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Abstract

In this paper, we consider signal recovery via l1-analysis optimisation. The signals we consider are not
sparse in an orthonormal basis or incoherent dictionary, but sparse or nearly sparse in terms of some
tight frame D. The analysis in this paper is based on the restricted isometry property adapted to a tight
frame D (abbreviated as D-RIP), which is a natural extension of the standard restricted isometry property.
Assuming that the measurement matrix A ∈ Rm×n satisfies D-RIP with constant δtk for integer k and t > 1,
we show that the condition δtk <

√
(t − 1)/t guarantees stable recovery of signals through l1-analysis.

This condition is sharp in the sense explained in the paper. The results improve those of Li and Lin
[‘Compressed sensing with coherent tight frames via lq-minimization for 0 < q ≤ 1’, Preprint, 2011,
arXiv:1105.3299] and Baker [‘A note on sparsification by frames’, Preprint, 2013, arXiv:1308.5249].

2010 Mathematics subject classification: primary 94A12.

Keywords and phrases: compressed sensing, sparse recovery, l1-analysis, D-restricted isometry property,
tight frames.

1. Introduction
Compressed sensing is a new branch of signal recovery, distinct from sparse and
redundant representations. By exploiting sparse representation of signals, their
sampling can be made far more effective compared to the classical Nyquist–Shannon
sampling (see, for example, [4, 12]).

In compressed sensing, the signal f ∈ Rn is acquired by collecting m linear
measurements of the form yk = 〈ak, f 〉 + zk, 1 ≤ k ≤ m, or in matrix notation,

y = A f + z,

where A is a known m × n measurement matrix (with m� n) and z ∈ Rm is a vector
of measurement errors. Sensing is nonadaptive in that A does not depend on f . The
compressed sensing theory asserts that if the unknown signal f is sparse, or nearly
sparse, it is possible to recover f under suitable conditions on the matrix A, by convex
programming:

min
f̃∈Rn
‖ f̃ ‖1 subject to ‖A f̃ − y‖2 ≤ ε,
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where ‖ · ‖2 denotes the Euclidean norm, ‖ f ‖1 =
∑n

i=1 | fi| is the l1-norm and ε ≥ 0 is a
likely upper bound on the noise level ‖z‖2. We call ε = 0 the noiseless case and ε > 0
the noisy case.

Let x ∈ Rd be a column vector. The support of x is supp(x) = {i : xi , 0, i = 1, . . . ,d}.
For k ∈ N, a vector x is said to be k-sparse if |supp(x)| ≤ k. For an m × n measurement
matrix A, we say that A obeys the restricted isometry property (RIP) [6] with constant
δk ∈ (0, 1) if

(1 − δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22

for all k-sparse signals x, where δk is called the restricted isometry constant (RIC) of
order k of the measurement matrix A.

Various conditions on the RIC for sparse signal recovery have been introduced and
studied in the literature. For example, sufficient conditions for exact recovery in the
noiseless case include δ2k <

√
2 − 1 ≈ 0.414 in Candès and Tao [6], δ2k < 0.4531 in

Foucart and Lai [13], δ2k < 0.472 in Cai et al. [8], δ2k < 0.497 in Mo and Li [17],
δk < 0.307 in [7], and δk < 1/3 and δ2k < 1/2 in [10]. Recently Cai and Zhang in [11]
have shown that for any given constant t ≥ 4/3, the condition δtk <

√
(t − 1)/t is sharp,

both for exact recovery of all k-sparse signals in the noiseless case and stable recovery
of approximately sparse signals in the noisy case. There are also other sufficient
conditions that involve the RIC of different orders; for example, δ3k + 3δ4k < 2 in
Candès et al. [5] and δk + δ2k < 1 in Cai and Zhang [9].

The techniques above can hold for signals which are sparse in the standard
coordinate basis or sparse with respect to some other orthonormal basis. However,
in practice, there are many examples in which a signal of interest is not sparse in
an orthonormal basis. More often than not, sparsity is not expressed in terms of an
orthonormal basis, but in terms of an overcomplete dictionary. This means that the
signal f ∈ Rn is now expressed as f = Dx, where D ∈ Rn×d is some overcomplete
dictionary and x is (nearly) sparse. We refer to [3] and the references therein for details.

Let g1, g2, . . . , gd be the d columns of D. We say that D is a tight frame for Rn if,
for any f ∈ Rn, the following relations hold:

f =

d∑
i=1

〈 f , gi〉gi and ‖ f ‖22 =

d∑
i=1

|〈 f , gi〉|
2,

where 〈·, ·〉 denotes the standard Euclidean inner product. So, for a tight frame D,

DD∗ = I,

where D∗ stands for the conjugate transpose of D. We wish to recover the unknown
signal f ∈ Rn, that is sparse or nearly sparse in terms of some tight frame D, from
linear measurements y = A f + z. This means that D∗ f is sparse or nearly sparse.
This problem has been considered in [1–3, 14–16, 18, 19]. The methods introduced
in [2, 18, 19] force incoherence on the dictionary D so that the matrix AD conforms
to the standard compressed sensing result above. As a result, they are not suitable
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for a dictionary which is largely correlated. Candès et al. [3] proposed a new way of
recovering signals of this kind from y = A f + z by the use of l1-analysis optimisation:

f̂ = argmin
f̃∈Rn

‖D∗ f̃ ‖1 subject to ‖A f̃ − y‖2 ≤ ε, (1.1)

where again ε is a likely upper bound on the noise level ‖z‖2. To this end, a new
property called D-RIP was introduced in [14]. It is a natural extension to the standard
RIP.

Definition 1.1 (D-RIP). Let D be a tight frame and Σk be the set of all k-sparse vectors
in Rd. A measurement matrix A is said to obey the restricted isometry property adapted
to D (abbreviated as D-RIP) with constant δk if

(1 − δk)‖Dv‖22 ≤ ‖ADv‖22 ≤ (1 + δk)‖Dv‖22

holds for all v ∈ Σk. When k is not an integer, we define δk as δdke.

Candès et al. [3] noted that Gaussian matrices and other random compressed
sensing matrices satisfy the D-RIP. In fact any m × n matrix A obeying

P((1 − δ)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δ)‖v‖22) ≤ Ce−γm,

for fixed v ∈ Rn (γ is an arbitrary positive numerical constant), will satisfy the D-
RIP with overwhelming probability, provided that m & s log(d/s). See [3] and the
references therein for details.

In what follows, δk denotes the D-RIP constant with order k of the measurement
matrix A. Throughout the paper, we denote by v[k] the vector consisting of the k largest
entries of v ∈ Rn in magnitude, that is,

v[k] = argmin
‖ṽ‖0≤k

‖v − ṽ‖2,

where ‖v‖0 = |{i : vi , 0}|. The main result of Candès et al. [3] is that if the measurement
matrix A satisfies D-RIP with δ2k < 0.08, then the solution f̂ to (1.1) satisfies

‖ f̂ − f ‖2 ≤ C′0ε + C′1
‖D∗ f − (D∗ f )[k]‖1

√
k

,

where the constants C′0 and C′1 may only depend on δ2k. Many researchers have tried
to improve on this result. For example, the D-RIP condition δ2k < 0.4931 was used by
Li et al. [14] and it can be improved to δ2k < 0.656 in some special cases. Recently,
the D-RIP condition was improved to δ2k <

√
2/2 ≈ 0.7071 by Baker [1].

The main goal of this paper is to establish a sharp D-RIP condition on δtk for the
recovery of signals that are sparse or nearly sparse in terms of the tight frame D in
(1.1). We use the new technique developed in [11] to prove our main result. We will
show that our result is an improvement on those in [1, 14].
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This paper is organised as follows. In Section 2 we introduce some lemmas and
notation. In Section 3 we give our main result.

We conclude this section by giving some notation that will be used throughout
the paper. We use f ∈ Rn to denote the unknown signal that we want to reconstruct
and A ∈ Rm×n the measurement matrix. For v ∈ Rn, we set ‖v‖1 =

∑n
i=1 |vi| and ‖v||∞ =

sup1≤i≤n |vi|. For a coherent tight frame D ∈ Rn×d and T ⊂ {1, 2, . . . , d}, we denote by
DT the matrix D restricted to the columns indexed by T . The notation D∗T means (DT )∗.
The index set T c stands for the complement of T in {1, 2, . . . , d}. For a given vector
h ∈ Rn, we denote by D∗T h(i) the ith element of D∗T h.

2. Some useful lemmas

In this section, we give some lemmas that will be very useful in the later parts of
the paper.

The first lemma relates to the l1-norm invariant convex s-sparse decomposition (see
Wu and Xu [20] and also [11]).

Lemma 2.1. For positive integers s ≤ n and a positive constant C, let v ∈ Rn be a vector
satisfying

‖v‖1 ≤ C and ‖v‖∞ ≤
C
s
.

Then there are s-sparse vectors u1, u2, . . . , uN with

‖ui‖1 = ‖v‖1 and ‖ui‖∞ ≤
C
s
, for i = 1, 2, . . . ,N,

such that

v =

N∑
i=1

λiui

for some nonnegative real numbers λ1, λ2, . . . , λN satisfying
∑N

i=1 λi = 1.

The next l2-norm identity is very important in the proof of our main result.

Lemma 2.2. Let βi ∈ R
d, λi and c be nonnegative real numbers with

∑N
i=1 λi = 1. The

following equality holds for any m × d matrix B:

N∑
i=1

λi

∥∥∥∥∥B
( N∑

j=1

λ jβ j − cβi

)∥∥∥∥∥2

2
+ (1 − 2c)

∑
1≤i< j≤N

λiλ j‖B(βi − β j)‖22 =

N∑
i=1

λi(1 − c)2‖Bβi‖
2
2.

Proof. Set xi = Bβi. The desired equality can be written as

N∑
i=1

λi

∥∥∥∥∥ N∑
j=1

λ jx j − cxi

∥∥∥∥∥2

2
+ (1 − 2c)

∑
1≤i< j≤N

λiλ j‖xi − x j‖
2
2 =

N∑
i=1

λi(1 − c)2‖xi‖
2
2.
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By an elementary calculation, we have
N∑

i=1

λi

∥∥∥∥∥ N∑
j=1

λ jx j − cxi

∥∥∥∥∥2

2

=

N∑
i=1

λi

〈 N∑
j=1

λ jx j − cxi,

N∑
j=1

λ jx j − cxi

〉

=

N∑
i=1

λi

(∥∥∥∥∥ N∑
i=1

λ jx j

∥∥∥∥∥2

2
− 2c

〈
xi,

N∑
i=1

λ jx j

〉
+ c2‖xi‖

2
2

)
= (1 − 2c)

∥∥∥∥∥ N∑
i=1

λ jx j

∥∥∥∥∥2

2
+ c2

N∑
i=1

λi‖xi‖
2
2

= (1 − 2c)
[ N∑

i=1

λ2
j‖x j‖

2
2 + 2

∑
1≤i< j≤N

λiλ j〈xi, x j〉

]
+ c2

N∑
i=1

λi‖xi‖
2
2. (2.1)

We also have

(1 − 2c)
∑

1≤i< j≤N

λiλ j‖xi − x j‖
2
2 = (1 − 2c)

[ ∑
1≤i< j≤N

λiλ j(‖xi‖
2
2 − 2〈xi, x j〉 + ‖x j‖

2
2)
]
. (2.2)

By adding Equations (2.1) and (2.2),
N∑

i=1

λi

∥∥∥∥∥ N∑
j=1

λ jx j − cxi

∥∥∥∥∥2

2
+ (1 − 2c)

∑
1≤i< j≤N

λiλ j‖xi − x j‖
2
2

= (1 − 2c)
[ N∑

i=1

λ2
j‖x j‖

2
2 +

∑
1≤i< j≤N

λiλ j(‖xi‖
2
2 + ‖x j‖

2
2)
]

+ c2
N∑

i=1

λi‖xi‖
2
2

= (1 − 2c)
[
λ1

( N∑
i=1

λi

)
‖x1‖

2
2 + λ2

( N∑
i=1

λi

)
‖x2‖

2
2 + · · · + λN

( N∑
i=1

λi

)
‖xN‖

2
2

]
+ c2

N∑
i=1

λi‖xi‖
2
2

= (1 − 2c)
N∑

i=1

λi‖xi‖
2
2 + c2

N∑
i=1

λi‖xi‖
2
2 =

N∑
i=1

λi(1 − c)2‖xi‖
2
2.

The proof is complete. �

Since DD∗ and D∗D have the same nonzero eigenvalues, it is easy to establish the
following inequality for a tight frame.

Lemma 2.3. Let D be a n × d tight frame. Then, for any v ∈ Rd,

‖Dv‖2 ≤ ‖v‖2.

We conclude this section by stating a lemma from [10].
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Lemma 2.4. Given positive integers d and k with d ≥ k and numbers a1 ≥ a2 ≥ · · · ≥

ad ≥ 0 satisfying
∑k

i=1 ai ≥
∑d

j=k+1 a j, then for any α ≥ 1,

k∑
i=1

aαi ≥
d∑

j=k+1

aαj .

More generally, if a1 ≥ a2 ≥ · · · ≥ ad ≥ 0, λ ≥ 0 and
∑k

i=1 ai + λ ≥
∑d

j=k+1 a j, then for
any α ≥ 1,

d∑
j=k+1

aαj ≤ k
[(1

k

k∑
i=1

aαi
)1/α

+
λ

k

]α
.

3. Main results

The main result of the paper is the following theorem.

Theorem 3.1. Let D be an arbitrary n × d tight frame and A be an m × n measurement
matrix satisfying the D-RIP with δtk <

√
(t − 1)/t for some t > 1. Then the solution f̂

of (1.1) satisfies

‖ f̂ − f ‖2 ≤
√

2C1ε +
2(
√

2C2 + 1)
√

k
‖D∗ f − (D∗ f )[k]‖1, (3.1)

where

C1 =
2
√

t(t − 1)(1 + δtk)
t(
√

(t − 1)/t − δtk)
, C2 =

2δtk +

√
2t(
√

(t − 1)/t − δtk)δtk

2t(
√

(t − 1)/t − δtk)
.

Proof. We first assume that tk is an integer. Set h = f̂ − f . Let T0 be the set of indices
corresponding to the largest k components of D∗h in magnitude. Since f̂ is the solution
of (1.1), we have

‖D∗ f ‖1 ≥ ‖D∗ f̂ ‖1 = ‖D∗h + D∗ f ‖1 = ‖D∗T0
h + D∗T c

0
h + D∗T c

0
f + D∗T0

f ‖1

= ‖D∗T0
h + D∗T0

f ‖1 + ‖D∗T c
0
h + D∗T c

0
f ‖1

≥ ‖D∗T0
f ‖1 − ‖D∗T0

h‖1 + ‖D∗T c
0
h‖1 − ‖D∗T c

0
f ‖1.

This implies
‖D∗T c

0
h‖1 ≤ ‖D∗T0

h‖1 + 2‖D∗T c
0

f ‖1. (3.2)

We also have
‖Ah‖2 ≤ ‖y − A f̂ ‖2 + ‖y − A f ‖2 ≤ 2ε.

Set α = (‖D∗T0
h‖1 + 2‖D∗T c

0
f ‖1)/k. We split D∗T c

0
h into D∗T c

0
h = D∗

Λ1
h + D∗

Λ2
h, where the

ith elements of D∗
Λ1

h and D∗
Λ2

h are defined by
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D∗Λ1
h(i) =

D∗T c
0
h(i) if |D∗T c

0
h(i)| > α/(t − 1),

0 otherwise,

and

D∗Λ2
h(i) =

D∗T c
0
h(i) if |D∗T c

0
h(i)| ≤ α/(t − 1),

0 otherwise.

It is clear that ‖D∗
Λ1

h‖1 ≤ ‖D∗T c
0
h‖1 ≤ kα. Denote |supp{D∗

Λ1
h}| = ‖D∗

Λ1
h‖0 = p. From the

definition of D∗
Λ1

h,

kα ≥ ‖D∗Λ1
h‖1 =

∑
i∈supp{D∗

Λ1
h}

|D∗Λ1
h(i)| ≥

∑
i∈supp{D∗

Λ1
h}

α

t − 1
=

pα
t − 1

.

which gives p ≤ k(t − 1). Hence,

‖D∗Λ2
h‖1 = ‖D∗T c

0
h‖1 − ‖D∗Λ1

h‖1 ≤ kα −
pα

t − 1
= (k(t − 1) − p) ·

α

t − 1
.

By the definition of D∗
Λ2

h, it is obvious that

‖D∗Λ2
h‖∞ ≤

α

t − 1
.

By Lemma 2.1, we can express D∗
Λ2

h as a convex combination of sparse vectors:

D∗Λ2
h =

N∑
i=1

λiui,

where ui is (k(t − 1) − p)-sparse, ‖ui‖1 = ‖D∗
Λ2

h‖1 and ‖ui‖∞ ≤ α/(t − 1). Hence,

‖ui‖2 ≤
√
‖ui‖0‖ui‖∞ ≤

√
k(t − 1) − p‖ui‖∞ ≤

√
k(t − 1)‖ui‖∞ ≤ α

√
k/(t − 1).

Let µ ≥ 0, c ≥ 0 be constants to be determined and set βi = D∗T0
h + D∗

Λ1
h + µui. Then

N∑
j=1

λ jβ j − cβi = D∗T0
h + D∗Λ1

h + µD∗Λ2
h − cβi

= (1 − µ − c)(D∗T0
h + D∗Λ1

h) − cµui + µD∗h.
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Taking c = 1/2 and applying Lemma 2 with B = AD, we obtain

0 =

N∑
i=1

λi

∥∥∥∥∥AD
(
(D∗T0

h + D∗Λ1
h + µD∗Λ2

h) −
1
2

(D∗T0
h + D∗Λ1

h + µui)
)∥∥∥∥∥2

2
−

N∑
i=1

λi

4
‖ADβi‖

2
2

=

N∑
i=1

λi

∥∥∥∥∥AD
((1

2
− µ

)
(D∗T0

h + D∗Λ1
h) −

µ

2
ui + µD∗h

)∥∥∥∥∥2

2
−

N∑
i=1

λi

4
‖ADβi‖

2
2

=

N∑
i=1

λi

∥∥∥∥∥AD
((1

2
− µ

)
(D∗T0

h + D∗Λ1
h) −

µ

2
ui

)∥∥∥∥∥2

2
+ µ2‖Ah‖22

+ 2
〈
AD

(1
2
− µ

)
(D∗T0

h + D∗Λ1
h) −

µ

2
D∗Λ2

h, µAh
〉
−

N∑
i=1

λi

4
‖ADβi‖

2
2.

=

N∑
i=1

λi

∥∥∥∥∥AD
((1

2
− µ

)
(D∗T0

h + D∗Λ1
h) −

µ

2
ui

)∥∥∥∥∥2

2

+ µ(1 − µ)〈AD((D∗T0
h + D∗Λ1

h), Ah〉 −
N∑

i=1

λi

4
‖ADβi‖

2
2.

Since ‖D∗T0
h‖0 ≤ k, ‖D∗

Λ1
h‖0 ≤ p and ‖ui‖0 ≤ k(t − 1) − p, the vectors

(1
2
− µ

)
(D∗T0

h + D∗Λ1
h) −

µ

2
ui and βi = D∗T0

h + D∗Λ1
h + µui

are tk-sparse. By the definition of D-RIP and the triangle inequality,

0 ≤ (1 + δtk)
N∑

i=1

λi

[(1
2
− µ

)2
‖D(D∗T0

h + D∗Λ1h)‖22 +
µ2

4
‖Dui‖

2
2

]
+ µ(1 − µ)〈AD(D∗T0

h + D∗Λ1
h), Ah〉

− (1 − δtk)
N∑

i=1

λi

4
(‖D(D∗T0

h + D∗Λ1
h)‖22 + µ2‖Dui‖

2
2). (3.3)

Also, from Lemma 2.3 and the definition of D-RIP,

〈AD(D∗T0
h + D∗Λ1

h), Ah〉 ≤ ‖AD(D∗T0
h + D∗Λ1

h)‖2‖Ah‖2

≤ 2ε
√

1 + δtk‖D(D∗T0
h + D∗Λ1

h)‖2

≤ 2ε
√

1 + δtk‖D∗T0
h + D∗Λ1

h‖2. (3.4)
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Substituting (3.4) into (3.3) and using Lemma 2.3 again,

0 ≤ (1 + δtk)
N∑

i=1

λi

[(1
2
− µ

)2
‖D∗T0

h + D∗Λ1h‖22 +
µ2

4
‖ui‖

2
2

]
+ 2εµ(1 − µ)

√
1 + δtk‖D∗T0

h + D∗Λ1
h‖2

− (1 − δtk)
N∑

i=1

λi

4
(‖D∗T0

h + D∗Λ1
h‖22 + µ2‖ui‖

2
2)

=

N∑
i=1

λi

[
(1 + δtk)

(1
2
− µ

)2
−

(1 − δtk)
4

‖D∗T0
h + D∗Λ1h‖22 +

δtkµ
2

2
‖ui‖

2
2

]
+ 2εµ(1 − µ)

√
1 + δtk‖D∗T0

h + D∗Λ1
h‖2. (3.5)

Set x = ‖D∗T0
h + D∗

Λ1
h‖2 and P = 2k−1/2‖D∗T c

0
f ‖1. Since α = (‖D∗T0

h‖1 + 2‖D∗T c
0

f ‖1)/k,

‖ui‖2 ≤
√

k/(t − 1)α ≤
‖D∗T0

h‖2
√

t − 1
+

2‖D∗T c
0

f ‖1
√

k(t − 1)

≤
‖D∗T0

h + D∗
Λ1

h‖2
t − 1

+
2‖D∗T c

0
f ‖1

√
k(t − 1)

=
x + P
√

t − 1
.

It then follows from (3.5) that

0 ≤
[
(µ2 − µ) + δtk

(
µ2 − µ +

1
2

+
µ2

2(t − 1)

)]
x2

+

(Pµ2δtk

t − 1
+ 2εµ(1 − µ)

√
1 + δtk

)
x +

µ2P2δtk

2(t − 1)
.

If we let µ =
√

t(t − 1) − (t − 1), then the last inequality becomes

0 ≤ −t[(2t − 1) − 2
√

t(t − 1)]
(√ t − 1

t
− δtk

)
x2

+

[Pµ2δtk

t − 1
+ 2εµ2

√
t

t − 1

√
1 + δtk

]
x +

µ2P2δtk

2(t − 1)

=
µ2

t − 1

[
−t

(√ t − 1
t
− δtk

)
x2 + (Pδtk + 2ε

√
t(t − 1)(1 + δtk))x +

P2δtk

2

]
.

By assumption δtk ≤
√

(t − 1)/t. So, we can solve the last inequality, which we
abbreviate as 0 ≤ Ax2 + Bx + C for x, to obtain

x ≤
B +
√

B2 + 4AC
2A

≤
2
√

t(t − 1)(1 + δtk)
t(
√

(t − 1)/t − δtk)
ε +

2δtk +

√
2t(
√

(t − 1)/t − δtk)δtk

2t(
√

(t − 1)/t − δtk)
P.
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Define C1 and C2 as in the statement of the theorem. The last inequality can be
rewritten as

x ≤ C1ε + C2P. (3.6)

Since D is a tight frame, we have

‖ f̂ − f ‖2 = ‖h‖2 = ‖D∗h‖2 =
√
‖D∗T0

h‖22 + ‖D∗T c
0
h‖22. (3.7)

It follows from (3.2) that

‖D∗T c
0
h‖1 ≤ ‖D∗T0

h‖1 + P
√

k ≤ ‖D∗T c
0
h‖2 ≤ ‖D∗T0

h‖2 + P, (3.8)

where the last inequality follows from Lemma 2.4. From (3.8) together with (3.7),

‖ f̂ − f ‖2 ≤
√
‖D∗T0

h‖22 + (‖D∗T0
h‖2 + P)2

≤

√
2‖D∗T0

h‖22 + P

≤
√

2x + P

≤
√

2C1ε +
2(
√

2C2 + 1)
√

k
‖D∗T c

0
f ‖1

=
√

2C1ε +
2(
√

2C2 + 1)
√

k
‖D∗ f − (D∗ f )[k])‖1,

where the last inequality follows from (3.6) and the definition of P, and the equality
follows from the definition of T0. This establishes (3.1).

In the case where tk is not an integer, we work with t′ = dtke/k. It is clear that t′ > t
and that the integer t′k satisfies

δt′k = δtk <

√
t − 1

t
<

√
t′ − 1

t′
.

Repeating the above process with δtk replaced by δt′k, it is not difficult to derive (3.1).
The proof is complete. �

Remark 3.2.

(a) When ‖D∗T c
0

f ‖1 = 0 and ε = 0, that is, x = D∗ f is k-sparse and the measurement

error is zero, the condition δtk ≤
√

(t − 1)/t guarantees exact recovery of f from
problem (1.1).

(b) When D = I, which corresponds to the case of standard compressed sensing, our
result is consistent with [11, Theorem 2.1].

(c) Cai and Zhang [11] have shown that in the special case D = I, for any t ≥ 4/3 the
condition δtk ≤

√
(t − 1)/t (δtk is the RIC) is sharp for both exact recovery in the

noiseless case and stable recovery in the noisy case. It is not difficult to show that
for any tight frame D the condition δtk ≤

√
(t − 1)/t is also sharp when t ≥ 4/3.

In this sense, our result extends the result in [11].
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(d) In the particular case t = 2, the condition in Theorem 3.1 can be simplified to
δ2k < 2−1/2, which is the same as that in [1]. However, the result in Theorem 3.1
is better than that in [1]. Indeed, if δ2k ≤ 1/2, we have

√
2C1 ≈ 11.8272

and 2(
√

2C2 + 1)k−1/2 ≈ 7.6116k−1/2, which are strictly less than 16.7262 and
9.9360k−1/2, the respective coefficients in the result of [1]. Consequently, the
result in Theorem 3.1 is an improvement on the comparable result in [1].
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