
RESEARCH ARTICLE

Deep-blur: Blind identification and deblurring with
convolutional neural networks

Valentin Debarnot1 and Pierre Weiss2,3

1Departement Mathematics and computer science, Basel University, Basel, Switzerland
2Institut de Recherche en Informatique de Toulouse (IRIT), CNRS & Université de Toulouse, Toulouse, France
3Centre de Biologie Intégrative (CBI), Laboratoire de biologie Moléculaire, Cellulaire et du Développement (MCD), CNRS &
Université de Toulouse, Toulouse, France
Corresponding author: Pierre Weiss; Email: pierre.weiss@cnrs.fr

Received: 12 September 2023; Revised: 21 May 2024; Accepted: 15 June 2024

Keywords: blind deblurring; deep learning; identification network; spatially variant blur; unrolled network

Abstract

Wepropose a neural network architecture and a training procedure to estimate blurring operators and deblur images from
a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional
vector. Themodels we consider include a description of the point spread function with Zernike polynomials in the pupil
plane or product-convolution expansions,which incorporate space-varyingoperators.Numerical experiments show that
the proposed method can accurately and robustly recover the blur parameters even for large noise levels. For a
convolution model, the average signal-to-noise ratio of the recovered point spread function ranges from 13 dB in the
noiseless regime to 8 dB in the high-noise regime. In comparison, the tested alternatives yield negative values. This
operator estimate can then be used as an input for an unrolled neural network to deblur the image. Quantitative
experiments on synthetic data demonstrate that this method outperforms other commonly used methods both percep-
tually and in terms of SSIM. The algorithm can process a 512 × 512 image under a second on a consumer graphics card
and does not require any human interaction once the operator parameterization has been set up.1

Impact Statement
The prospect of restoring blurred images with a wave of the digital wand is undeniably seductive in microscopy.
However, the reality currently appears less satisfying, as handcrafted algorithms often offer onlyminimal gains at
the price of long parameter tuning.

In this article, we combine physical models of the blur and artificial intelligence to design an interpretable
blind deblurring method. A first neural network is trained to estimate the point spread function of the optical
system, while a second network leverages this estimate to improve image quality. This approach provides a fully
automated tool, capable of improving the image quality in seconds. The proposed methodology yields point
spread function estimates with a quality that is superior by 10 dB to other popular methods, which also leads to
better and more reliable deblurring results.

1. Introduction

Image deblurring and superresolution consist of recovering a sharp image �x from its blurred and
subsampled version y¼P �A�xð Þ , where �A∈ℝM ×N is a discretized linear integral operator describing

©TheAuthor(s), 2024. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

1 A preliminary version of this work was published in IEEE ISBI 2021.(30)
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the acquisition process, and P :ℝM !ℝM is some perturbation modeling noise, quantization, and
saturation. It plays an important role in biomedical and astronomical imaging, where physical phenomena
such as diffraction and turbulence strongly reduce the achievable resolution. It also received a constant
attention in the field of computer vision, where moving or out-of-focus objects create artifacts. When the
operator �A describing the optical system is available, this problem can be solved with mature variational
inverse problem solvers(16) or data-driven approaches.(8)

However, deriving a precise forward model requires specific calibration procedures, well-controlled
imaging environments. and/or highly qualified staff. In addition, model mismatches result in distorted
reconstructions. This can lead to dramatic performance loss, especially for superresolution applica-
tions.(41,84)

An alternative to a careful calibration step consists of solving the problem blindly: the forwardmodel �A
is estimated together with the sharp image �x . Unfortunately, this blind inverse problem is highly
degenerate. There is no hope to recover the sharp image without prior assumptions on �x and �A . For
instance, assume that �A is a discrete convolution operator with some kernel �h, that is, y¼ �h⋆�x. Then, the
couple �h,�xð Þ can be recovered only up to a large group of transformations.(79) For instance, the identity
and blurred image are a trivial solution, and the image and kernels can be shifted in opposite directions or
scaledwith inverse factors. Therefore, it is critical to introduce regularization terms both for the operator �A
and the signal �x.

The main objective of this work is to design a blind inverse problem solver under the two assumptions
below:

• The operator �A can be parameterized by a low-dimensional vector. In what follows, we let A :

ℝK !ℝM ×N denote the operator mapping and we assume that �A¼A �γð Þ for some �γ∈ℝK .
• The signal �x lives in a family X⊆ℝN with some known distribution LX .

We propose a specific convolutional neural architecture and a training procedure to recover the couple
�γ,�xð Þ from the degraded data y and the mapping A �ð Þ. A first network identifies the parameterization �γ,
while the second uses this parameterization to estimate the image �y. This results in an efficient algorithm
to sequentially estimate the blur operator and the sharp image �x. The network architecture is shown on
Figure 1. At a formal level, the work can be adapted to arbitrary inverse problems beyond image
deblurring. We, however, showcase its efficiency only for challenging deblurring tasks involving
convolutions but also more advanced space-varying operators.

1.1. Related works

Solving blind deblurring problems is a challenging task that started being studied in the 1970s.(80) Fifty
years later, it seems impossible to perform an exhaustive review of existing methods and the following
description will be lacunary. We refer the interested reader to(18) for a general overview of this field and
to(74) for a survey more focused on microscopy. The prevailing approach is to estimate the original signal
and the blur operator by solving variational problems of the form:

inf
A∈ℝM ×N ,x∈ℝN

1
2
∥Ax�y∥22þRA Að ÞþRx xð Þ, (1)

where RA :ℝM ×N !ℝ∪ þ∞f g and Rx :ℝN !ℝ∪ þ∞f g are regularization terms for the operator and
the signal respectively. This problem arises when considering maximum a posteriori (MAP) estim-
ators.(50) It can be attacked with various types of alternating minimization procedures.(11) Before the
advent of data-driven approaches, the regularizers were carefully designed to target specific features.
The point spread functions can be considered as sparse and compactly supported for motion
deblurring.(15,25,27,34,49,69,70,82) They are smooth for diffraction-limited systems(17) and can also be
parameterized with Zernike polynomials in the pupil plane.(7,40,47,74,78,79) The images can sometimes
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be considered as sparse in microscopy and astronomical imaging(31,60) or piecewise constant for
natural images. The typical regularizer Rx is then the total variation, or more advanced priors on the
image gradient.(9,15,17,68–70) Some authors also advocate for the use of priors on the image
spectrum,(38,86) which transform the blind deconvolution problem into a phase retrieval problem
under ideal conditions.

Themost recent variants of these approaches can provide excellent results (see e.g.,(66,88)). However,
they strongly rely on the detection of specific features (points, edges, textures) which may be absent or
inaccurate models of the typical image features. In addition, problem (1) or its derivatives is usually
highly nonconvex, and the initialization must be chosen carefully to ensure local convergence to the
right minimizer. As a result, these methods require a substantial know-how to be successfully applied to
a specific field.

In the most recent years, machine learning approaches have emerged and now seem to outperform
carefully handcrafted ones, at least under well-controlled conditions. These approaches can be divided
into two categories. The first category concerns methods that directly estimate the reconstructed image
from the observation.(3,20,55–57,61,64,75) The second category contains approaches that produce an
estimation of the blur operator. This estimate can then be used to deblur the original image. These
approaches are specifically tuned for applications in computer vision(14,39,51,75,81) (motion and out-of-
focus blurs) or diffraction-limited systems.(26,58,73,76,77,85) Our work rather falls in the second
category.

In this list of references, a few authors propose ideas closely related to the ones developed hereafter. In
particular,(26,73,85) propose to estimate the pupil function of a microscope from images of point sources
using neural networks. This idea is similar to the identification network in Figure 1. The two underlying
assumptions are a space invariant system and the observation of a single point source. The idea closest to
ours is from Shajkofci and Liebling.(76,77) Therein, the authors estimate a decomposition of the point
spread function from a single image using a low-dimensional parameterization such as a decomposition
over Zernike polynomials. The spatial variations are then estimated by splitting the observation domain in
patches where the blur is assumed locally invariant. The image can then be deblurred using a Richardson–
Lucy algorithm based on the estimated operator.

Figure 1. The deep-blur architecture. The first part of the network identifies the parameter γ̂. In this
article, we use a ResNet architecture. The estimated parameter γ̂ is given as an input of a second
deblurring network. This one is an unrolled Douglas–Rachford algorithm. The yellow blocks are

convolution layers with ReLU and batch normalization. The red ones are average pooling layers. The

green ones are regularized inverse layers of the form xtþ1 ¼ A∗ γ̂ð ÞA γ̂ð Þþ λIð Þ�1A γ̂ð Þy. The violet blocks
are U-Net-like neural networks with weights learned to provide a sharp image x̂.
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1.2. Contributions

In this work, we propose to use a pair of convolutional neural networks to first estimate the operator
parameterization�γ∈ℝK and then use this parameterization to estimate the sharp image �x∈ℝN with a second
convolutional neural network. The first network is the popular ResNet(45) as in (77). The second network has
the structure of an unrolled algorithm, which offers the advantage of adapting to the forward operator.(1,2,59)

We call the resulting algorithm deep-blur, see Figure 1. This work contains various original features:

• It includes space-varying blur operators that are accurately and efficiently encoded using product-
convolution expansions as illustrated in (32,33). In particular, we show that this approach is
compatible with the characterization of an optical system as a low-dimensional subspace of
operators proposed in (28,29). Most approaches in the literature decompose the observation space
into patches and treat each patch independently. In this work, we consider operators with an impulse
response that varies continuously in the field of view.

• The resulting deblurring network is able to adapt to different forward models and to handle model
mismatches naturally. This issue is an important concern for the use of model-based inverse problem
solvers.(6,36,65) As will be discussed later, our approach can be seen as an intermediate step between
the plug-and-play algorithms(83,87) and the unrolled algorithms.(1)

• We evaluate the efficiency, robustness, and stability of the proposed approach on various challen-
ging problems, showing that the method is reliable and accurate.

The PyTorch implementation of our method is available on demand. We are currently integrating it into
the DeepInv package.

2. Methods

In this article, we assume that the degraded signal y∈ℝM is generated according to the following equation:

y¼P A �γð Þ�xð Þ, (2)

where A γð Þ :ℝN !ℝM is a linear operator describing the optical system. It depends on an unknown
parameter �γ∈ℝP. The mappingP :ℝN !ℝN canmodel various deterministic or stochastic perturbations
occurring in real systems such as additive white Gaussian noise, Poisson noise, and quantization. In this
article, we will use a Poisson-Gaussian noise approximation detailed in (35). It is known to accurately
model microscopes, except in the very low photon count regime. Other more complex models could be
easily incorporated into the proposed framework at the learning stage. A critical aspect of this article is the
parameterization of the forward operator A. We discuss this aspect below.

2.1. Modeling the blur operators

We consider both space-invariant and space-varying blur operators and linear or nonlinear parameter-
ization.

2.1.1. Linear parameterization
We may assume that A belongs to a subspace of operators.

2.1.2. Convolution models and eigen-PSF bases
By far, themost widespread blurringmodel in imaging is based on convolution operators: the point spread
function is identical whatever the position in space. This model is accurate for small fields of view, which
are widespread in applications. Assuming that there is no subsampling in themodel, we can setM ¼N and
Ax¼ h⋆x for some unknown convolution kernel h.

The convolution model strongly simplifies the blur identification problem since we are now looking
for a vector of size N instead of a huge N ×N matrix. Yet, the blind deconvolution problem is known to
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suffer frommany degeneracies and possesses a huge number of possible solutions, see for example (79). To
further restrict the space of admissible operators and therefore improve the identifiability, we can expand
the kernel h in an eigen-PSF basis. This leads to the following low-dimensional model.

Model 2.1 (Convolution and eigen-PSFs). We assume that

A γð Þx¼
XK
k¼1

γ k½ �ek⋆x,∀x∈ℝN ,

where ekð Þ is an orthogonal family of convolution kernels called eigen-PSF basis.

Defining an eigen-PSF basis can be achieved by computing a principal component analysis of a family
of observed or theoretical point spread functions.(37) An example of an experimental eigen-PSF basis
obtained in (28) is shown on Figure 2, top.

2.1.3. Space-variant models and product-convolution expansions
The convolution model 2.1 can only capture space-invariant impulse responses.When dealing with large
field of views, this model becomes inaccurate. One way to overcome this limitation is to use product-
convolution expansions,(28,32,33) which efficiently encode space-varying systems.

Model 2.2 (Product-convolution expansions). Let eið Þ1≤ i≤ I and f j
� �

1≤ j≤ J
define two orthogonal families

of ℝN . The action of a product-convolution A operator reads:

Ax¼
X
i, j

ei ∗ f j ⊙ x
� �

,∀x∈ℝN , (3)

where ⊙ indicates the coordinate-wise (Hadamard) product.

In the above model, the basis eið Þ can still be interpreted as an eigen-PSF basis. Indeed, we…have for
all locations z∈ 1,…,Nf g:

A γð Þδz ¼
XI
i¼1

XJ
j¼1

γ i, j½ �f j z½ �
 !

ei �� z½ �:

Hence, we see that each impulse response is expressed in the basis eið Þ. The basis f j
� �

, on its side, can
be interpreted as an eigen-space variation basis: it describes how the point spread functions can vary in
space. It can be estimated by interpolation of the coefficient of a few scattered PSF in the eigen-PSF basis
eið Þ . In optical devices such as microscopes, the estimation of the families eið Þ and f j

� �
can be

accomplished by observing several images ofmicrobeads.(10,28) An example of the experimental product-
convolution family is shown in Figure 2 for a wide-field microscope. In that case, the dimension K of the

Figure 2. Examples of eigen-PSF and eigen-space variation bases for a wide-field microscope.(28)
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subspace is K¼ I � J ¼ 16 . Airy pattern oscillations are found in the first eigen-PSFs and intensity
variations, such as nonhomogeneous illuminations/vignetting, in the spatial variation maps.

2.1.4. Nonlinear parameterization and Zernike polynomials
An alternative to the linear models is given by the theory of diffraction. A popular and effective model in
microscopy and astronomy consists of using the Fresnel/Fraunhofer theory.We can approximate the pupil
function with a finite number of Zernike polynomials.(40,44) This model leads to some of the state-of-the-
art algorithms for blind deconvolution and superresolution in microscopy and astronomy.(7,62,72,78)

Model 2.3 (Fresnel approximation and a Zernike basis). We assume that the forward model is a
convolution with a slice of a continuous 3D kernel h x,y,zð Þ. The 3D kernel can be expressed through
the 2D pupil function ϕ as

h x,y,zð Þ¼
Z
B 0,f cð Þ

ϕ w1,w2ð Þexp 2iπzd w1,w2ÞÞexp 2iπ w1xþw2yð Þð Þdw1dw2ðð
�����

�����
2

,

where f c ¼ n=λ is the cutoff frequency, n is the refractive index of the immersion medium, and λ is the
wavelength of the observation light and

d w1,w2ð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2c � w1þw2ð Þ2

q
:

The complex pupil function ϕ can be expanded with Zernike polynomials Zk :

ϕ¼ exp 2i
XKþ4

k¼4

γ k½ �Zk

 !
,

where the coefficients γ k½ �∈ℝ are real number.2

A few examples of slices of point spread functions generated withModel 2.3 are displayed in Figure 3.
Notice that we do not use the first three Zernike polynomials (piston, tip, and tilt) as they do not influence
the shape of the PSF. In our experiments, we used K ¼ 7 Zernike polynomials. In the Noll nomenclature,
they are referred to as Z4: defocus, Z5-Z6: primary astigmatism, Z7-Z8: primary coma, and Z9-Z10: trefoil.
We set the coefficients γas uniform random variables with an amplitude smaller than 0.15. As can be seen,
a rich variety of impulse responses can be generated with this low-dimensional model.

2.2. The deep-blur architecture

We propose to train two different neural networks IN and DN sequentially:

• IN is an identification network. It depends on weights θ. The mapping IN θð Þ :ℝM !ℝK takes as an
input a degraded image y∈ℝM and provides an estimate γ̂ of �γ in ℝK .

• DN is a deblurring network. It depends on weights ξ. The mapping DN ξð Þ : ℝM ,ℝK
� �!ℝN takes

as input parameters the blurry image y and the operator coefficient γ. It outputs an estimate x̂ of the
sharp image �x.

2.2.1. The identification network
Traditional estimation of a blur kernel relies on the detection of cues in the image such as points (direct
observation(10,26,31,73)), edges in different orientations (Radon transform of the kernel(49)), or textures
(power spectrum(38)) followed by adapted inversion procedures. This whole process can be modeled by a
set of linear operations (filtering) and nonlinear operations (e.g., thresholding). A convolutional neural
network, composed of similar operations, should therefore be expressive enough to estimate the blur

2 In this model, only the phase of the pupil function varies. In all generality, the amplitude could vary as well at a slower rate.Most
models in the literature assume a constant amplitude.
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parameters. This is the case for the deep-blur identification architecture, a ResNet encoder,(45) as shown in
Figure 1, left. It consists of a succession of convolutions, ReLU activation, batch normalization, and
average pooling layers, which sequentially reduce the image dimensions. The last layer is an adaptive
average pooling layer, mapping the output of the penultimate layer to a vector of constant size K. In our
experiments, the total number of trainable parameters, which includes the weights of the ResNet, that is,
the convolution kernels in the convolution layers, the biases in the convolution layers and the weights of
the adaptive pooling layer, is ∣θ∣¼ 11,178,448. The encoder structure has been proven to be particularly
effective for a large panel of signal processing tasks.(89)

2.2.2. The deblurring network
The proposed deblurring network mimics a Douglas–Rachford algorithm.(21) It is sometimes called an
unrolled or unfolded network. This type of network currently achieves near state-of-the-art performance for a
wide range of inverse problems (see e.g. (59)). It has the advantages of having a natural interpretation as an
approximate solution of a variational problem and naturally adapts to changes of the observation operators.

Deep unrolling. For λ> 0, let Rγ,λ denote the following regularized inverse:

Rγ,λ ¼ A γð ÞTA γð Þþ λI
� ��1

A γð ÞT :
For a parameter γdescribing the forward operator and an input image y, the Douglas–Rachford algorithm
can be described by the following sequence of operations, ran from t¼ 0 to t¼ T �1 with T ∈ℕ.

Algorithm 1 The Douglas–Rachford deblurring network DN.

Require: iteration number T ∈ℕ, operator γ, scaleλ∈ℝþ
z0 ¼Rγ,λ yð Þ
for all t¼ 0! T �1 do

xtþ1 ¼PNt ztð Þ
ztþ1 ¼ ztþRγ,λ 2xt� ztð Þ�xt

end for

Figure 3. Examples of results for the identification network with convolution kernels defined through
Fresnel approximation. Top: the original and blurred and noisy 400 × 400 images. Bottom: the true

31 × 31kernel used to generate the blurry image and the corresponding estimation by the neural network.
Notice that there is a large amount of white Gaussian noise added to the blurred image. The image

boundaries have been discarded from the estimation process to prevent the neural network from using
information that would not be present in real images.
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The initial guess z0 corresponds to the solution of

z0 ¼ argmin
z∈ℝN

1
2
∥A γð Þz�y∥22þ

λ
2
∥z∥22:

It can be evaluated approximatelywith a conjugate gradient algorithm run for a few iterations (20 in our
implementation).

The mapping PNt ξ tð Þ :ℝN !ℝN can be interpreted as a “proximal neural network.” Proximal
operators(21) have been used massively in the last 20 years to regularize inverse problems. A popular
example is the soft-thresholding operator, which is known to promote sparse solutions. Here, we propose
to learn the regularizer as a neural network denoted PNt, which may change from one iteration to the next.
It corresponds to the green layers in Figure 1.

The parameters ξ that are learned are the weights ξ t defining the tth proximal neural network PNt. In our
experiments, the networks PNt have the same architecture for all 1≤ t≤T.We used the current state-of-the-art
networkused inplug-and-playalgorithmscalledDRUNet.(46,87)WesetT ¼ 4iterations.Eachof the4proximal
networks contain 8,159,808 parameters, resulting in a total of ∣ξ∣¼ 32,639,232 parameters to be trained.

2.3. Training

We propose to first train the identification network IN θð Þ alone and then train the deblurring network
DN ξð Þ with the output of the identification network as an input parameter. This sequential approach
presents two advantages:

• Thememory consumption is lower. The automatic differentiation only needs to store the parameters
of the individual networks, instead of both. This reduces the memory footprint.

• The identification network can be used independently of the other, and it is therefore tempting to
train it separately. In metrology applications, for instance, where the aim is to follow the state of an
optical system through time, the identification network IN is the most relevant brick. In some
applications, such as superresolution from single molecules, the deblurring network could be
replaced by a more standard total variation-based solver,(13) once the operator is estimated.

In what follows, we let X ⊂ℝN denote a dataset of admissible images/signals and LX denote a sampling
distribution over X . We let LΓ denote a sampling distribution on the set ℝK of blur parameters. In our
experiments, the perturbation P in Equation (2) is assumed to be an approximation of the Poisson-

Gaussian noise.(35) We assume that y¼A �γð Þ�xþb , where b z½ � � σ z½ �η z½ � , η�N 0,IMð Þ , and σ z½ � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α A �γð Þ�xð Þ z½ �þβ

p
. The parameters α and β are set uniformly at random in the ranges α∈ 0,0:05½ � and

β∈ 0,0:15½ �. In what follows, we let Lb denote the noise distribution that we just described.
We propose to train both the identification and the deblurring networks using the empirical risk

minimization. First, the identification network is trained by solving:

inf
θ∈ℝ∣θ∣

E
x�LX

γ�LΓ

b�Lb

1
2

IN θð Þ A γð Þxþbð Þ�γk k22
� �

: (4)

Once the identification network IN is trained, we turn to the deblurring network by solving the
following optimization problem:

inf
ξ ∈ℝ∣ξ∣

E
x�LX

γ�LΓ

b�Lb

1
2

DN ξð Þ yð , γ̂Þ�xk k22
� �

, (5)
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where y¼A γð Þxþb is the degraded image and γ̂¼ IN θð Þ yð Þ is the estimated parameter. Of importance,
notice that we do not plug the true parameter γ in 5, but rather the estimated one γ̂. This way, the deblurring
network DN can learn to correct model mismatches that may occur at the estimation step.

The two problems above consist in constructing minimum mean square estimators (MMSE). At the
end of the training procedure – under technical assumptions(41) – we can consider that the networks
approximate a conditional expectation:

IN θð Þ yð Þ≈E γjy½ �
DN ξð Þ y,γð Þ≈E xjy,γ½ �:

This is – by construction – the best estimators that can be generated on average. This approach is
therefore really different from most alternatives in the literature, which consist of constructing MAP
estimators. MMSE estimators can be expressed as integrals, which depend heavily on the operator
distributions LΓ and on the image distribution LX . They should therefore be constructed carefully
depending on the physical knowledge of the observation system (resp. observed sample). By using the
general computer vision database COCO, we hope to cover a wide range of image contents, leading to a
wide-purpose method for identification. The performance could likely be improved using more specific
databases. For instance, we could simulate the images according to realistic processes for specific
applications such as single-molecule localization. This is out of the scope of this article. For LΓ , we
sample a large set of realistic parameters uniformly at random in our experiments.

The above optimization problems are solved approximately using stochastic gradient descent-type
algorithms. In our experiments, we used the Adam optimizer(48) with the default parameters: the learning
rate is set to 0.001, betas are (0.9, 0.999), epsilon is 1e-8, weight decay is 0, and amsgrad is false.

3. Results

Let us illustrate the different ideas proposed in this article. In all our experiments, we trained the neural
networks using the MS COCO dataset.(53) It contains 118,287 images in the training set and 40,670
images in the test set. It is composed of images of everyday scenes, capturing objects in various indoor and
outdoor environments. It presents substantial differences with typical microscopy images, but the high
diversity and quality of the images makes it possible to construct efficient generic image priors. This was
already observed in (77).

3.1. Convolution operators

We evaluate the accuracy of the identification and deblurring networks for convolution (i.e., space
invariant) operators. We assess them for images generated with point spread functions expanded in
Zernike polynomial.

3.1.1. Identifying convolution operators
We assess the ability of a residual network to identify the point spread function generated by the Fresnel
diffraction Model 2.3. A similar study was carried out in (76) with K ¼ 3 coefficients. Here, we extend the
study toK¼ 7coefficients allowing us to represent the following aberrations in the Noll nomenclature(63):
defocus, primary astigmatism, primary coma, trefoil, and primary spherical.

We generate random PSFs by drawing the coefficients γ k½ � (see Model 2.3) uniformly in the range
�η,η½ �. The higher η, the more spread and oscillating the PSFs. Hence, ηcan be interpreted as ameasure of
PSF complexity. The model was trained for a value of η¼ 0:15.

In the first experiment, we simply used additive white Gaussian noise (i.e. β¼ 0) of standard deviation
α. Figure 3 shows the identification results for 3 images taken at random from the test set and 3 operators
taken at random in the operator set. On these examples, the network provides faithful estimates despite a
substantial noise level and images with little contents. To further characterize the network efficiency, we

Biological Imaging e13-9

https://doi.org/10.1017/S2633903X24000096 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000096


measure the distribution of signal-to-noise-ratio (SNR) in the noiseless regime. For a kernel h, the error of
the estimated kernel ĥ is defined by

SNR h, ĥ
� �¼�10 log10

∥ĥ�h∥22
∥h∥22

 !
: (6)

Figure 4 summarizes the conclusions. In average, the identification network outputs estimates with a
relative error below 5%.

Finally, we study the stability to the noise level α in Figure 5a – and to the PSF complexity η in
Figure 5b.As can be seen, the identification outputs predictionswith less than 10%errorwith a probability
larger than 0.5 up to a large noise level of α¼ 0:1 for images in the range 0,1½ �. The dependency on the
kernel’s complexity, measured through the Zernike polynomials amplitude η is very clear with typical
errors below 2% for η< 0:1 and then a relatively fast increase. It is nonetheless remarkable that the
identification returns estimates with less than 15% error for η¼ 0:2, which produces more complex PSFs
than those observed during the training phase, showing some ability of the network to generalize.

Figure 4. On the left: a 100 × 100 table representing the SNR of the PSF. In this table, we evaluated the
identification network for 100 images (left to right) and 100 kernels (top to bottom) with no noise. As can
be seen, there are horizontal and vertical stripes. This means that some images and some kernels make the
identification problem easier or harder. In the middle: an image making the identification problem hard

(column 23). On the right: a kernel making the identification harder (row 65).

Figure 5. Stability of the kernel estimation with respect to noise level (left) and amplitude of the Zernike
coefficients in the noiseless regime (right).
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3.1.2. Evaluating the deblurring network
We evaluate the performance of the proposed deblurring network for convolution operators defined using
the Fresnel approximation. Figures 6–8 display some deconvolution results for different methods. The
corresponding image quality measures are displayed in Table 1.

Notice that this problem is particularly involved: there is a complete loss of information in the high
frequencies since the convolution kernels are bandlimited and we treat different noise levels up to rather

Figure 6. Deep-blur in action in the noiseless setting. Quantitative evaluations are reported in Table 1.
When available, the estimated blur kernel is displayed at the bottom right. First row: original images.
Second row: blurry-noisy images. Third row: deep-blur. Fourth row: (5) Fifth row: (4) Sixth row: (19).

Biological Imaging e13-11

https://doi.org/10.1017/S2633903X24000096 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000096


high values (here α¼ 0:12, β¼ 0:24 for images in the range 0,1½ �). Despite this challenging setting, it can
be seen both perceptually and from the SSIM (structural similarity indexmeasure) that the image quality is
improved whatever the noise level. It is also remarkable to observe that the proposed network architecture
allows us to treat images with different noise levels. This is an important feature of the DRUNet used as a
proximal network.(87)

Figure 7. Deep-blur in action with a medium noise level (α¼ 0:025, β¼ 0:05). Quantitative evaluations
are reported in Table 1. When available, the estimated blur kernel is displayed at the bottom right. First
row: original images. Second row: blurry-noisy images. Third row: deep-blur. Fourth row: (5) Fifth row:

(4) Sixth row: (19).
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We also propose some comparisons with other methods from the literature. Whenever possible, we
optimized the hyperparameters by hand for each noise level to produce the best possible output.We chose
the following methods:

Figure 8. Deep-blur in action in a high-noise regime (α¼ 0:12, β¼ 0:24). Quantitative evaluations are
reported in Table 1. When available, the estimated blur kernel is displayed at the bottom right. First row:
original images. Second row: blurry-noisy images. Third row: deep-blur. Fourth row: (5) Fifth row: (4)

Sixth row: (19).
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• The ℓ0-gradient prior.(66,67) This method is one of the state-of-the-art handcrafted blind deblurring
methods. An efficient implementation was recently proposed in (5).

• In (38), the authors proposed a kernel estimation method based on the assumption that the image
spectrum amplitude has a specific decaying distribution in the Fourier plane. The kernel
estimation then boils down to a phase retrieval problem. An efficient implementation was
recently proposed in (4).

• We also tested two state-of-the-art neural network approaches. The first one was a past leader of the
Go-Pro deblurring challenge called NAFNET.(19)

The deep learningmethod is retrained on the same dataset as our method. As can be seen from Table 1 and
the perceptual results in Figures 6–8, deep-blur outperforms the other threemethods that we considered by
a large margin. The PSF is recovered with an average accuracy varying between 12.9 dB in the noiseless
regime to 7.9 dB in the high-noise regime using deep-blur. The image quality is improved in terms of
SSIM by 0.1 in the noiseless regime to 0.2 in the high-noise regime.

All the other methods yield negative SNR for the PSF. At a perceptual level, handcrafted methods
(Goldstein-Fattal and ℓ0 gradient prior) still recover the PSF shape approximately. The recovered
image is also sharpened, but its SSIM quality is actually lowered by more than 0.1 in the noiseless
regime, and improved by 0.1 in the high-noise regime. The SSIM is always lower than the one of
deep-blur.

Experiments on real images. In Figure 9, we provide a few deep-blur results on realmicroscopy images
from the dataset.(43) We used the sample images available on the following link. As can be seen, the
reconstructed images are denoised and have a better visual contrast In this experiment, we do not have a
ground-truth deblurred result and the quality can only be assessed by visual inspection. Validating the
estimation requires careful optics experiments, which we leave as an open topic for now.

Training on the true or estimated operators. At training time, we can feed the unrolled deblurring
network with the operator that was used to synthesize the blurry image, or the one estimated using the
identification network. The potential advantage of the second option is to train the proximal networks to
correct model mismatches. We tested both solutions on two different operator families. It turns out that
they led to nearly indistinguishable results overall in average. The most likely explanation for this
phenomenon is that the model mismatches produced by the identification network cannot be corrected
with the proximal networks.

Memory and computing times. The model contains about 11 �106 parameters for the identification part
and 32 �106 parameters for the deblurring part. This is a total of 43 �106 trainable parameters. This size is
comparable to the usual computer vision models available in TorchVision. For example, it is slightly

Table 1. Reconstruction results for different noise levels and different methods

α¼ 0,β¼ 0 α¼ 0:025,β¼ 0:12 α¼ 0:05,β¼ 0:24

SSIMx̂ y 0:76 ± 0:17 0:31 ± 0:10 0:19 ± 0:07
Deep-blur 0:85 ± 0:16 0:53 ± 0:16 0:40 ± 0:16
(5) 0:48 ± 0:27 0:33 ± 0:13 0:27 ± 0:11
(4) 0:64 ± 0:2 0:21 ± 0:08 0:21 ± 0:08
(19) 0:66 ± 0:2 0:43 ± 0:16 0:33 ± 0:13

SNRĥ Deep-blur 12:9 ± 4:4 10:8 ± 4:3 7:9 ± 3:7
(5) �6:6 ± 2:4 �3:6 ± 1:6 �3:1 ± 1:3
(4) �5:7 ± 1:9 �1:6 ± 0:6 �1:26 ± 0:45

Note: The standard deviation is given after the symbol ±.
Bold numbers indicate the best performing method.
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smaller than a ResNet101 classifier. The deep-blur model uses about 1 GB of GPU memory at test time,
which can be considered lightweight, since it fits on most consumer graphics cards.

After training, it takes 0.3 seconds to identify a kernel and deblur an image of size 400 × 400 on an
Nvidia RTX 8000 with 16 TFlops. For comparison, the handcrafted models used in our numerical

Figure 9. Blind deblurring examples on real images taken from (43), see the samples for more details. In
this experiment, only the noise level was set manually, the rest of the process is fully automatized. For this

experiment, no ground truth is available and the results have to be assessed by visual inspection.
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comparisons take between 5 seconds and a few minutes to perform the same task on the CPU. No GPU
implementation is provided.

3.2. Product-convolution operators

To finish the numerical experiments, we illustrate how the proposed ideas perform on product-
convolution operators.

We first illustrate the performance of the identification network. We trained the identification
network on natural images from the MS COCO dataset, but evaluate it on biological images from
microscopes. We selected 6 images: ImBio 1 is an histopathology of angiolipoma,(22) ImBio 2 is an
histopathology of reactive gastropathy,(23), ImBio 3 and 4 are actin filaments within a cell,(24) ImBio 5
is an slice of a spheroid from (54), and ImBio 6 is a crop of a podosome obtain on a wide-field
microscope.(12)

The blur operators are generated by Model 2.2 using K ¼ 16 parameters. The blur model is obtained
following the procedure described in (28). To compute the product-convolution decomposition
described in Model 2.2, we collected 18 stacks of 21 images of microbeads spaced by 200 nm on a
wide-field microscope with a ×100 objective lens (CFI SR APO 100XH NA 1,49 DT 0,12 Nikon)
mounted on a Nikon Eclipse Ti-E and a Hamamatsu sCMOS camera (ORCA FLASH4.0 LT). Figure 10
shows the identification results. The blur coefficients predicted by the deep-blur identification are
accurate estimates in all cases. On average, the SNR is much higher than in the previous experiment,
which can likely be explained by a smaller dimensionality of the operators’ family. In all cases, the
image quality is improved despite an additive white Gaussian noise with α¼ 1 �10�2 and β¼ 0. This is
remarkable since this type of image is different from the typical computer vision images found in the
MS COCO dataset.

4. Discussion

We proposed an efficient and lightweight network architecture for solving challenging blind deblurring
problems in optics. An encoder first identifies a low-dimensional parameterization of the optical system
from the blurry image. A second network with an unrolled architecture exploits this information to
efficiently deblur the image. The performance of the overall architecture compares favorably with
alternative approaches designed in the field of computer vision. The principal reason is that our network
is trained using fine physical models obtained using Fresnel diffraction theory or experimental data
providing accurate space-varying models. A second reason is that the unrolled architecture proposed
herein emerges as a state-of-the-art competitor for a wide range of inverse problems. Overall, we believe
that the proposed network, trained carefully on a large collection of blurs and images could provide a
universal tool to deblur microscope images. In the future, we would like to carry out specific optical
experiments to ensure that the results obtained with synthetic data are reproducible and trustworthy with
real images. The initial results, obtained without reference images for comparisons are however really
encouraging.

Differences with plug and play and deep unrolling. The proposed unrolled architecture follows closely
the usual unrolled algorithms.(1,2,51,52,59) There is, however, a major difference: traditionally, these
unrolled architectures are trained to invert a single operator. In this article, we train the network with a
family of operators. The results we obtained confirm some results obtained in (41): this approach only
results inmarginal performance loss for a given operator if the family is sufficiently small while providing
a massive improvement in adaptivity to all the operators. In a sense, the proposed approach can be seen as
an intermediate step between the plug-and-play priors (related to diffusion models(42)), which are
designed to adapt to all possible operators, and the traditional unrolled algorithm is adapted to a single one.

The limits of a low-dimensional parameterization. The models considered are sufficiently rich to
describe most optical devices accurately. In microscopy, they can capture defocus, refractive index
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mismatches, changes of temperature, tilts of optical components, usual optical aberrations with a
parameter dimension K smaller than 20.

Notice however that some phenomena can hardly bemodeled by low-dimensional parameterization. In
microscopy, for instance, diffraction by the sample itself can lead to extremely complicated and diverse
forward models better described by nonlinear equations (see e.g., (71)). Similarly, in computer vision,

Figure 10. Deep-blur applied to spatially varying blur operators on microscopy images (not seen
during training). The blur operators are sampled from a family estimated using a real wide-field
microscope. First row: the original images. Second row: blurry-noisy images. Third row: the blind
deblurring result with deep-blur. The SSIM of the resulting deblurred image is displayed below.
Fourth row: The true blur operator. We display 4 evenly spaced impulse responses in the field of
view. Fifth row: The estimated blur operator. The SNR of the estimated kernel is displayed in the

caption in dB.
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motion and defocus blurs can vary abruptly with the movement and depth of the objects. The resulting
operators would likely require a large number of parameters, which is out of the scope of this article.

Overall, we see that the proposed contribution is well adapted to the correction of systems with slowly
varying point spread functions but probably does not extend easily to fast variations that can be induced by
some complex biological samples.

5. Conclusion

We proposed a specific neural network architecture to solve blind deblurring problems where distortions
come from the optical elements. We evaluated its performance carefully on blind deblurring problems
with space invariant and space-varying operators. A key assumption is to have access to a forward model
that depends on a set of parameters. The network first estimates the unknown parameters describing the
forwardmodel from themeasurements with a ResNet architecture. In a second step, an unrolled algorithm
solves the inverse problemwith a forwardmodel that was estimated at the previous step. After designing a
careful training procedure, we showed an advantage of the proposed approach in terms of robustness to
noise levels and adaptivity to a vast family of operators and conditions not seen during the training phase.
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