Y (p,q) ⊂ S3 has L-space interval

L(Y (p,q)) =


{∞}, 2g(K)− 1 >

q

p
,

[pq − p− q + 2g(K)p, ∞], 2g(K)− 1 6
q

p
.

(112)

1043

https://doi.org/10.1112/S0010437X16008319 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008319


S. D. Rasmussen

5.4 Knots in L-spaces
It is possible to prove an analogous result for boundary incompressible Floer simple knot
complements in arbitrary L-spaces.

To simplify the statement of such a result, we discard cables with p = 0, p = 1, or q = 0, since
the zero-cable of a knot complement Y ⊂ X is just the connected sum of X with the unknot
complement in S3; the 1/q-cable is just a change of framing; and the 1/0-cable, which changes
the framing by zero, is the identity cable. We then have the following.

Theorem 5.4. Suppose that p, q ∈ Z with p > 1 and gcd(p, q) = 1, and that Y = X\ν(K) is a
boundary incompressible Floer simple knot complement in an L-space X, with L-space interval
L(Y ) = [[a−/b−, a+/b+]], written in terms of the surgery basis µ, λ ∈ H1(∂Y ) for K, with µ
the meridian of K and λ a choice of longitude. Then in terms of the surgery basis produced by
cabling, the (p, q)-cable Y (p,q) ⊂ X of Y ⊂ X has L-space interval

L(Y (p,q)) =

{∞},
a−
b−
∈
[
p∗

q∗
,∞
]
,
a+

b+
∈
[
q − p∗
p− q∗ ,

q

p

〉
∪ {∞},

[[1/y+, 1/y−]], otherwise,
(113)

where pp∗ − qq∗ = 1 with 0 < q∗ < p.

Proof. If Y (p,q) is Floer simple, then Theorem 5.2 implies L(Y (p,q)) = [[1/y+, 1/y−]] in terms of
the surgery basis produced by cabling.

Observe that Y (p,q) is not Floer simple if and only if y− = y+ = 0. That is, if Y (p,q) is not Floer
simple, then the meridional filling X is the only L-space filling, and conversely if y− = y+ = 0,
then since 0 /∈ [[0, 0]], we know that Y (p,q) is not Floer simple.

Choose p∗, q∗ ∈ Z so that pp∗ − qq∗ = 1 with 0 < q∗ < p. Then for y1± 6=∞, one has
y− = −dy1+e+ 1, 1− [−y1+] >

q∗

p
,

y− /∈ Z, 1− [−y1+] <
q∗

p
,


y+ = −by1−c, [y1−] 6

q∗

p
,

y+ /∈ Z, [y1−] >
q∗

p
.

(114)

That is, since

y+ = −by1−c+ min
k>0

1

k

(⌊
q∗

p
k

⌋
− b[y1−]kc

)
, (115)

the right-hand summand vanishes when [y1−] 6 q∗/p, but when [y1−] > q∗/p, the right-hand
summand is not minimized at k = 1. Thus y+ 6= y+(1), and Proposition 4.13 tells us that
y+ /∈ Z. A similar argument holds for y−.

We therefore have

y− = 0 ⇐⇒ q∗

p
6 y1+ 6 1 ⇐⇒ q − p∗

p− q∗ 6
a+

b+
<
q

p
or

a+

b+
=∞, (116)

and similarly,

y+ = 0 ⇐⇒ 0 6 y1− 6
q∗

p
⇐⇒ p∗

q∗
6
a−
b−
6=∞ or

a−
b−

=∞. (117)

Thus y− = y+ = 0 if and only if

a−
b−
∈
[
p∗

q∗
,∞
]

and
a+

b+
∈
[
q − p∗
p− q∗ ,

q

p

〉
∪ {∞}. (118)

2
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6. Observations

Our demonstration of extended L/NTF-equivalence for graph manifolds in Theorem 4.5 gives
a (mildly) alternate proof of the Theorem 1.3 statement that a graph manifold is an L-space if
and only if it fails to admit a co-oriented taut foliation.

From a practical standpoint, however, the main utility of Theorem 4.5 for us was its
implication that the gluing result in Proposition 4.4 holds for all graph manifolds:

Corollary 6.1. If Y1 and Y2 are non-solid-torus graph manifolds with torus boundary, then
the union Y1 ∪ϕY2, with gluing map ϕ : ∂Y1 → −∂Y2, is an L-space if and only if

ϕP
∗(L◦(Y1)) ∪ L◦(Y2) = P(H1(∂Y2)).

Corollary 6.1 has two advantages over the more general L-space gluing criterion of
Proposition 3.3: it removes the condition that ϕP

∗(L◦(Y1))∩L◦(Y2) be non-empty, and it allows
one to prove that Y1 ∪ Y2 is not an L-space in cases in which boundary incompressible Y1 and
Y2 are not Floer simple.

6.1 Generalization of Theorem 4.6
Nevertheless, while the L-space gluing result analogous to Proposition 3.3 proved by Hanselman
and Watson in [HW15] replaces the hypothesis of Floer simplicity by a more technical condition,
their gluing result does not impose the hypothesis of non-empty ϕP

∗(L◦(Y1))∩L◦(Y2) required by
the gluing result of Rasmussen and the author in [RR15]. In [HR15], the four authors discuss how
these two gluing results can be combined to prove a gluing result analogous to Proposition 3.3
which requires Floer simplicity but not non-empty ϕP

∗(L◦(Y1)) ∩ L◦(Y2). Thus, the only real
hypothesis we have circumvented is that of Floer simplicity. If we replace the condition that the
Yi glued to M̂ be graph manifolds with the condition that they be Floer simple, then we can
extend the domain of validity of Proposition 4.7 and Theorem 4.6 as follows.

Corollary 6.2. Theorem 4.6 holds for any boundary incompressible Floer simple three-
manifolds Y1, . . . , Yng , provided that Y satisfies the criteria in Proposition 4.7 for L(Y ) to be
non-empty.

6.2 Generalized solid tori
A recent result of Gillespie [Gil16] states that a compact oriented three-manifold Y with torus
boundary satisfies L(Y ) = P(H1(∂Y ))\{l} if and only if Y has genus 0 and an L-space filling.
Such manifolds, called generalized solid tori in [RR15], are of independent interest.

In the proof of Theorem 4.6 and Proposition 4.7, we find many generalized solid tori with
the regular fiber class as rational longitude, but there are limited circumstances in which other
generalized solid tori appear. In fact, we can prove the following.

Theorem 6.3. If Y is a graph manifold with torus boundary, b1(Y ) = 1, and rational longitude
other than the regular fiber, then Y is a generalized solid torus if and only if it is homeomorphic
to an iterated cable of the regular fiber complement in S1 × S2.

Proof. Suppose Y is a generalized solid torus graph manifold, with rational longitude l not
coinciding with the regular fiber. Since Y is Floer simple with ∞ ∈ L◦(Y ), Y must satisfy (fs3)
from Proposition 4.7, and since y−, y+ 6= ∞, we must have ∞ 6= ygi− > ygi+ 6= ∞. Claim 2 from
§ 4.7 then implies y− > y+ unless ng = 1 with nd 6 1 or ng = 0 with nd 6 2.

1045

https://doi.org/10.1112/S0010437X16008319 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008319


S. D. Rasmussen

If ng = 1, then according to Claim 4 from § 4.8, either yd1 ∈ Z, in which case Y is
homeomorphic to Y1 and we should replace Y with Y1 and begin again; or yg−1 = yg+1 =: yg1
with yd1 + yg1 ∈ Z, in which case Y1 is a generalized solid torus, and Proposition 5.1 implies
Y ⊂ Y (l) is a cable of Y1 ⊂ Y1(l).

If ng = 0, then Y is Seifert fibered with y− = y+, and so either from [RR15] or from a mildly
modified version of Claim 4, we deduce that either yd1 + yd2 ∈ Z, in which case Proposition 5.1
implies Y is a cable of the regular fiber complement in S1 ×S2; or {yd1 , yd2} ∩ Z 6= ∅, in which
case Y is a solid torus, hence homeomorphic to the regular fiber complement in S1 × S2.

The converse is an immediate corollary of Proposition 5.1 and Theorem 4.6. 2

We also have the following result for arbitrary generalized solid tori.

Proposition 6.4. If Y is a generalized solid torus, then any cable of Y ⊂ Y (l) is a generalized
solid torus.

Proof. If Y is boundary compressible, then it is the connected sum of a solid torus with lens
spaces, and Theorem 6.3 implies that any cable of a solid torus within its longitudinal filling
is a generalized solid torus. If Y is boundary incompressible, then the result is an immediate
corollary of Theorem 5.2. 2

Similarly, for any class of manifolds for which the gluing result in Proposition 1.5 holds
without the requirement of Floer simplicity—such as graph manifolds—one has the result that
if Y has an isolated L-space filling, i.e. if L(Y ) = {µ} for some µ ∈ P(H1(∂Y )), then any cable
of Y ⊂ Y (µ) has Y (µ) as an isolated L-space filling.

6.3 Isolated L-space fillings
A Seifert fiber complement in an L-space Seifert fibered manifold could justifiably be called
the prototypical Floer simple manifold, just as a lens space is the prototypical L-space. It is
therefore striking that we encounter isolated L-space fillings as regular fiber complements in
graph manifolds. Fortunately, this still does not prevent L-space graph manifolds from admitting
Floer simple Seifert fiber complements.

Given a closed graph manifold X, we shall call an exceptional fiber fe ⊂ X invariantly
exceptional if the JSJ component Ŷ ⊂ X containing fe has more than one exceptional fiber.
To motivate this name, note that if X has more than one JSJ component and Ŷ has only one
exceptional fiber, say, of slope yd1 = y0, then since the punctured solid torus has non-unique
Seifert structure, X is homeomorphic to a graph manifold in which yd1 is replaced with 0 and
ϕP

1∗ is replaced with ϕP
1∗+ y0.

Theorem 6.5. Every invariantly exceptional fiber complement in an L-space graph manifold is
Floer simple.

Proof. Suppose X is an L-space graph manifold. If X is Seifert fibered, then every Seifert fiber
complement, regular or otherwise, is Floer simple.

Suppose X has more than one JSJ component, and let Y denote a non-Floer-simple
complement of an invariantly exceptional fiber. Since L(Y ) 6= ∅, Y non-Floer-simple implies
L(Y ) = {y−} = {y+}, with y± ∈ Q. However, since Y has at least one exceptional fiber,
Proposition 4.14 tells us that y− = y+ ∈ Z, contradicting the hypothesis that Y is an exceptional
fiber complement of X. Thus the theorem holds. 2
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On the other hand, for a graph manifold with more than one JSJ component, Seifert fibers
are not the only knots yielding Floer simple knot complements, due to the following result for
arbitrary L-spaces.

Proposition 6.6. If an L-space X decomposes as a union Y1 ∪ϕY2 of Floer simple manifolds Yi
along an incompressible torus T ⊂ X, then there is a knot K ⊂ X transversely intersecting T
for which knot the complement X\ν(K) is Floer simple.

Proof. In fact, an analogous result holds for any toroidal L-space.
Suppose the above hypotheses hold. Then since Y1 and Y2 are Floer simple with

incompressible boundary, Proposition 3.3 implies

ϕP
∗(L◦(Y1)) ∪ L◦(Y2) = P(H1(∂Y2)). (119)

Since ϕP
∗(L◦(Y1)) and L◦(Y2) are open, (119) implies they intersect. Choosing any µ2 ∈

ϕP
∗(L◦(Y1)) ∩ L◦(Y2), set µ1 := ϕP−1

∗ (µ2), and let Ki denote the knot core of Yi(µi)\Yi. As
explained in more detail in the proof of [RR15, Theorem 6.2], X can be regarded as zero-surgery
on the knot K1#K2 ⊂ Y1(µ1)#Y2(µ2). Thus, if we set Y := Y1(µ1)#Y2(µ2)\ν(K1#K2) and let
K denote the knot core of X\Y , then the knot complement Y = X\ν(K) has at least two distinct
L-space fillings, hence is Floer simple. Moreover, since K is dual to K1#K2 under surgery, K
intersects the separating torus transversely. 2

Corollary 6.7. If X is an L-space graph manifold, then for every incompressible torus T ⊂ X,
there is a knot K ⊂ X transversely intersecting T for which knot the complement X\ν(K) is
Floer simple.

Proof. Choose an arbitrary incompressible torus T ⊂ X, not necessarily one used in the minimal
JSJ decomposition for X, and write X = Y1 ∪T Y2. Since X is an L-space, Corollary 6.1 implies
each Yi has non-empty L◦(Yi), hence is Floer simple. Thus, we can apply Proposition 6.6. 2

This section has only cataloged the most obvious corollaries of the paper’s main results.
We invite the reader to find more.
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