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We use direct numerical simulations to study convection in rotating Rayleigh–Bénard
convection in horizontally confined geometries of a given aspect ratio, with the walls held
at fixed temperatures. We show that this arrangement is unconditionally unstable to flow
that takes the form of wall-adjacent convection rolls. For wall temperatures close to the
temperatures of the upper or lower boundaries, we show that the base state undergoes
a Hopf bifurcation to a state comprised of spatiotemporal oscillations – ‘wall modes’ –
precessing in a retrograde direction. We study the saturated nonlinear state of these modes,
and show that the velocity boundary conditions at the upper and lower boundaries are
crucial to the formation and propagation of the wall modes: asymmetric velocity boundary
conditions at the upper and lower boundaries can lead to prograde wall modes, while
stress-free boundary conditions at both walls can lead to wall modes that have no preferred
direction of propagation.
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1. Introduction

Rotating convection is an essential process in, among many other systems, stars
(Schumacher & Sreenivasan 2020), protoplanetary disks (Gerbig & Laughlin 2022),
planetary interiors (Aurnou et al. 2015; Bercovici 2015; Aurnou, Horn & Julien
2020), Earth’s atmosphere and oceans (e.g. Emanuel 1994; Marshall & Schott 1999;
Gayen & Griffiths 2022), and the cryosphere (e.g. Wells & Wettlaufer 2008; Ravichandran
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& Wettlaufer 2021; Cenedese & Straneo 2023). Moreover, rotating Rayleigh–Bénard
convection acts as a model system for these phenomena, and the study of pattern formation,
such as transient axisymmetric rings observed during spin-up (e.g. Boubnov & Golitsyn
1986; Vorobieff & Ecke 1998; Zhong, Patterson & Wettlaufer 2010; Ravichandran &
Wettlaufer 2020) and travelling waves observed near the onset of convection (Ecke,
Zhong & Knobloch 1992; Ning & Ecke 1993; Liu & Ecke 1997, 1999). In typical model
studies of rotating Rayleigh–Bénard convection, both theory and numerical simulations
employ horizontally periodic domains, whereas experiments do not, leading in part to
disagreements. For instance, Rossby (1969) observed that in rotating Rayleigh–Bénard
convection with the typical no-slip experimental boundary conditions, the onset of
convection occurs for significantly smaller thermal forcing than predicted by the linear
stability analysis of Chandrasekhar (1953). Although explanations of this apparent
disagreement between theory and experiment can be traced to the basic differences
between boundary conditions (BCs) and finite amplitude perturbations (e.g. Veronis
1966, 1968; Herrmann & Busse 1993; Kuo & Cross 1993), there are many interesting
outstanding questions (see Ecke 2023). For example, measurements suggest that the
peripheral modes may also be responsible for the mismatch between the Nusselt numbers
in laboratory experiments and numerical simulations (Kunnen, Clercx & Heijst 2013; Wit
et al. 2020; Ecke, Zhang & Shishkina 2022).

In the absence of rotation, the onset of convection in a horizontally unbounded layer of
fluid of depth H across which a temperature difference �T is maintained, is governed by
the dimensionless Rayleigh number

Ra = gα�TH3

νκ
, (1.1)

where g is the acceleration due to gravity and ν and κ are the viscosity and thermal
diffusivity of the fluid. The onset of convection occurs when a critical Rayleigh number,
Rabulk

c , is exceeded, where Rabulk
c = O(103), with the exact value depending on the BCs.

Chandrasekhar (1953) showed that, independent of the Prandtl number Pr = ν/κ , the
instability that leads to convection is non-oscillatory.

Rotation about the vertical axis suppresses the effects of buoyancy and thus enhances
stability. Therefore, the critical Rayleigh number increases with the rotation rate, Ω , as

Rabulk
c � E−4/3, (1.2)

where E = ν/2ΩH2 is the Ekman number (Chandrasekhar 1953; Veronis 1966). In
contrast to non-rotating systems, the onset of convection in horizontally unbounded
rotating Rayleigh–Bénard convection can be oscillatory if the Prandtl number Pr < 0.69
(Chandrasekhar 1953).

Rossby (1969) showed experimentally that convection sets in for much smaller
Rayleigh numbers than predicted by (1.2), the possible origins of which were discussed
contemporaneously by Veronis (1968) as being associated with BCs. Of relevance to
our study, the experiments by Ecke et al. (1992), supported by linear stability analysis
by Goldstein et al. (1993), showed that the wall-adjacent convection takes the form of a
travelling wave with a phase speed opposite to the sense of rotation. They also showed that
the system undergoes a Hopf bifurcation at a critical Rayleigh number, following which
the travelling wave appears.

Herrmann & Busse (1993) and Kuo & Cross (1993) independently showed that, in the
asymptotic limit of E → 0, the critical Rayleigh number for the onset of the travelling
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waves in confined rotating Rayleigh–Bénard convection with adiabatic walls is

RaZF
cw = π2(6

√
3)1/2E−1 = 31.82E−1, (1.3)

where the superscript ZF denotes ‘zero flux’. Herrmann & Busse (1993) also showed that
conducting walls stabilize the wall modes, with a critical Rayleigh number that has the
same leading order scaling as that for an infinite layer, but with a smaller prefactor,

RaFT
cw = 0.9086(πE−1)4/3 + 2.124(πE−1)7/6 = 4.18E−4/3 + 8.08E−7/6, (1.4)

where the superscript FT denotes ‘fixed temperature’ highlighting the fact that
mathematical well-posedness requires the temperature to be prescribed at a conducting
boundary. In their analysis, Herrmann & Busse (1993) assume a wall temperature equal to
the purely conductive (linear) profile

T̄wall = 1 − z. (1.5)

The flow, for Ra > RaFT
cw , again takes the form of travelling waves that propagate in a

retrograde sense, against the sense of rotation.
Instead of the linear temperature boundary condition of Herrmann & Busse (1993),

if a constant temperature is imposed across the entire height of the walls, the system is
unconditionally unstable with the flow taking the form of wall-adjacent convective rolls.
Similar rolls were observed by Ning et al. (1993) for weak thermal forcing at the walls.
Constant wall temperatures may be relevant in the melting of ocean-terminating glaciers
due to the rotation-influenced convection, wherein the coupling between convective
structures and melting morphology could become important (Ravichandran & Wettlaufer
2021).

For supercritical Rayleigh numbers, the wall modes attain a nonlinear saturated steady
state consisting of wall-adjacent regions of upwelling and downwelling flow propagating
in a retrograde direction. This nonlinear state has been observed by Lopez et al. (2007),
Favier & Knobloch (2020), Zhang et al. (2020) and Wit et al. (2020); and Favier &
Knobloch (2020) showed it to be robust to severe non-axisymmetric modifications of the
geometry. For Rayleigh numbers well beyond the onset of bulk convection, the nonlinear
state becomes the so-called boundary zonal flow (see e.g. Wit et al. 2020; Zhang et al.
2020; Ecke et al. 2022; Wedi et al. 2022), which has been shown to be responsible for
significant amounts of heat transfer in rotating Rayleigh–Bénard convection (Wit et al.
2020).

Motivated by these findings of the influence of the BCs on the dynamical state of wall
modes, here we examine the effects of changing the uniform temperature at which the walls
and upper and lower boundaries are held, along with the velocity BCs, as summarized in
table 1. We show that the steady roll state undergoes a Hopf bifurcation as a function of
the wall temperature, leading to wall modes. The wall temperature at which this onset
occurs must be found from linear stability analysis, with the steady rolls as the base state.
We study the nonlinear state of the resulting instability, comparing it with the nonlinear
state of wall modes with adiabatic walls. We find that the velocity BCs at the upper and
lower boundaries control the direction of propagation of the wall modes, and prograde
wall modes can arise for suitable velocity BCs. Finally, by studying both cuboidal and
cylindrical geometries, we confirm the findings of Favier & Knobloch (2020) that the
nonlinear wall mode state is robust to non-axisymmetric geometric modifications.

The rest of the paper is organized as follows. In § 2, we describe the geometry of the
problem and the numerical method used for the simulations. In § 3, we present results from
the numerical simulations as the wall temperature, the velocity BC at the upper boundary,
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BC z = 0 z = 1 Walls

SYMNS u = v = w = 0, θ = 1 u = v = w = 0, θ = 0 u = v = w = 0, θ = θw or ∂θ/∂n = 0
ASYM u = v = w = 0, θ = 1 w = 0, ∂(u, v)/∂z = 0, θ = 0 u = v = w = 0, θ = θw or ∂θ/∂n = 0

Table 1. The combinations of BCs considered. Symmetric (SYMNS) BCs have no-slip upper and
lower boundaries, while asymmetric (ASYM) BCs have stress-free upper and no-slip lower boundaries.
Consequences of symmetric stress-free (SYMFS) BCs, defined in analogy with SYMNS BCs, and of stress-free
BCs at all boundaries (ALLFS) are examined in § 3.2.

g

z

T = T0

T = T0 + �T

H

L

Ω

y

x

Figure 1. Our simulations are performed in a cuboidal volume of square cross-section and aspect ratio L/H =
2, so that the domain is the region |x| ≤ 1, |y| ≤ 1, 0 ≤ z ≤ 1. The walls are either adiabatic or held at a constant
temperature. The container rotates about the vertical axis with a constant angular velocity, with gravity pointing
vertically down.

the horizontal cross-section of the domain and the Prandtl number are varied, compare
our results with other known travelling wave solutions in rotating Rayleigh–Bénard
convection, and discuss the effects of asymmetric velocity BCs at the upper and lower
boundaries on the direction of propagation of the wall-adjacent spatiotemporal patterns.
We conclude in § 4.

2. Set-up and numerical simulations

The domain is a rectangular volume of height H and width L, with an aspect ratio Γ =
L/H = 2, shown schematically in figure 1. The system rotates about the vertical z axis
with a constant angular velocity Ω .

We make the Boussinesq approximation, so that fluid properties are assumed to be
constant and the flow is assumed to be incompressible. We non-dimensionalize the
governing equations using the length scale H and the buoyancy velocity scale Ub =
(gα�TH)1/2. The non-dimensional governing equations become

Du
Dt

= −∇p −
√

Pr

E
√

Ra
ez × u +

(
Pr
Ra

)1/2

∇2u + ezθ, (2.1)

∇ · u = 0, (2.2)

Dθ

Dt
=

(
1

RaPr

)1/2

∇2θ. (2.3)
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We consider the combinations of BCs listed in table 1. The temperature of the lower
boundary is fixed at θ(z = 0) = 1, the upper boundary at θ(z = 1) = 0 and the walls are
either adiabatic (∂θ/∂n = 0) or have a fixed temperature θ = θw, with 0 ≤ θw ≤ 1. The
velocity obeys either no-slip or stress-free BCs on the walls at x = ±1, y = ±1, and the
lower and upper boundaries at z = 0 and z = 1, respectively.

Subject to these BCs, (2.1)–(2.3) are solved using the finite volume solver Megha-5, used
in previous studies of convection (Ravichandran & Wettlaufer 2020, 2021; Ravichandran,
Toppaladoddi & Wettlaufer 2022). The solver uses second-order central differences
in space and a second-order Adams–Bashforth time stepping scheme. Simulations are
initialized with broadband noise added to the initial conditions which trigger convection.
We use a grid resolution of up to 2563 uniformly spaced points in the three space directions
and a time step dt ≥ 1.25 × 10−3. The Nusselt number changes by only a few per cent,
with no change in the convection pattern, when the vertical resolution is changed from 128
to 256 grid points; and by approximately 0.1 % when the horizontal resolution is changed
from 256 to 512 grid points.

3. Results and discussion

The governing dimensionless parameters of (2.1)–(2.3) are the Ekman (E), Rayleigh (Ra)
and Prandtl (Pr), numbers as defined above. Simulations are run for a given aspect ratio
Γ , and set of BCs. We minimize the amount of computation required by exploring
the effects of varying the parameters one at a time around the point; E = 10−4, Ra =
106, Pr = 1, with Γ = 2, and 0 ≤ θw ≤ 1. For this combination of E and Pr in a
horizontally unbounded geometry, Rabulk

c ≈ 1.5 × 106, whereas with insulating walls wall
modes appear for Ra > RaZF

cw = 3.2 × 105. For walls with the linear temperature profile
(see (1.5)), RaFT

cw = 1.3 × 106 and for Ra > RaFT
cw retrograde propagating wall modes are

obtained regardless of the asymmetry in the velocity BCs. This is discussed further in
§ 3.4.

The initial and BCs described in § 2 lead to the onset of convection everywhere in the
domain. The associated bulk flow structure decays away, leaving only the wall attached
convection, from which the wall modes emerge and grow into their nonlinear state.
The process from which the wall modes emerge from the wall attached convective state
involves an instability of a transient base state, and the simulations show a robust and rapid
growth into the nonlinear state. Thus, we focus on the latter situation and leave the stability
analysis of the secular base state for a standalone study.

3.1. Symmetric and asymmetric velocity BCs
We first examine the flow structures that arise with SYMNS BCs (see table 1) for
E = 10−4, Ra = 106, Pr = 1, Γ = 2, while varying θw. Figure 2 shows that two types
of flow may arise; a wall temperature of θw = 0.25 leads to steady wall-attached rolls
in the shape of the container, and θw = 0.1 generates retrograde wall modes. The former
are similar to the time-averaged flow seen in the experiments of Ning et al. (1993) at
supercritical Rayleigh numbers, with weak thermal forcing at the imperfectly conducting
walls. The retrograde propagation of the wall modes is apparent from the space–time
Hövmöller diagram in figure 3(a), where we show the near-wall temperature along a
horizontal line. Due to the symmetry of the problem, retrograde wall modes with a similar
structure are observed for 1 − θw = 0.1, as seen in figure 3(b). Note that the downward
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(a) t = 500 (b)

(c) (d)

t = 500
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–0.5
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–0.5
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Figure 2. With E = 10−4, Ra = 106, Pr = 1 and SYMNS BCs, we see a steady convective state with
wall-adjacent rolls for (a,c) θw = 0.25; and wall modes for (b,d) θw = 0.1. The panels show the (a,b) horizontal
and (c,d) vertical cross-sections of the vertical velocity w.

0.5

(a) (b)x = –0.9, z = 0.5 x = –0.9, z = 0.5

0.26

θ

0.18

0.14

0.10

0.22

200 300 400

t
500

0y

–0.5

0.5 0.86

θ

0.78

0.74

0.70

0.82

200 300 400

t
500

0

–0.5

Figure 3. Space–time Hövmöller diagrams of the temperature θ for E = 10−4, Ra = 106, Pr = 1; and
(a) θw = 0.1 and (b) θw = 0.9. The slope of the patterns shows that the wall modes propagate in a retrograde
direction. The symmetry of the Boussinesq equations ensures that the flow patterns for θw and 1 − θw are
similar. Note that the colour scheme is inverted in (b).

vertical velocity seen in the wall-adjacent region for θw < 0.5 (figure 2) would be upward
were θw > 0.5.

Wall modes are also seen with ASYM BCs for wall temperatures close to upper or lower
boundary values, as shown in figure 4. In figure 5, we plot the Hövmöller diagrams for the
space–time evolution of the wall modes, showing a reversal of the direction of propagation
as follows. For small θw = 0.05, we find retrograde wall modes, as shown in figure 5(a),
whereas for large θw = 1, the wall modes travel in the prograde direction, as shown in
figure 5(b). Finally, for intermediate θw we find convection in steady rolls, as was the case
with SYMNS BCs.
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Figure 4. The wall modes observed for E = 10−4, Pr = 1, Ra = 106 and ASYM BCs for (a,c) θw = 0.05 and
(b,d) θw = 1. The panels show the (a,b) horizontal and (c,d) vertical cross-sections of the vertical velocity w.
In (a,c), the wall modes propagate in the retrograde direction, while in (b,d) they propagate in the prograde
direction (see figure 5).

0.5
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0

–0.5

300 400 500

t
600 700 800 200 400 600

t
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x = –0.9, z = 0.5 x = –0.9, z = 0.5

Figure 5. Hövmöller diagrams of the temperature θ for the same parameters as in figure 4, showing that for
(a) θw = 0.05 the wall modes travel in the retrograde direction, while for (b) θw = 1 they travel in the prograde
direction.

Horn & Schmid (2017) find flow features that propagate in the prograde direction
for small aspect ratios (Γ = 0.5) with precession frequencies that are comparable to
retrograde modes. However, these flow features are ‘bulk modes’, and not restricted to
the near-wall region. Horn & Schmid (2017) associate their bulk modes with the slow
modes of Goldstein et al. (1993), with precession frequencies much smaller than those
of the retrograde modes. Neither of these studies considers the effect of asymmetric
velocity BCs, although Goldstein et al. (1993) do consider conducting walls. Here, we see
prograde wall modes with asymmetric velocity BCs, but only for θw → 1, with precession
frequencies that are comparable to the usual retrograde modes. In contrast, for insulating
walls, the wall modes are retrograde even for asymmetric BCs; and if the wall temperature
is very different from that of the no-slip boundary, say θw � 0.9, the flow is comprised of
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Figure 6. The wall modes observed for E = 10−4, Ra = 106, Pr = 1 and (a,c) SYMFS BCs with θw = 0.95
and (b,d) ALLFS BCs with θw = 0.1. The panels show the (a,b) horizontal and (c,d) vertical cross-sections of
the vertical velocity w. The wall modes have no fixed direction of propagation (see also figure 7) and the strong
four-fold symmetry seen in figures 2 and 4 is lost.

nested rolls. In § 3.4, we explain this behaviour by examining the tangential velocity at the
walls.

3.2. Additional combinations of BCs
If both the upper and lower boundaries are stress free, and the walls are conducting
and obey the no-slip condition (SYMFS BCs, see table 1), wall modes form but they
have no clearly discernible direction of propagation. Insulating walls lead to the standard
retrograde wall modes, in agreement with earlier studies. Similarly, if both the upper
and lower boundaries as well as the conducting walls are stress free (ALLFS BCs), the
wall modes that appear have no fixed direction of propagation. Representative snapshots
of the wall modes that result from SYMFS and ALLFS BCs are shown in figures 6(a)
and 6(b), respectively, with the corresponding Hövmöller diagrams shown in figures 7(a)
and 7(b), respectively. A comparison of these figures with the equivalent figures for
SYMNS (figures 2 and 3) and ASYM BCs (figures 4 and 5) suggests that while wall modes
are observed with conducting walls for suitable wall temperatures θw, no-slip velocity
BCs on at least the upper or lower boundaries are necessary for wall modes to propagate
in a definite direction. We explain this behaviour by examining the tangential velocity at
the walls in § 3.4. Finally, we note that the flow in figure 6 has lost the strong four-fold
symmetric structure shown in figures 2 and 4 for SYMNS and ASYM BCs, respectively.

3.3. Cylindrical geometry
The robustness of wall modes to changes in geometry, observed in the experiments of
Ning & Ecke (1993) (but not published; see Ecke (2023)), was studied numerically by
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Figure 7. Hövmöller diagrams of the temperature θ for the same parameters as in figure 6, showing that for
both (a) θw = 0.95 and SYMFS BCs, and (b) θw = 0.1 and ALLFS BCs, the wall modes show no fixed direction
of propagation.

Favier & Knobloch (2020). Terrien, Favier & Knobloch (2023) observed that wall modes
can be suppressed by obstacles (‘fins’) on the boundary by increasing the thermal forcing
required for wall mode onset. Here we show the consistency of the flow structures between
cuboidal and cylindrical geometries. We also find that the sharp corners in the cuboidal
geometry act to dampen the travelling wall modes.

We show the geometry-independence of our findings by performing simulations in a
cylindrical geometry of aspect ratio D/H = 2 where D is the diameter of the cylinder. The
cylindrical geometry is embedded in the Cartesian geometry using volume penalization
(see Ravichandran & Wettlaufer 2020), with volume penalization parameters of η =
5 × 10−3 or η = 10−3 giving the same results. The symmetric (SYM), ASYM and SYMFS
BCs are defined in analogy with those in § 2 for the cuboidal geometry, whereas the
ALLFS BC cannot be implemented with the solver used here. All other parameters,
E = 10−4, Pr = 1, Ra = 106, are unchanged.

In figure 8, we show the steady roll state and retrograde precessing wall modes, which
should be compared with those in figure 2. The principal quantitative difference is that the
wall temperature θ

(1)
c up to which wall modes are sustained is larger in the cylindrical

geometry for the same Rayleigh number. These wall modes travel in a retrograde or
prograde direction for SYM and ASYM BCs, respectively. This is seen in the Hövmöller
diagrams in figure 9, for SYMNS and ASYMFS BCs, respectively, showing the influence
of asymmetric velocity BCs.

3.4. Tangential flow velocity at the wall
The reversal in the travel direction of the wall modes may be explained by examining the
flow velocity tangential to the walls. The following arguments apply to both the cylindrical
and cuboidal geometries.

For SYM velocity BCs, the time-averaged tangential velocity v̄ is plotted in figure 10
for insulating and fixed wall temperatures. Insulating wall BCs give a vertically symmetric
tangential velocity that vanishes at the upper and lower boundaries (see also Zhang et al.
2020). The velocity profiles for conducting walls are starkly different.

Consider the flow at the wall with θw = 0.9. Whereas for the insulating case, there is
an inner, O(E−1/4), Stewartson boundary layer with a prograde velocity, when the walls
are at fixed temperature this boundary layer is absent and the velocities at the wall are
entirely retrograde. The near-wall flow has a positive vertical velocity and turns inwards at
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Figure 8. With E = 10−4, Ra = 106, Pr = 1 and SYMNS BCs in the cylindrical geometry, we see a steady
convective state with wall-adjacent rolls for (a,c) θw = 0.8; and wall modes for (b,d) θw = 0.95. The panels
show the (a,b) horizontal and (c,d) vertical cross-sections of the vertical velocity w.
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Figure 9. Hövmöller plots of the temperature θ for E = 10−4, Pr = 1, Ra = 106 and θw = 0.95 in the
cylindrical geometry shown in figure 8. The direction of propagation is (a) retrograde for SYM BCs and
(b) prograde for ASYM BCs.

the upper boundary, acquiring a prograde tangential velocity. Flow towards the wall at the
lower boundary acquires a retrograde tangential velocity. The stronger buoyancy-forcing
at the upper boundary, due to the larger wall-normal thermal gradient, leads to a vertical
shear, or thermal wind, resulting in the skewed velocity profiles seen in figure 10(a). These
arguments apply when θw = 0.1.

Despite the strong vertical shear seen in figure 10(a), the depth-averaged tangential
velocity is retrograde, as shown in figure 10(b). The profiles for θw = 0.1 and θw = 0.9,
expected to be similar by symmetry, have the same sense as in the case with insulating BCs.
In the rotation-dominated flows considered here, wall modes remain vertically coherent, as
clearly seen in the three-dimensional contours of figure 11 for both SYM and ASYM BCs,
and their precession direction is determined by the depth-averaged tangential velocity, as
shown in figure 10(b). Thus, the precession direction of the wall modes is the same for
θw = 0.1 and 0.9, and insulating BCs.
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Figure 10. With E = 10−4, Ra = 106, Pr = 1 and SYM velocity BCs, (a) the time-averaged velocity v̄

tangential to the wall at x = −1. The velocities are averaged over the region x < −0.9, −0.75 < y < 1.25
and over at least 300 flow time units once the wall modes have set in. Large negative (thus prograde) velocities
are seen near the upper and lower boundaries for θw = 0.9 and θw = 0.1, respectively; (b) The tangential
velocity v̄(x) averaged over the region −0.75 < y < 1.25, 0 < z < 1. Despite the stark asymmetry in the
vertical profiles of velocity for θw = 0.1 and θw = 0.9, the depth-averaged velocity profiles are identical. The
positive, and thus retrograde, average tangential velocities are consistent with the retrograde precession of the
wall modes for these velocity BCs.

(a) (b)

Figure 11. Three-dimensional isocontours of the vertical velocity w for E = 10−4, Pr = 1, Ra = 106 and
(a) θw = 0.05 with SYMNS BCs, and (b) θw = 0.975 with ASYM BCs. In both cases, it is evident that the
flow structures are columnar, and hence rotation-dominated. The isocontours are plotted for w = 0.001 (red)
and w = −0.001 (blue).

The effects of ASYM BCs are shown in figure 12(a,b), where the vertical profiles
for θw = 0 and θw = 1 are no longer symmetric about z = 0.5. Owing to the horizontal
thermal gradient, the geostrophically balanced flow develops a vertical shear, where the
sign of the shear depends on the direction of the thermal gradient. As a result, the
depth-averaged velocity profile, which determines the direction of precession, is retrograde
for θw = 0 and prograde for θw = 1.

Figures 13(a) and 13(b) show that for SYM BCs the depth-averaged tangential velocity
is similar for θw = 0.25 (steady rolls) and θw ≤ 0.1 (wall modes). The onset of wall modes
for θw ≤ 0.1 is controlled by the vertical shear, which increases with decreasing θw, rather
than by the depth-averaged velocity. For ASYM BCs, the average tangential velocity
is prograde, and the vertical shear increases as θw → 1. This argument is bolstered by

998 A47-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.901


S. Ravichandran and J.S. Wettlaufer

1.0 0.04

0.02

–0.02

–0.04

–0.05 –1.0 –0.5 0 0.5 1.00 0.05

0

0.8

0.6

0.4

0.2

0

z
ASYM, ∂θ = 0

ASYM, θw = 1

ASYM, θw = 0

xv̄

v̄

(a) (b)

Figure 12. As in figure 10, but with ASYM velocity BCs, showing the tangential velocity v̄ as a function of
(a) z and (b) x.
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Figure 13. The tangential velocity as a function of (a,c) z and (b,d) x for cases where the flow takes the form
of rolls and wall modes for (a,b) SYM and (c,d) ASYM BCs with fixed wall temperatures θw. The combination
of the depth-averaged tangential velocity and the vertical shear dictate the onset of wall modes from the steady
roll state. Flow parameters are as in figures 10 and 12.
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Figure 14. As in figures 10 and 12, but with SYMFS and ALLFS velocity BCs. Despite the large tangential
velocities at the upper and lower boundaries seen in (a), the depth-averaged velocities in (b) are of much smaller
magnitudes.
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Figure 15. Tangential velocity profiles versus (a) z and (b) x, for the cases with the linear wall temperature
of (1.5).

an examination of the case with the linear wall temperature profile (see (1.5)), wherein
the wall thermal forcing is minimal (see Ning & Ecke 1993), and thus so too is the
vertical shear. Therefore, the net tangential velocity is retrograde and the wall modes
propagate in the retrograde direction for both SYM and ASYM velocity BCs. These
arguments apply in both cuboidal and cylindrical geometries.

For ALLFS and SYMFS BCs, wall modes have no preferred direction of travel. In
figure 14 we see that, compared with the case with insulating walls, fixed-temperature
walls lead to much smaller depth-averaged tangential velocities of indeterminate direction.
The latter point is demonstrated by comparing the two different realizations of the
ALLFS BCs.

Lastly, figure 15 shows the tangential velocity profiles obtained with the linear wall
temperature (see (1.5)), no-slip BCs on the lower boundary at z = 0 and either no-slip
or stress-free BCs on the upper boundary at z = 1. Since the thermal forcing at the wall
is smaller than for fixed θw, the vertical shear generated is negligible, and the average
tangential velocity is retrograde. The wall modes propagate in a retrograde direction for
both velocity BCs.
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Figure 16. (a) The amplitude A2
θ of the wall modes as a function of time, showing the existence of a steady

oscillatory state and (b) the domain-averaged oscillation amplitude Ā2
θ as a function of the reduced wall

temperature θw/θ
(1)
c − 1 for SYMNS BCs (see table 1) and fixed flow parameters E = 10−4, Ra = 106 and

Pr = 1. In the inset of (b), A2
θ is plotted versus the wall temperature θw. The curves in (a) are plotted for the

wall temperatures θw = (0, 0.05, 0.1, 0.1125, 0.125, 0.15, 0.25), with circles of larger size for smaller θw. The
averages in (b) are obtained over the last 100 flow units of each curve in (a). The linear dependence of the
(squared) amplitude on the magnitude of the deviation from the critical wall temperature is characteristic of a
Hopf bifurcation.

3.5. The influence of θw on wall mode formation
From the results presented in §§ 3.1 and 3.2, we see that wall modes only occur for values
of θw sufficiently close to the upper or lower boundary temperatures, with the flow taking
the form of steady rolls for θw > θ

(1)
c (see figure 2a,c). To determine the wall temperature

θ
(1)
c below which wall modes exist, θw < θ

(1)
c , we quantify the wall mode strength using

the oscillation amplitude of the temperature θ(x, y, z, t) as

A2
θ = 〈(θ − θ̄ )2〉, (3.1)

where θ̄ (x, y, z) is the time-averaged temperature at a given location (x, y, z), and the angle
brackets 〈·〉 denote an average over the spatial domain. Thus, the amplitude Aθ = 0 for
steady (or zero) flow, and the wall temperature θw at which Aθ > 0 is the critical wall
temperature θ

(1)
c . Similarly, the temperature θ

(2)
c is defined such that when θw > θ

(2)
c wall

modes occur, and when θw < θ
(2)
c , steady convective rolls occur.

In figure 16, we plot the oscillation amplitude Aθ as the wall temperature θw is varied for
SYMNS BCs and fixed flow parameters E = 10−4, Ra = 106, and Pr = 1. We find that the
domain-averaged oscillation amplitude Ā2

θ ∝ |θw − θ
(1)
c |, with a critical wall temperature

θ
(1)
c ≈ 0.1. This dependence of the amplitude on the deviation from threshold is similar to

the Hopf bifurcation that occurs for wall modes with insulating walls (Ecke et al. 1992),
in which the controlling parameter is the Rayleigh number.

We repeat this exercise for different values of Ra, keeping the parameters E = 10−4

and Pr = 1 fixed. The smallest value of Ra such that θ
(1)
c (Ra) > 0 is defined as Ra(1)

c =
Ra(1)

c (E, Pr, BCs). The resulting behaviour for the cases we have simulated is summarized
schematically in figure 17, where we find a monotonic dependence of θ

(1)
c on Ra.

998 A47-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.901


Wall modes in rotating Rayleigh–Bénard convection

1.0

0.8

0.6

0.4

0.2

0.8 1.0 1.2 1.4 1.6
(×106)

0

Ra Rac
(2)Rac

(1)

θw

Wall modes

Wall modes

Steady rolls: θc
(1) < θw < θc

(2)

B
u
lk

 c
o
n
v
ec

ti
o
n

Figure 17. The different regimes of behaviour observed with conducting walls and SYMNS BCs. The symbols
denote whether wall modes (circles), steady rolls (squares) or bulk convection with columnar vortices (crosses)
are seen. Note that combinations of these are possible. The regions shaded grey and blue correspond to the
steady roll- and bulk-convective states. The lower and upper boundaries of the grey region correspond to the
critical temperatures θ

(1)
c and θ

(2)
c , respectively. For small Rayleigh numbers Ra, wall-attached steady rolls are

seen for all θw. For Rayleigh numbers greater than a critical value Ra(1)
c , wall modes are seen for θw < θ

(1)
c and

θw > θ
(2)
c , while the steady roll state persists for θ

(1)
c < θw < θ

(2)
c . For larger Rayleigh numbers, convection

also sets in away from the walls, with the flow taking the form of a series of nested rolls that remain stable
for extended periods of time. For Ra > Ra(2)

c ≡ Rabulk
c of (1.2), flow in the bulk takes the form of horizontally

drifting columnar vortices that are typical of rotating Rayleigh–Bénard convection, while either nested rolls
or wall modes are seen adjacent to the walls. For E = 10−4, Pr = 1, we find Ra(1)

c = 9 × 105, and Rabulk
c =

1.5 × 106.

For SYMNS BCs and wall temperatures θw < θ
(1)
c and θw > θ

(2)
c retrograde wall modes

are observed as seen in figures 3(a) and 3(b), respectively. The difference θ
(2)
c − θ

(1)
c

decreases monotonically as Ra increases.
As the Rayleigh number approaches the critical value for the onset of bulk flow,

Rabulk
c = 1.5 × 106 from (1.2), the difference θ

(2)
c − θ

(1)
c can either (i) vanish before bulk

flow sets in, such that Ra(2)
c < Rabulk

c , or (ii) remain finite until bulk convection sets in at
Ra(2)

c = Rabulk
c . We find the latter case, wherein as Ra increases the flow takes the form

of a series of nested convection rolls that span the entire horizontal area of the domain,
as shown in figure 18(a,d). For Ra > Rabulk

c , as noted above, these rolls break down
into individual columnar vortices in the fluid bulk, as seen in figure 18(b,e), due to the
mechanism reported by Boubnov & Golitsyn (1986), Zhong et al. (2010) and Ravichandran
& Wettlaufer (2020), into a state of geostrophic convection in the bulk. For larger Ra, the
wall modes become less prominent.

The symmetry between θ
(1)
c and θ

(2)
c observed for SYMNS BCs, where θ

(1)
c + θ

(2)
c = 1,

breaks down if the velocity boundary conditions are asymmetric, such as for ASYM
BCs. In figure 19, we plot the oscillation amplitude A2

θ (θw) for the same parameters as
in figure 16, but with ASYM BCs, showing that θ

(1)
c + θ

(2)
c > 1.

Of further relevance to figure 17 is the fact that in the limit E → 0, (1.3) and (1.4) for the
critical Rayleigh numbers are independent of the Prandtl number. For finite E, Herrmann
& Busse (1993) found that as the Prandtl number decreased so too did Rac (see their
figures 3 and 6), driving the system towards instability. Similarly, decreasing the Ekman
number increases the critical Rayleigh number, and leads to the same qualitative effects as
does decreasing Ra. Next, we consider further the effects of varying the Prandtl number.
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Figure 18. With E = 10−4, Pr = 1, θw = 0.4 and SYMNS BCs, we see (a,d) for Ra = Rabulk
c = 1.5 × 106,

steady nested rolls spanning the entire horizontal extent of the domain; (b,e) wall-adjacent steady rolls with
columnar vortices in the bulk for Ra = 1.6 × 106. Note that for θw = 0.25 < θ

(1)
c , we see (c, f ) bulk convection

coexist with retrograde propagating wall modes. See also figure 17.
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Figure 19. (a) The amplitude A2
θ of the spatiotemporal oscillations as a function of time, showing the existence

of a steady oscillatory state, and the domain-averaged oscillation amplitude Ā2
θ as a function of (b) the

reduced wall temperature θw/θ
(1)
c − 1, and (c) θw/θ

(2)
c − 1, for ASYM BCs (see table 1). In the inset of

(b), A2
θ is plotted versus the wall temperature θw. The curves in (a) are plotted for the wall temperatures

θw = (0, 0.05, 0.1, 0.15) (solid lines, circles of decreasing size) and θw = (0.85, 0.9, 0.95, 0.975, 1.0) (dashed
lines, squares of increasing size). The averages in (b) are obtained over the last 100 flow units for each curve in
(a). The linear dependence of the (squared) amplitude on the magnitude of the deviation from the critical wall
temperature is characteristic of a Hopf bifurcation. Note the asymmetry between θ

(1)
c and θ

(2)
c (c.f. figure 16).

3.6. The role of the Prandtl number
An important effect of varying the Prandtl number to control the thickness of the thermal
boundary layers at the walls and the resultant heat transfer. Thus, for a Boussinesq fluid,
decreasing the Prandtl number is associated with increasing the thermal diffusivity.

Considering again the case of θw ≈ 1, with other parameters held constant, smaller
Prandtl numbers result in larger buoyancy forcing at the walls, leading to larger
wall-adjacent vertical velocities, and larger retrograde velocities as the flow turns inwards
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Figure 20. Oscillation amplitudes with E = 10−4, as in figure 16(b), but with Ra = 106 and Pr = 0.5 (open
circles), and Ra = 1.2 × 106, Pr = 1 (open squares). The dashed curve is the case E = 10−4, Ra = 106 and
Pr = 1 exactly as in figure 16(b).
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Figure 21. With E = 10−4, Ra = 106 and SYMNS BCs, we see wall modes for (a,c) Pr = 0.5 and
θw = 0.15; and a steady convective state with wall-adjacent rolls for (b,d) Pr = 2 and θw = 0. The panels
show the horizontal (a,b) and vertical (c,d) cross-sections of the vertical velocity w.

at the upper boundary. As a result, the flow experiences greater vertical shear, which results
in the onset of wall modes for a smaller θw. We see in figure 20 that decreasing Pr and
increasing Ra both increase θ

(1)
c . Thus, for Pr = 0.5, wall modes are seen for θw = 0.15 in

figure 21(a), whereas steady rolls are seen for Pr = 1. In contrast, for Pr = 2, the steady
roll state is seen for θw = 0 in figure 21(b), and larger values of Ra are needed for the onset
of wall modes than for the onset of bulk convection. Therefore, smaller Ekman numbers,
and thus more strongly rotation-dominated flows, are needed for wall modes when Pr > 1.
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4. Conclusion

The flow structure in confined rotating Rayleigh–Bénard convection is comprised of
alternating regions of upwelling warm and downwelling cold fluid. When conditions lead
to these patterns being adjacent to the walls of the system, they are commonly referred to
as ‘wall-modes’, and were first observed in laboratory experiments (see Rossby (1969),
Ecke et al. (1992), and references in the latter). Here, in geometries of aspect ratio
greater than unity, we have used direct numerical simulations to study the formation and
spatiotemporal evolution of wall-adjacent flow patterns when the walls are conducting
instead of insulating. We showed that the wall temperature θw controls whether the flow
takes the form of steady convective rolls or propagating wall-modes. We found that the
velocity BCs are crucial to the dynamics of wall modes, and that these modes propagate
in a fixed direction only if at least one of the upper and lower boundaries obeys the no-slip
condition. Moreover, the direction of propagation of the wall modes can be reversed for
suitable combinations of the velocity BCs at the upper and lower boundaries and the
wall temperature. In particular, if only the upper boundary is stress free, the wall modes
propagate in a prograde direction when θw ≈ 1. Indeed, there is a similarity between the
effects of velocity BCs on wall mode formation and propagation, to transient convective
ring formation (Boubnov & Golitsyn 1986; Vorobieff & Ecke 1998; Zhong et al. 2010;
Ravichandran & Wettlaufer 2020).

Although wall modes were previously shown to occur when the walls are conducting,
we found that asymmetric velocity BCs drive an asymmetry in the torques exerted at the
two boundaries. Such effects may have astrophysical or geophysical consequences, where
asymmetric velocity BCs are common, such as for example in natural bodies of water
with free upper surfaces. The effects of the asymmetry in velocity BCs on integral flow
properties, such as the helicity (Moffatt & Tsinober 1992) are a subject of ongoing study.

Finally, the rich range of flow behaviour in slightly supercritical Rayleigh–Bénard
convection has served as a model for the study of nonlinear-dynamical systems, such
as the Benjamin–Feir and Eckhaus instabilities (Ning & Ecke 1993; Liu & Ecke
1997, 1999; Lopez et al. 2009). More recent studies have shown that the wall-modes in
rotating Rayleigh–Bénard convection may be a topologically conserved feature, robust to
severe vertically homogeneous modifications to the geometry (Favier & Knobloch 2020).
Therefore, the influence of conducting walls in combination with asymmetric velocity BCs
on the wall modes may provide a framework of general interest in the theory of pattern
formation.
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