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Abstract. We consider families of differentiable diffeomorphisms with hyperbolic
points, close to the identity, which tend to it when the parameter goes to zero.

We study the asymptotic behaviour of the invariant manifolds. Then we consider
the case when there are homo-heteroclinic points and we find that the maximum
separation between the invariant manifolds is of the order of some power of the
parameter which is related to the degree of differentiability.

Finally the analogous case for flows is considered.

1. Introduction and results
It is known that for two dimensional diffeomorphisms, the existence of transversal
homoclinic or heteroclinic points implies a very complicated dynamics in a neigh-
bourhood of the invariant manifolds which is usually described as chaotic, stochastic,
etc. In a given domain, the measure of this neighbourhood depends on the distance
between the invariant manifolds. In this work we study the behaviour of the invariant
manifolds for families of near identity diffeomorphisms with hyperbolic points. We
find that the invariant manifolds tend, in a certain sense, when the diffeomorphisms
tend to the identity, to the invariant manifolds of a critical point of a vector field
which is constructed in association with the family.

The study of the behaviour of the invariant manifolds for families of diffeomorph-
isms when the eigenvalues at the hyperbolic point tend to 1 can be reduced to the
above because, in such a case, after changes of variables and scalings, the family
can be put as a near identity one.

Then we consider near identity families of two dimensional diffeomorphisms with
a hyperbolic point and homoclinic points associated with it. In such a case the
vector field associated with the family has a homoclinic orbit to which tend the
invariant manifolds of the diffeomorphisms. We can prove that the separation
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between the invariant manifolds in a neighbourhood of a given point is of the order
of a power of the parameter related to the degree of differentiability.

Examples of such families are the Poincare maps of two degrees of freedom
Hamiltonian systems taking the energy as the parameter. Concrete examples are
provided by the Henon-Heiles Hamiltonian [9] and the restricted three body
problem [10]. They also appear in the study of the behaviour of a diffeomorphism
in a neighbourhood of an elliptic fixed point, near the invariant manifolds of the
hyperbolic points given by the Poincare-Birkhoff theorem [3,13].

In a forthcoming paper [4] we shall consider the case of two dimensional analytic
diffeomorphisms. The work was inspired by previous work by Lazutkin [8] on the
standard map and uses some results of the present paper. It also provides several
examples.

Now we give the main results.
Let FE:( /cR"->R" b e a family of diffeomorphisms, ee (0, e0), U an open set,

with FEeCr+l(U) and r > l . Let *:UcR"-»R", heCr+l(U) and consider the
equation

x = h(x). (1.1)

Let <p be the flow of (1.1). We define the family Ge by Ge(x) = <p{aea, x) with
a > 0 and a > 0.

THEOREM A. Suppose that for e e (0, e0) we have
(i) pe U is a hyperbolic fixed point of Fc and Ge.

(ii) / / Spec DFe(p) = { A , , . . . , An} and Spec DGe(p) = {^ /*„}, then A, =
l + fe1e'" + o ( e a ) and ni = l + bie

a + o(ea) with bt<0for l < i < / and b f > 0 for
I < i < n.

(iii) \\Fe-I\\r+hU^Msa,
llF.-G.IUuSAfe--', wthp>0.

(iv) Let S>0 and qe WOin(U-S). In a neighbourhood of q, the stable manifold
of p, Ws

Ge, can be represented as the graph of a function, g, from an open set of
a subspace of W which contains I coordinate lines to another subspace which
contains the remaining n-l coordinate lines.

Then there exist £i > 0, C> 0 and a neighbourhood V independent ofe, such that for
e e (0, e,), W^ can be represented locally, near q, as the graph of an e-dependent
function, f, of the same kind as g. Furthermore,

U-gkv^Ce" foresee,).

THEOREM A'. Under the hypothesis of Theorem A we have the same conclusions for
the unstable invariant manifolds.

As a consequence of these results we obtain the theorem which gives asymptotic
bounds of the distance between the invariant manifolds.

THEOREM B. Let Fe and GE be as before and U^U2. Suppose that for e e (0, e0).
(i) px and p2 are two hyperbolic fixed points of both Fe and Ge.

(ii) The eigenvalues \\n ofDFt(pj) and ^ of DGe(pj),j = 1, 2, are of the form
<J) iJ) ) and fi\J)-Xl,J) = o(ea).
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(iii) \\Fe-I\\r+KU^Mea,

(iv) Fe has a heteroclinic point belonging to W^n W2, where W, = Wu{pl), W2 =
W*(P2) {homoclinic ifp{ = p2). Suppose there exists a compact set B <= U (indepen-
dent ofe) which contains the pieces of Wt from the fixed points up until the 'clinic'
one.

Then
(1) The distance between Wx and W2 in a given domain is O(e"r+/J) for all 0 < /3' < /3.
(2) / / r = oo, the distance is O(ek) for allkeZ+.

On the other hand we consider the equations of the form x = ef(x) + e2g(x, t, s),
with slow dynamics, which appear in averaging theory [5]. Equivalently they can
be written in the form

x=f(x) + eg(x,t/e,e). (1.2)

We consider the case when

*=/ (* ) (1.3)

has a homoclinic orbit. Melnikov's method to evaluate the distance between the
perturbed invariant manifolds, equivalent to the study of the first variational
equations, does not work, in principle, in that case [12,5]. In this case we obtain the

THEOREM C. Consider the equations (1.2) and (1.3) satisfying
(i) f and g are of class Cr+I with respect to x on U, open set of R2 which contains

the origin, and Dk
xg is continuous on U* = UxRx[0, e0) for l s i c < r + l .

(ii) /(0) = 0 and Df(0) is hyperbolic.
(iii) t rD/ = trDxg = 0 on U*.
(iv) g is T-periodic with respect to the second variable and

•T

g(x, t,e)dt = O on U x [0, e0).
Jo

(v) (1.3) has a homoclinic orbit contained in U.
Then
(1) There exists e ,>0 such that i / ee (0 , 6j) the equation (1.2) has a hyperbolic

periodic orbit y near the origin.
(2) The distance between the invariant manifolds of y in a given domain is O(er). If

r = oo, it is O(sk) for all k e Z+.

In § 2 we give some definitions and previous results for the proofs of the next
sections. In §§ 3, 4 and 5 we prove Theorems A, B and C.

2. Definitions and previous results
We begin by giving some standard definitions. Let F be a diffeomorphism from an
open set U of R" into its image. A fixed point p of F is called hyperbolic if DF(p)
is hyperbolic, that is, all its eigenvalues have a modulus different from 1. To any
fixed point there are associated the so-called stable and unstable invariant manifolds
which will be denoted by Ws

F(p) and Wu
F(p), respectively [6,7]. When no confusion

i:
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is possible we shall write Wp or simply W*. If P\ and p2 are two hyperbolic points
of F, a point q e WF(pv) n WF(p2) is called heteroclinic if px ^ p2 and homoclinic
if px = p2 and q^P\. The images of the homo-heteroclinic points are also homo-
heteroclinic.

If x =f(x) is a differential equation, a critical point p is called hyperbolic if the
real parts of the eigenvalues of Df(p) are different from zero. In that case p has
stable and unstable invariant manifolds. A solution is called a heteroclinic orbit if
it tends, both for positive and negative time, to hyperbolic points. If the two
hyperbolic points coincide it is called homoclinic.

If x=f(x, t) is non autonomous, a periodic orbit is called hyperbolic if the
corresponding fixed point of the associated Poincare map is hyperbolic. A hyperbolic
periodic orbit also has invariant manifolds.

A heteroclinic orbit is a solution which tends both for positive and negative time
to hyperbolic periodic orbits. If they coincide it is called homoclinic.

If <p is the solution of the equation x=f(x, t), that is, d/dt(p(t,to,x) =
f(<p(t, t0, x), t) and (p(t0, t0, x) = x, we shall denote by D,<p the derivative of <p with
respect to t and by D2<p the derivative of <p with respect to the initial conditions.

We shall use the following notations [1]. Let £ , , E2, E3 be Banach spaces and
LJ(E,, E2) be the space of the continuous j-linear maps from E, to E2. We define,
for i > 1 and j x , . . . , jt > 1 with j , + • • • +jt = k,

kJ' Jl: V{E2, E3) x LHEx, E2) x • • • x Z/(E, , E2) -> Lk(E,, E3)

by

\ J ' - J > ( A , B l t . . . , Bt)(elt..., ek) = A(Bl(el,..., e h ) , . . . , B,(e,,..., e k ) ) ,

where l=jt + - • •+j,_i + l. A-'"'"'' is multilinear and ||A-''---''||=sl.
We define

Sym*:!*(£, , E2)->!.*(£„ E2)

by

where Sk is the symmetric group of k elements and

<r{A)(ex ,...,ek) = A(e^V),..., eCT(k )).

Sym*1 is linear and ||Symfc|| ^ 1.
We define

ak+l: L(E2, E,) x • • • x L(E2, Ex) -» Lk(L{E,, E2), L(E2,

by

ak+\X,,...,Xk+l)(ilj1,...,tk) = (-l)kXl°^oX2°t2°---°Xk

Finally we define

Inv: GL(EX, E2)^> GL{E2, £,)

by Inv (<p) = <p~x.
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Then if/, g are functions of class Ck

Dk(g of) = Sym* o i I Ck(jx,... J , ) ^ ' - ^ ' ° (D'g °f, Dj'f..., DJ<f), (2.1)
1 = 1 *

where 2 means, here and from now on, the sum with indices j i t . . . ,jt ^ 1 such that

ji + • • • +ji = k and Ck(ji,... ,./,•) = Ck is an integer number which only depends on

the indices j , , . . . ,jt. Also

lc + 1

Dklnv=kl Sym* ° ak+1 ° (Inv,.. . , Inv).

The following properties will be used

If A, 6 GL{Et, E2) and A2 e L(£,, £2) then

llAr'ir'II^NIlAA^IsHAJI-ll^ll. (2.2)

If AeGL(E1,E2) and | |A - / | | <1 then

If A,, A2 e GL(E,, £2) then

WA^-A^W^WA^W • \\A?\\ • I I^ -^H. (2.4)

Furthermore if ||A,-A2|| < ||^71||"1 then

If F is a Ck map on t/ we define ||DkF\\v =supx e t ; ||D*F(x)|| where ||DfcF(x)||
is the norm of DkF(x) as a multilinear map, and

\\F\\KU =max ( I I F ^ , H D F ^ , . . . , ||DfcF||u).

B(p, x) and B(p, x) will be the open and closed balls of radius p centered at x. If
x = 0 we shall write B(p) and B{p).

If U is a set and S>0 we define U + 5 = {JxsU B(8,x) and t / - 5 =

Now we give some results which will be used later. Most of these results are well
known without explicit bounds depending on some parameter e. However, for the
forthcoming sections it is essential to have such bounds. What is new is the
consideration of families of maps which are close to the identity and tending to it
when e goes to zero.

LEMMA 2.1. Let U be an open set of R" and F: l/-*R" a homeomorphism such that
| | F - / | | L , < e < l . ThenF(U)=>U-e.

Proof. See the geometrical lemmas of [2]. •

LEMMA 2.2. Let U be an open set of R" and Fe: U->R", e € (0, e0), a family of
diffeomorphisms of class Cx such that \\DFe\\u<l +Me" and \\DF~l\\FAU)<
l + M'ea, witha>0 and (l + Meo)(l + M'e?)<2. LetS>0. Then we have
(1) Ifx, ye U-8and \\x-y\\<8 then
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and

(2) IfxeU-Sandr<8/2 then

Proof. We define

for ue [0,0}.

Since Fe(U) is open, s>0. We suppose that 5< 1. In that case we can suppose that
i < l / 2 . Let (sk) be a sequence of elements of [0, s) such that l i m s ^ s . Let
zk = F7'((l -sfc)Fe(x) + 5fcFE(>>)). Since Fe is a difieomorphism and has its derivatives
bounded, (zk) tends to a point in FrU, where Fr denotes the boundary, so that

i ||zfc - x | | > S. On the other hand

which produces a contradiction. So we have s = 1. Now, applying the mean value
theorem

\\x-y\\ = \\F:lFs(x)-F:lFe(y)\\^\\DF:l\\FAU)\\Fe(x)-Fe(y)\\

so that (1) follows directly.
If xe U-S and r < ||x-j>|| < S/2 then x,yeU-8/2 and

Hence if y e B(8/2, x) - B(r, x) then

which implies B((l + Af'eo)-!r, F.(x)) «= F,(B(r, x)). D

PROPOSITION 2.3. Le< £ a«d £ ' be Banach spaces, U an open set of E and FE,
Ge:U^*E' two families of diffeomorphisms from U onto its image, of class Cr+1,
r>l . Let a, ;8>0.

If there exist constants M, N such that, for 0 < e < e0

\\Fe-I\\r+liU<Me",

\\Ge-I\\r+1,u<Mea,

\\Fe-Gc\\r,u<Nea+p,

then given any 8 > 0 there exist E[, M', N' such that for 0 < e < ex we have

| |F;1-/| | r+1,F,(U)<M'e", (2.5)

l|G;1-/||r+1,o,([;)<M'e°, (2.6)

I |F:1-G;1IUV<N'£"+'3 , (2.7)

where V= Fe{U-8)nGe(U-8).

Proof. We shall not write the index e corresponding to FE and Ge. Let et be such
thatO<e"<min(e?,(2M)"1,5/(2Af)).
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For r = 0 (2.5) is obtained from

and

For r>0 we proceed by induction. For r= 1 suppose | |F~I-/ | | I t F ( i /)<M'eo r and
let eeE'

D(DF~l)(e) = D(Inv° DF° F"')(e)

= -(DF o F-ly\D2F ° F~\DF ° F-l) 1

and so | |D2F"1| |F a / )<(l + M'ea)3Mea. We take M' = max (M\
Now suppose ||F~1-/| |P>F(L,)<M'ea. First, if j s < r, using (2.1)

<Kjse
a, /, + ••• + /, =;„ / k > l forl<fc<i,

where ^ depends on js and M'. Let e , , . . . , er e £'. Then

= D r ( I n v o D F o F~l)(el ,...,er)

= Symr I ICti!AJ'--J.
. = i *

o[-(DFo F - T ' f D ^ D F o F- 'Ke , , . . . , eh))(DF» F"1)"1 , . . . .

- (DF o F-lyl(DHDF o F - ) ( e , , . . . , er))(DF o F"1)"1],

with l=jt + - • •+./,_!+ 1, and hence

H Cfci! (l + M'e")1'"1"1*;-,^ • • • Khe
ia <M"ea.

i=i *

We take M' = max (M', M"). The proof of (2.6) is identical to the one of (2.5).
To prove (2.7) first consider

so that | |F-1-G"1 | | v<2Mea. If xe V, since F"'(x), G"'(x)e U-8 and ||F"'(x)
G~1(JC)|| <5, by Lemmas 2.1 and 2.2 we have

O=\\F(F-\x))-F(G-\x))\\-\\F(G-l(x))-G(G~\x))\\

Hence

https://doi.org/10.1017/S0143385700005575 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005575


326 E. Fontich and C. Simo

Furthermore, using (2.2)

G-l\\v\\DF-l\\v.

Also, by Lemma 2.1

|| DF ° F 1 - DG ° G~l\\v<\\DF ° F"1 - DF ° G^\\V+\\DF° G"1 - DG

and we obtain

This proves (2.7) for r = 1. For r> 1 we proceed by induction.
For r = 2 we write D2F~1 - D2G~l in terms of the derivatives of F and G as in

(2.5). Using (2.5), (2.6), (2.7) for r= 1 and

||D2F o Fl - D2G o G"1!! v =s ||£>2F ° F"1 - D2F ° G"11| v

\\D2F°G1-D2G°G - I l l
V

we obtain \\D2F~1-D2G~i\\ v< N"ea+f> for some N". Now suppose
G-l\\r_ltV<N'ea+l3.

First we consider

G1), ; < r - l (2.8)

whose norm is, in V, less than

£ £CjD'+lF«>F-1xDJ''F-1

x- • • x D J r ' - D m G » G " ' x D J l G " ' X ' • x D ^ C ' l l v

Developing each term in telescopic form and noticing that js <_/< r - 1 we deduce
by analogous reasonings as before that the norm of (2.8) is less than KjEa+f>.

Finally, let ex, • • •, eT-\ e E',

(DF o F"1)) - Dr-J(Inv °(DG° G~l))](el,..., cr_,).

Writing the differences in telescopic form and using (2.1), (2.5), (2.6) and (2.7) for
7 < r - l we get || DkFx - DkGx || v < N"ea+fi. We take JV' = max (N', N"). D

Consider the equation x=/(x) and let <p be its flow. We define two families of
maps by

with a, a, @> 0.
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PROPOSITION 2.4. Let f be of class C + 1 in U {open set of R"), g of class Cr + 1 with
respect to x in U* = U x [0, e0), and Dkg continuous on U* for 0 < k < r +1 . Then
for all compact set Be U there exist an open set Ux, Be Uxe £/, and ex > 0 such that
for e e (0, e,) we have
(1) GE is well defined on t/,,
(2) \\Gc-I\\r+ltUi<MEa,
(3) Fe\ux is

 a diffeomorphism,
(4) | |F , - / | | r + l i i ; i <Af 'e - ,
(5) \\Fe-Ge\\riUl<N'ea+y where y = min(a,f3).

Proof. It is not restrictive to suppose that a = 1. Since B is compact there exists
S > 0 such that B, = B + 5<= t/. Let

and £; be such that

er < min (e?
To prove (1) we recall that if e° <8/{4K0) and xe [/,, by the existence theorem
for ordinary differential equations, the solution <p of x=f(x) with <p(0, x) = x is
defined for | / |< e" and furthermore <p(sa, x)e Bt, for 0< e < e,.

(2) «p verifies <p(t, x) = cp(O, x) + j'of(cp(s, x)) ds and so

- x | | <
Jo

Kods<Koe
a.

It is clear that DkGe(x) = Dk(p{ea, x) and that £>2<P satisfies the equation

DM<p(t, x) = Dk
2DMt, x) = Dk{fo <p)(t, x) (2.9)

with D2<p(0, x) = I and Dk<p(0, x) = 0 for fc>l, where A(t): Ek ^ Ek with Ek =
L^R", R"), is defined by A(<) • A = Ak ° (Df(<p(t, x), A) and

fct(0 = Sym" o X I CfcO",,... ,;,)AJ"-J'
i = 2 *

o (D'/o <p(/> x) x DJ
2-(p(/, x) x • • • x Di<p(t, x))

if k> 1 and fci(/) =0. We notice that bk only contains derivatives of order less than
k. Let ee(0, e,) and /e[0 , ea] • A(0 is linear and from

Furthermore

I I W O N izCk\\Df(<p(t,x))\\-\\Di><p(t,x)\\---\\Di-<p(t,x)\\.
i = 2 *

First, we consider the homogeneous linear equation

A' = A(t)°A (2.10)

with A(t)e L(Ek, Ek) and A(0) = IE". From (2.10) in integral form we have
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and by Gronwall's lemma we get ||A(f)||«exp (K,f). Then, for fc = l, by (2.9)

\\D2<p(t,x)-I\\<\ \\Df(<p(s,x))\\ds
Jo

\\Df(<p(s,x))\\-\\DMs,x)-I\\ds
Jo

I \\D2<p(s,x)-I\\ds
Jo

and again by Gronwall's lemma

\\D2<p(t,x)-I\\<(Klt)exp(Klt)<Kleea.

In particular \\D2<p(t, x)\\ < l + e/2.
For k > 2 we have

\\DkMt,x)\\<\'\\A{t-s)\\-\\bk(s)\\ds
Jo

, < ) • I
Jo

<exp (*,<)• I ||W*)||<fa. (2.11)
Jo

Until now we have proved (2) for r = 0. For r > 0 we proceed by induction. We have

\\b2{t)\\^\\D2f{<p{t,x))\\ • \\D2<p{t,x)\\ • \\DMt,x)\\^K2(l + e/2)2.

Then by (2.11) \\D2
2<p(t,x)\\ ^M2t with M2= e(l + e/2)2K2. If | |G-/ | | r ,B< Me" for

r > l , it is clear that ||ftr+,(0||<Cr+1 with Cr+1 independent of e. Again by (2.11)
we obtain ||D!;+VU x)|| < Mr+1f with Mr+, = eCr+1. We take M = max (M, Mr+1).

(3) We want to see that F^Ui is injective. Let x, ye U,. Fc(x) = FE(y) implies that
I I * - J ' l l ^ e " ( | | / ( x ) | | + \\f(y)\\) + sa+l}(\\g(x, e)\\ + \\g(y, e)\\).

By the definition of e, we have ||x —y\\ < S. Furthermore the segment xy is contained
in B(S/2, x) u 5(5/2, y) <= B,. Then if x # y,

which gives a contradiction. Finally

| |DF.(x)-/ | | = He-D^xJ + e ^ D ^ x , e)|| < 1 (2.12)

proves that Fe\u is a diffeomorphism.
(4) It is a consequence of the fact that the derivatives of / and g are bounded

on £/,.
(5) From

F.(x) -G. (x)= | (/(x)-/(<p(5,x)))ds + e"
+'3g(x,e) (2.13)

Jo
and

J, x)) -/(x)|| = ||/(v(s, x)) - /MO, x))||
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we have

[
Jo

For 1 < fc< r, by derivation of (2.13)

DkF.(x)-D*G.(x) = [ [Dkf(x)-Dk
2(f°<p)(s,x)]ds +

J
By the bounds of the derivatives of g we only need to study the first term

x)

...,D2<p(s,x)]-Dkf(x)}

Dk
2(f° <p)(s, x) -Dkf{x) = {A1-""-1 = [Dkf(<p(s, x)), D2<p(s, x),

+ Symk o V I Ck\
J"-j' o (£>'/(?(*, x)), D2><p(s, x ) , . . . , DJ

2'<p{s, x)).
i=i *

We call (?, the first term and Q2 the second one. We notice that we can write

Dkf(x) = A1-"-1 - (Dfc/(?(0, x)), D2<p(0, x ) , . . . , DM0, x)).

Writing (?, in telescopic form we get fc +1 terms; k of them have norm less than

Kk(l + e/2)k+l\\D2<p(s,x)-D2<p(0,x)\\.

The other one has norm less than

On the other hand, since all the terms of Q2 contain at least one derivative of <p of
order bigger than 1, each one is of order e ". Since the number of terms is independent
of e, Q2 is of order e". Hence there exists C > 0 such that ||(?i + <?2||Bl< Cea and
so \\DkFe-D

kGE\\u^Cs2a + K'ke
a+p. •

We will need a version of the unstable (and stable) manifold theorem valid
uniformly for a family of diffeomorphisms near the identity. The following results
whose proof can be found in [7] will be used.

THEOREM 2.5 (Lipschitz inverse function theorem). Let E, E' be Banach spaces,
U <= E and V <= E' open sets and F:U^Va homeomorphism such that F~' is Lipschitz.
Let G:U->E' be such that Lip(G-F) • Lip F - 1 < 1. Then G is a homeomorphism
onto an open set, and Lip G~'<[(Lip F~1)~'-Lip (G-F)]"1.

PROPOSITION 2.6. (Size estimate.) Let X, Ybe metric spaces and F: X -* Y a bijective
map such that (Lip F"1)"1 > A. Then B(\p, F(x)) <= F(B(p, x)) for all p > 0 andxe X.

We define the graph transform: Given F : B ( p ) c £ - » £ with E = ElxE2,
/1./2: £,(p)-»B2(p) w h e r e BI(P) a n d B2(p) are balls of radius p centered at zero
in £, and E2 respectively, we write T(ft) =f2 if

F(graph (/,)) nB(r) = graph (/2).

Putting Ff = TTJ° F, i = l, 2, where ir,•,: E -» Et is the canonical projection, we can
write this condition as F(/) ° F, ° (/,/) = F2 ° (/,/) where / is the identity on Bt(p).
If F, o (/,/) is invertible

https://doi.org/10.1017/S0143385700005575 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005575


330 E. Fontich and C. Simo

If F( /) =f, graph/is an invariant set for F. The proof of the following proposition
is parallel to that of the unstable manifold theorem in [7].

PROPOSITION 2.7. Let E be a Banach space, U' <=• E an open set and Fe:U-*E,
ee(0, eo), a family of homeomorphisms onto FC(U) such that Fe is Lipschitz and
Fe(0) = 0. We suppose there exist a linear map Te:E -» E with an invariant splitting
E = ElxE2, TEjl=T£|El and Tt,2=TAEl verifying max (||77.i||, ||T«,2||)s l-ce and
Lip (Fe - TE) < Ne on B(p) <= U.

If ceo<l and N<c/2, for all ee(0, eo) there exists a unique Lipschitz map
f.:Bx{p) + B2{p) with L ip / e < l such that {(x,/.(x)),xeB1(x)}c= W\.

Proof. Let e e (0, e0)- For the sake of simplicity we shall not write explicitly the
dependence of F, T, Tx, T2and/on e. We shall use the norm ||x|| = max (HxJ, ||x2||)
if Xj = (xt, x2)e E1xE2. We define

il = {/: B.ip) •* B2(p),f(0) = 0, Lip/< 1}.

With H/ll = supxeB,(P) ||/(^)||, ft is a complete metric space. Given/efl we define
tf:Bx(p) + Ei by * / = F , » ( / , / ) , */:B,(p)-> E2 by * / = F 2 » ( / , / ) and r : a - * a

First we prove that (t/*/)"1 exists and T is well defined. By Theorem 2.5, from
Lip (#/"- T,) < Lip (F- T) < Ne < (c/2)e0< 1/2 we have that ipf is a homeomorph-
ism onto an open set and

By Proposition 2.6 (/»/(B,(p))=> B,(p) and hence $/• (IA/)"1 is well defined.
Furthermore

and r(/)(0) = 0 show that T is well defined.
Now we prove that F is a contraction on ft. Let fi,f2eft. We observe that

*/i - #2 = (F, - 7\)(/,/,) - ( F , - r,)(/,/2) + 7,(7,/,) - r,(/,/2)

and since the last difference is zero,

11*/. - #211 * Lip (Ft - TOII/, -/2|| < Nell/, -/2||.
Also

«>/. - * / 2 = ( F 2 - T2)(/,/,) - ( F 2 - T2)(/,/2) + T2(/,/,) - T2(/,/2)

and from that

l l*/ i -*/2 | | s N£| |/, -/2 | | + (1 -ce)\\fx -/2| | .

We evaluate

'ii+ii*/. -* / 2n
Lip (*/,) Lip (^,)-1| |*/I - */2|| + (1 - ce +

The unique fixed point of F is the function we looked for. •
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PROPOSITION 2.8. Under the hypothesis of Proposition 2.7, with max (||r,||, HTY'H^
1 -ce, F~l Lipschitz and Lip (FJ1 - T"1)< Ne on B(p)aB<=F,(U), we have that
for all e e (0, e0) there exists a unique Lipschitz function g.B^p)-* B2(p), with Lip g s
1 such that {Ug(x)),xeB,(p)}e WFt.
Proof. We apply Proposition 2.7 to F~l changing the role of Ex and E2. We obtain
the result using that

Remarks. (1) The functions such that their graphs are the local invariant manifolds
of Ft are well denned on a ball B,(p) of radius independent of e.

(2) By the usual invariant manifold theorems, if FE is of class Cr then / and g
are of class Cr. In such a case ||D/||Bl(p)== 1 and ||Dg||Bi(p)< 1.

3. Proof of Theorem A
By Proposition 2.4 we can suppose that GE satisfies condition (Hi) as Fe does. It is
not restrictive to suppose that p = 0 and a = 1. The proof has three main steps. The
first one deals with the local case for r = 0 and r = 1. The second one deals with the
global case and the third one with the case r > 1. To simplify the line of the proof
we introduce some lemmas whose proof will appear at the end of the main proof.
To simplify the notation we shall not write the dependence of F and G with respect
to e.

Step 1. We write R" = £, x E2 where £, = R' and E2 = W~'.

LEMMA 3.1. There exists a linear transformation S, independent of e, such that
G = S~lGS has the form

G(x,y) = (B,(x) + <?,(*, y), B2(y) + Q2(x,y)), xeEi,yeE2,

where B, and B2 are linear and Qt(0,0) = Q2(0,0) = 0, £>Q,(0,0) = DQ2{0,0) = 0 and
if e is small enough there exists c>0 such that max(||B,||, ||B21||)< l — ce". (In fact
B,, B2, Qi and Q2 do depend on e.)

In R" we shall use the norm ||(x,>-)|| =max (||x||, \\y\\) for xe £, , ye E2. In E,
and E2 we shall use the euclidean norm. We define F = 5"'F5. F has the form

where C, and C2 are linear and P,(0,0) = P2(0,0) = 0 and DP,(0,0) = DP2(0,0) = 0.

LEMMA 3.2. There exist constants M" and N" such that

LEMMA 3.3. There exists 5, > 0 such that 5"'( U - 8) c S"'( U) - 35,.

From now on we shall write F and G instead of F and G, U instead of S~1(U)
and M and N instead of M" and N". We shall also write h instead of S~lhS and
<p to denote the flow of x = S~lhS(x).
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From Lemma 3.2 it is easy to see that

IIC|| = ||(C,, C2)|| = ||DF(0,0)-DG(0,0)|| < Nea+l),

\\Dk(Pi,P2)\\u<Mea for2<fc<r+l,

\\Dk(Qi,Q2)\\u<Me" for2<fc<r+l,

\\D(Pl,P2)-D(Qi,Q2)\\u<2Nea+",

||Dk(P1,P2)-D*«?1,Q2)||l/<Afe«+'> for2<fc<r, (3.1)

and

||(Pi,/»2)-(<?i,<?2)l|i.(p)*l|F-G|U(p,+ sup | |C(*)| |sN(l + p)e-+".
xe8(p)

Also, if (x, y)€ B(p) with p small enough

||J,(p)||(x;^)||:sMe-||(x,^)||,

( ) | | M a | | ( ) | |

We define Ut as U-i8x, i = 1,2,3.

LEMMA 3.4. For e smaJI enough U2<=- F(C/,)n

By Proposition 2.3, F"1 and G"1 satisfy a condition like (Hi) on F((/,)nG((/,)
with constants M' and AT.

LEMMA 3.5. There exists P i > 0 , independent of e, such that W*F is, locally, the graph
of a Cr+1 function /:B,(p,)-»£2 witfi ||D/||Bl(Pl)< 1. Infactpl<c/(4M).

Since W ĵ does not depend on e, there exists p2 > 0 such that W^ is, locally, the
graph of a Cr+1 function g: B,(p2)-»£2 with ||Dg\\BdPl)< 1. Let p be min (p,,p2)
and dk = supxeBl(p) ||D

kg(x)||. We define

m , , = {(*,/(*)), *eB,(p)} and ^u
o,, = {(x, g(x)), xe B,(p)}.

Let /? and /?' be defined by R(x, y) = (x, y +f(x)) and /?'(^, y) = (x,y + g(x)) in
B(p). They transform the stable invariant manifolds to the subspace Ex. We define
F^R'FR and G = R'~lGR'. We have,

F(x, >>) = (B,(x) + C,(x, y +/(x)) + P,(x,

+ C2(x, y+f(x)) + P2(x, y+f(x))

G(x, y) = (B,(x) + Q,(x, y + g(x)), B2(y + g(x)) + Q2(x, y + g(x))

The condition of £i being invariant can be expressed as the second components
of F and G to be zero on (x, 0). From that we have

)) - C2(x,/(x)) - P2(x,/(x))], (3.3)

g(x) = B2-'tg(B1(x) + (?,(x, g(x))) - Q2(x, g(x))l

Now our objective is to find upper bounds of ||/-g||B,(P) and ||D/-Dg||Bl(p).
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We introduce the following notation

v = Bi(x)+C1(u) + P1(u), v' =

If ||x||<p then ||u|| = max(||x||, | | /(x)| |)<| |x| |<p and analogously ||«'||<p. If
we suppose ef < c/AN then by Lemma 3.1, (3.1) and

we have

and analogously ||w'|| <(1 -(3c/4)e")||x||
On the other hand we have

^ + (c/4)e" | | /-g| |B i ( p ) (3.4)

and the same bound for ||i>2(«)-<?2(«')||- Furthermore

| | /-g| | / 3 l ( p ) . (3.5)

From (3.3), (3.4) and (3.5)

Hence there exists C0>0 such that | | /-g| |B,(P)< Coe
p.

For ||x|| <p we also have

a+0 + Mea \\f-g\\

\\DyPl(u)Df(x)-DyQl(u')Dg(x)\\

< \\DyP1(u)Df(x)-DyQ1(u)Df(x)\\

+ \\DyQl(u)Df(x)-DyQl(u')Df(x)

+ \\DyQi(u')Df(x)-DyQi(u')Dg(x

and the same bounds for ||DxP2(u)-Dx02(«')|| and

\\DyP2(u)DAx)-DyQ2(u')Dg(x)\\.
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Now we evaluate
|| Df(x)-Dg(x) ||

- DxP2(u) - DyP2(u)Df(x) - DxC2(u) - DyC2(u)Df(x)
- [Dg(v')(Bi + DxQ,(u') + DyQMDgix)) - DxQ2(u')

-DyQ2(u')Dg(x)]}\\-
We introduce more notation

e2 = Df(v)el-Dg(v')e[,
e3 = DxP2(u)-DxQ2(u'),
e4 = DyP2(u)Df(x) - DyQ2(u')Dg(x),
es = DxC2(u) + DyC2(u)Df(x),

so that

\\Df(x)-Dg(x)\\^\\B2
1\\[\\e2\\

We have

\\e2\\ ^ WDfiv^-DfivWiW + \\Df(v)e[ -Dg(v)e[\\ + \\Dg(v)e[ -Dg(v')e[\\
<(l-(c/4)ea)\\Df-Dg\\ + K5e

a+l3.
And the following is easily obtained

\\e3\\<K6e"+e,
\\e4<{c/*)ea\\Df-Dg\\

Hence

\\Df(x)-Dg(x)\\^(l-ce»)[\\Df-Dg\\BM

from which we find ||£>/-Df ||Bl(p)< Qe".

Step 2. Now we want to obtain bounds for the separation of the invariant manifolds
while they are in t/3.

Let p € W\j n U3. We note that W^ is the stable invariant manifold of the origin
of x = h(x) and so does not depend on e. There exists a neighbourhood V of p
such that the connex component of Vn W^j which contains p is the graph of a
function from an open set of E3 to E4, where E3 and E4 are vectorial subspaces of
R" of dimensions / an n -1 and contain / and n -1 coordinate lines respectively.
Note that they may not coincide with E, and E2. Let w3 and 774 be the projection
operators onto E3 and E4. We suppose that v3( V) is convex.

Since limbec <p(t, p) = 0 there exists t0 such that if / > t0, <p(t, p) e B(p). Let T> t0.
By continuity there exists an open set Vx of W^nBip) such that TTX{Vx) is convex
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and pe <p ( - 7 , V,) «= V. Let V, = V, -Le a
x where L = sup^,||h|| and V2 = <p(-T, V[).

We are going to study the proximity of the invariant manifolds as graphs of functions
denned on TT3(V2). We suppose that the piece of W*^ from the origin to V2 is
contained in U3. Let TJ = (N'+N'M'e™')Te™' and suppose that ef < 8J2t). NOW
let N be the integer part of T/e" and V3 = G N ( V2) (which depends on e). It is
clear that V3 c V,.

We define <&f = TT, ° G~N ° (/, g) and t/», = TT, ° FN ° ( / , / ) , i = 3, 4.
V2 is the graph of

where TT3° G~N ° (I, g)(x) = ir3(p(-Ne", (x, g(x))) is invertible because we have
supposed that W"G is the graph of a function from E3 to £ 4 and its inverse is defined
on 773(V). Let c,> | |D*, | | , l ( V l ) for « = 3,4, c2> ||D2$3|Ui(Vl) and c3> HD^j 'H^v) .
They can be chosen independently of e. Now we are going to see that

/ e = </'4°</'31

is well defined in a suitable domain.

LEMMA 3.6. / / G~k(x)e U2-2-qep for 0<fc<JV and \\x-y\\<C0e
p, then for

0<fc<N

G-'OOel/i-V, (3-6)

\\DG-k(y)\\ < (1 + M'e")k < e™\ (3.7)

F~k(y)eU1, (3.8)

||F-fc(y)- G-fcty)|| < k(l + M'ea)kN'ea+p < Te™'N'ep < Ve\ (3.9)

\\D2G-k(y)\\ <k{l + M'ea)2kM'ea < Te2TM'M\ (3.10)

\\DF-k(y)- DG-k(y)\\ < [k(l + M'e")kN'+k2(l + M'ea)2kN'M'e"]ea+f>

<Ve^. (3.11)

We have

| 77, o G"N o ( / , / ) - „, o G~N o (/, g)|Ul(Vl,

By (3.9) the first term is less than Tje*3 since for 0< k < N, G~k(x, g(x)) e t/2 - 2T/E"
and ||(x,/(x))-(x, g(x))|| < Coe^ for xe B,(p). By (3.7) the second one is less than
e™'\\f-ghlw<V*/> and so we get ||^-*,!!„(Vl)<2ije".

Also we have

, Df)-DGN ° (

I, Df)-DGN o (/, g)(/, Dg)|Ul(Vl)

||DG-No(7)/)-DG-No(7)g)|Ul(Vl)]||(/,D/)|Ul(Vl)

| |DG-Nc(/)g)| |7r i (Vi ) | |D/-Dg||Bl (p).
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As before, since G~k(x,g(x))e U2-2Vep for 0<fc<JV and
(x,g(x))\\^Coe

0 for xeBx{p), by (3.11), (3.10) and (3.7) we obtain

) ^ + Te2™'M'\\f-g\\BM

LEMMA 3.7. //"ei is small enough
(1) t/>3 JS a diffeomorphism from vi(V3) onto its image and
(2) There exists 8'>0 such that n3(V2)-S'ep <= I/»(TTI( V3)).

Let T J ' > 0 . We define V4= 7r3(V2)-77'. (We suppose that 77' is such that V4*0.)
We suppose that et is such that S'ef < TJ'. By Lemma 3.7, i/^1 is well defined on

V4 and if/j\V4)<= 7r,(V3). So we have that X is well defined on V4. Now we are
going to bound | | / c-ge | |v4 and \\Dfe-Dge\\Vi.

LEMMA 3.8. If ex is small enough,

Finally we have

ll/e - ge || V4 = || «A4 ° ^ ~ 4>4 ° * J ' II V4 =S |

and

| |D* 4

Since now we have proved the theorem for r = 1. The next step proves the general
case.
Step 3. We are going to continue by induction. Suppose the theorem is true for
r - 1 . We define AF-.UxW^F(U)xW and AC: l/xR"-> G(t/)xRn by
AF(y, v) = (F(x), DF(x) • v) and AG(x, u) = (G(x), DG(x) • v). In fact they are
families of diffeomorphisms depending on e. It is obvious that

&F-\y, w) = (F-\y), DF~\y) • w)
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and

AG-\y, w) = (G"(y), DG~\y) • w).

It is clear that (0,0) is a fixed point of AF and furthermore it is hyperbolic because

Now we consider W\F.

LEMMA 3.9. If W*F can be represented as the graph of a function f: U c £3-» E4 in a
neighbourhood ofp, then W\F can be represented as the graph of a function U x U' -*
£4xR' defined by (x, u)-»(/(x), Df(x).v) in a neighbourhood of (p, vp).

It is clear that AF is a family of Cr diffeomorphisms and AG is the flow time e"
of the vector field (h, Dh) defined by (h, Dh)(x, v) = (h(x), Dh(x)v) which is also
of class C. We are going to verify the hypotheses (i), (ii), (Hi) and (iv) for AF and
AG in Ux B(p) where B(p)<= R". In fact (i) and (ii) are immediate. To prove (iii)
and (iv), let (x, u)e UxB(p) and u = (u1,u2)eR2n with | |u| |<l. We have

||AF(x,»)-(x,t))|| = | | (F(x)-x,DF(x)-»-») | |

<Me" + M e a H | < M ( l + p ) e a ,

||(£>(AF)(x, v)- I)u|| = ||((DF(x) - J )K, , D2F(x)(v, «,) + (DF(x) - I)u2)\\

< Afe"||»|| + Me" < M( l+ p)e°,

||D*(AF)(x, w)|| = \\(DkF(x), Dk+1F(x)(v, • ))||

= \\(DkF(x) - DkG(x), (Dk+iF(x) -Dk+xG{x))(v,
+^, i fO<fc<r- l .

Then if e, is small enough and / and g are the functions such that their graphs
are W^F and W\o in a neighbourhood of a point (p,vp)e W^ we have that
| | / -g | | r _ ,<C 'e p which implies that \\Dr~lf - Dr'1 g\\ < Cep and | |Dy-D r g | |<
C"ep. Then | | / - g | | ,< Cc" with C = Max(C, C"). •

Proof of Lemma 3.1. By the definition of G we have that DG(0,0) = D2<p(ea, 0,0).
D2?> verifies DxD2<p = Dh° <pD2<p with the condition D2<p(0, x, y) = I. By (i)
G(0,0) = (0,0) and so <p(t, 0,0) = (0,0) is a solution of x = h(x). Then D2<p(t, 0,0) =
exp (Dh(0,0)t). Let b = min ( - b , , . . . , -fc(, fe,+1,..., bn). The linear transformation
S which transforms the matrix Dh(0,0) into its modified Jordan normal form in
such a way that the non-diagonal terms are b/2 instead of 1 and the boxes
corresponding to negative eigenvalues are located in the first term satisfies the
conditions of the lemma. Indeed, first we note that

£>G(0,0) = S-'DG(0,0)S = S"'(exp (D/»(0,0)sa))S = exp (S~lDh(0,0)Sea).
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A box of the normal form of Dh(0,0) associated with the eigenvalue v corresponds
to a box

B =

1

b\2e2a

\

2/ 2
fc-l (k-

in the matrix of DG(0,0). The boxes of the matrix of B'v = (DG(0,0)) ' are of a
similar form, changing the sign in v and b.

It is clear that \\BV\\ = e"e°(l + (6/2)ea + O(e2a)) and

||B'J = e—
e"(\ + {b/2)ea + O(e2a)).

We take B, = DG(0,0)|El and B2 = DG(0,0)|E2. Since e"*" is an eigenvalue of
DG(0,0), if v<0 then v<-fe and ||BJ| < l -(b/2)ea+ O(e2a) and if i/>0 then
v>b and ||B'W|| < l-(b/2)ea+ O(e2a). Since (using the euclidean norm) ||B,|| is
less than the maximum of the norms of ||BP|| with v<0 and analogously for HBj'H
with B'v with ^>0we have that ||B,||, \B?\ <l-(fe/2)ea + O(e2a). Then if e, is
small enough there exists c>0 satisfying the lemma. •

Proof of Lemma 3.2. From F -1 = S~l ° F ° S - 7 = S'1»(F -1) ° S we have

From DF-I = DiS^FS) -1 = S"1 • (DF ° S - 7) • S we have

||DF-7||S-1(U)< ||S|| • IIS-'II • | |DF-7|U< ||S|| • US-

We have D2F = S"1 • (DF ° S) • S • S and by induction DkF = 5"1 • (D^F ° S) • Sk

so that

The same happens for G. The existence of M" is obvious. Finally, from

\\DkF-DkG\\s->iu)=\\S-l-(DkF°S-DkG°S)-Sk\\s^u)s\\S\\k\\S->\\Nea+i3

we get the existence of N". D

Proof of Lemma 3.3. Let z € S"'( 1/ - S) and x = S(z). Then B{8, x) <= t/. By Proposi-
tion 2.6

B(| |S |r«, S-\x))c S-H^fi, x)) c= S~'( I/)

and so S~'(x) = z e S"1! I/) - HSU"1*.
Wetakea^a/S^lSir1*. •

Proof of Lemma 3.4. From (iii) and the Proposition 2.1 if e"<8/M we have that
U-28<=U-8-MeacF(U-8) and in the same way U-28<=. G(U-8). O

Proof of Lemma 3.5. Let p > 0 such that B(p, 0) c l/2. By Lemma 3.4, B(p, 0) <= F( [/).
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It is clear that F |B'P,O) is Lipschitz. On the other hand

and by Lemma 3.1, max (||B,||, IIB^'IIK 1 -cea.

Lip(F|i;p )-DF-1(0,0))<| |DF-1-DF-1(0,0)| |B ( p )

< || D2FX || B(p)-p^Mpea.

Let p, be such that Afp, < c/4. Then by Proposition 2.8 there exists / satisfying
the Lemma. / is of class Cr+1 and since Lip/<1 in Bi(pi) we have
l|o/||Bl(Pl)si. •
Proof of Lemma 3.6. The second inequality of (3.7) is a consequence of k < JV< T/e".
Now we prove (3.6) and (3.7) by induction. If xe U2-2r}e^, then ye U2-i)e

p and
||DG"1(>')||<1 + M'ea. Also

which implies G~1(y)e U2—r)ep.
If they are true for 0 < k -1 < TV,

and again by the mean value theorem we get G~k{y) e Ui — rje^.
We also prove (3.8) and (3.9) by induction. For k = 1,

||F"1(y)-G"1(>')||<7V'ea+0<77e^ and so F~\y)eUx.

If they are true for 0 < fe - 1 < TV,

||F-fc(>0- G

< 7V' e
a + ^ + ||DG"11|Ux\\F

^N'ea+p + (l + M'ea)(k

<k(l + M'ea)kN'ea+l3<ve13,

and hence F~k(y)e [/,.
(3.10) is obvious for k = 1. If it is true for 0< fc — 1 < TV, using the formula

D2(g°f)(x)(ei,e2)

= Dg o/(x)(D2/(x)(e1, e2)) + D2g °/(x)(D/(x)(Cl), Df(x)(e2))

we obtain, for HeJI, ||e2||s 1,
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Finally (3.11) is obvious for k = 1. Supposing that it is true for 0< k-1 s N

\\DF-k(y)-DG-k(y)\\

a)2kN'M'ea]ea+l3. D

Proof of Lemma 3.7. (1) Since TT3( V) is convex, <£j' is Lipschitz with Lip 4>j'< C3.
By Theorem 2.5, if e, is small enough (ef < (2r7C3)~'), i/>3 is a homeomorphism and
since it is of class Cr+I it is a diffeomorphism. Furthermore

Lip fc1 < ((Lip Or1)"1 - Lip (<D3 - 0,))-1 < (Cr1 - 2Vef )"• = K n .

(2) Let 8' = 2T7KUC, . If x e TT3( V2) - S'e" there exists z e irx{ V3) such that $3(z) =
x By Proposition 2.6,

BiC^S'eP, z) c ^jHBCa'e", x)) c ^ j H ^ V2)) = 7r,( V3).

Using again Proposition 2.6,

B{2-nep, ^3(z)) c ^3(B(C7I8'^, z)) c ^3(w,( V3)).

Since

| = 1 1 * 3 *3"'

we get X6I/»3(TTI(V3)). D

Proof of Lemma 3.8. Since OJ1 is Lipschitz in TT3( V) we have

o = i i ^ ^ r 1 - ^ ^ r || v4 - n*^ - 1 - ^ ^ j 1 1 | v4

So we get

ll*3"1-^"1||v4s

If e, is small enough we have

D
Proof of Lemma 3.9. It is easily seen by induction that

(AF)k(x,/(x), v, Df(x)v) = (Fk(x,/(x)), D(Fk «(I,f))(x)v).

To see that z = (x,/(x), v, Df(x)v) e W<̂  we must prove that lim,,^ (AF)"z = 0. The
first component tends to zero because (x,/(x))e W\F. The second one because it
is the transport by the derivative of the vector (v, Df(x)v) tangent to W"F. •

To end this section we give the proof of Theorem A'.
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Proof. The unstable invariant manifolds of FE and Ge are the stable invariant
manifolds of F~l and G~l. G~' is the flow time e" of x = -h(x). By Proposition
2.3 we can apply Theorem A to obtain the result. •

4. The distance between split separatrices for diffeomorphisms
In this section we prove Theorem B and two corollaries.

Proof of Theorem B. We shall prove the homoclinic case since the heteroclinic one
is analogous. By Theorems A and A' the distance between the invariant manifolds
of Fe and Ge (as denned in § 1) is of order e. As the invariant manifolds of Ge do
not depend on e, near a homoclinic point of Fc, they must intersect which implies
that they intersect becoming a homoclinic orbit, a, of x = h(x). It is clear that o- is
contained in B. Let p > 0 be such that B<^B{p). Let P be a point of a and
g: Vci->|I5 such that its graph represents a locally in a neighbourhood of P. For
e0 small enough, by theorems A and A', Wx and W2 can be represented by the
graphs of functions/i and/2 defined on V, <= V (independent of e) and there exists
aconstant C such that | |/,-g||r,v,< Ce*3 and ||/2-g||r>Vl<Ce^. We def ine/=/ , - / 2

in V1. Clearly ||/||r,v, = O{ep). Let z be a homoclinic point of Fe such that TT(Z) G V,
where TT is the appropriate projection operator. Of course /(TT(Z)) = 0, and also
/(TT(F'(Z))) = 0 while 7r(Fi(z))eV1. By hypothesis (iii) ||ir(F(z))-<ir{z)|| <Me a

so that if e0 is small enough there are r zeroes of/ in Vi.
We call generically w, the zeroes of Df. Between two zeros of D'f there is a zero

of D'+if. It is easily seen by induction that the distance between two consecutive
zeroes of Df is less than Me".

Now we prove (1). Suppose it is not true that ||/|| = O(em+P') on Vx. Let e € (0, e0)
and C>0. There exist 0< e, < e and Vo such that ||/(t>0)|| > Ce[a+I3'. By the mean
value theorem there exists v{ such that

and hence HD/Xi;,)!! > Ce[a+P/Me". Applying the mean value theorem again there
exists v2 such that

\\Df(vl)\\ = \\Df{vl)-Df{u,)\\<\\D2f{v2)\\2Mea
l

and hence ||D2/(i;2)||> Cera+p/2(Me")2- By induction there exists vr such that
\\DJ{vr)\\ > CeT+p'/r\ (Mef)r which contradicts the fact that ||/||r,Vl = O(ep).

To prove (2) we suppose there exists fceZ+ such that d(Wl3 W2) is not O(ek).
Since FeCk+1 and a>0, from (1) we get a contradiction.

COROLLARY 4.1. Let Fe and h be as in theorem B and verifying (i), (ii) and (iii) with
P\=P2- Furthermore we suppose
(iv) Fe is a family of conservative diffeomorphisms.
(v) x = h(x) has a homoclinic orbit a.
Then we have the same conclusions as in Theorem B.

Proof. The hypotheses (i), (ii) and (iii) let us to apply Theorems A and A'. From
them we have that the distance between the invariant manifolds of Fe and a is of
order of e so that the distance between them is also of order of e. By (iv) they must
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intersect [11] and we have a homoclinic point. Furthermore, if e0 is small enough
there exists a compact set contained in U which contains the pieces of invariant
manifolds from p, to the homoclinic point and finally we can apply Theorem B. •

COROLLARY 4.2. Let Fe be as in Theorem B, of the form

with A = 1 + a , e " + o(ea) andfi = l - a2e
a + o(ea),al,a2> 0 , / ( 0 , 0 ) = g (0 ,0 , e) = 0,

and D/(0,0) = Dg(0,0, e) = 0.

If the hypothesis (iv) of Theorem B is satisfied with pt=p2 = (0,0) then we have
the same conclusions of Theorem B with 0</3'<min (a, 0).

Proof. We consider here Ge defined through the flow <p of

x = alx+fi(x,y),

y = -a2y+f2(x,y),

by

Ge(x,y) = <p(ea,(x,y)).

The hypothesis (i) of Theorem B clearly holds. The hypothesis (ii) comes from

DGc(0,0) = exp (ea diag (a,, -a2))

and the hypothesis (iii) is a consequence of Proposition 2.4. •

5. The case of a flow with a periodic orbit
First we establish the existence of a periodic orbit in a neighbourhood of the origin
and we find bounds of its amplitude for equations of the form

x=f(x) + eg{x,t/e,e) (5.1)

with /(0) = 0.
Notice that we shall not require D/(0) to be hyperbolic. This is due to the fact

that g is rapidly oscillating.
PROPOSITION 5.1. Consider the equation (5.1) withf: U^W, g: U*-»IR" where Uis
an open set of R" containing the origin, U* = UxUx[0, eo) and such that

(i) / e C1+L(U), that is Df is Lipschitz in U,
(ii) ge C°(U*) and is Lipschitz with respect to the first variable,
(iii)/(0) = 0,
(iv) g is T-periodic with respect to the second variable and \l g(0, t,e)dt = O.

Then there exist e,, c > 0 such that for 0 < e < ex (5.1) has a unique periodic orbit
y of period eT such that \\y\\ < ce2.

Proof. We can suppose that g is bounded in U*. Let fe, be a positive bound. We
call k2 and k3 the Lipschitz constants of Df and g. We define A = D/(0) and

exp At.
We take

\ (Sk3c\\A~l\\)'\ (10fc2c
2||A"1!!)"172, e0)
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and we suppose that B{ce\)a U. Given a function y:R-» U we define

il>(s)=f(y(s))-Ay(s) + eg(y(s),s/e,e).

We fix e e (0, e,). First we shall prove that y is an eT-periodic solution of (5.1) if
and only if y is eT-periodic and

y(t) = (I-<&(eT)yi <t>(eT-s)tl>(s+t)ds. (5.2)
Jo

Indeed, if y is an eT-periodic solution of (5.1) we have

y(0 = *(0[y(0) + J ^(sWsJdsJ. (5.3)

Then

*(O[y(O) + j <D-'(*)<Ms) <fr]

= <P(t+eT) y(0) + ®-\s)t(s)ds+\ <p-\s+t)tf,(s + t)ds . (5.4)

To find y(0) we must prove that <J>(f) -4>(f + eT) = <&(t)[I - $ ( e T ) ] is inversible.
We need to consider / - $ ( e T ) . From

(eTA)k/(k + l)\

we only need to consider £"=0 (eTA)k/(k +1)!. We have

/ - I
k = 0

^ I

so that J-<J>(eT) is invertible. Furthermore

\\(I-<t>(eT))->\\

(5.5)

Finding y(0) from (5.4) and putting it into (5.3) we get (5.2). Conversely, we suppose
that y satisfies (5.2) and is eT-periodic. We write (5.2) in the form

rt

1
Now, taking the derivative, we can immediately verify that it is a solution of (5.1).

To find eT-periodic solutions of (5.1) we define X = {y:R-» U continuous, eT-
periodic with || y || < ce2} and A: X -* X by

r
Jo

(5-6)

X is a complete metric space. We shall see that A is a contraction operator. The
unique fixed point of A in X will give us the periodic orbit we are looking for.
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Making the change s = eu, from (5.6) we obtain

We call /j and 72 the first and second integrals. If ||x|| < S we have

\\f(x)-Ax\\ = \\f(x)-f(0)-Df(0)x\\< sup ||D/(|)-D/(0)|| • \\x\\^k2S
2

(£B(S)

and hence \\f(y(eu + t))-Ay(eu + t)\\< k2\\y\\2 so that ||/,|| < eET| |A | l712cV.
Integrating by parts

h=\
Jo

+ eA\ ee(T~u)A(\ g(y{es+t),(es + t)/e,e)ds\du.

We call I3 and 74 the last two integrals. By (iv)

\\h\\^ I \
Jo

Jo

\\h\\^e\\A\\ I* eeTm(\U fc. ds) du<

I
o

k31|y(es + t)\\ds^k3Tee2

By (5.5) and the definitions of c and et we get ||A-y|| < ce2. On the other hand,
if % o-eX

x j j
t)\\du + e \ \\<S>(e(T-u))\\ • \\g(y(eu +t),(eu +t)/e, e)

Jo

-g(a(eu + t),(eu + t)/e, e)\\ du\.

We call Is and 76 the two last integrals. We have

sup \\Df({)-Df(0)\\-\\y-*\\du
2

https://doi.org/10.1017/S0143385700005575 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005575


Invariant manifolds for near identity differentiable maps 345

where in bounding /5 we have used the mean value theorem for the map z->
/(z)-D/(0)z. Again by (5.5) and the definitions of c and e, we get

i||y-<r||. •

The point x = 0 is not, in general, a singular point of equation (5.1). Consider
instead

x=f(x+y(t)) + eg(x + y(t),t/e,e)-y(t) (5.7)

obtained from (5.1) when we translate y to the origin. Now x = 0 is a singular point
of (5.7). Consider also

x=f(x). (5.8)

Suppose tha t / : U-*W and g: l/*-»R" are as before.
Let (pt(t, T, x) and <p2(t, T, X) be the solutions of (5.7) and (5.8) such that

<P,(T, T, X) = x and V2{T, r, x) = x. We define the families of diffeomorphisms Fe(x) =
<PX{ET+T,T,X) and Ge(x) = <p2(eT+r, T, X).

PROPOSITION 5.2. Consider the equations (5.7) and (5.8) with
(i) feC'+\U), r > l ,

(ii) g is of class Cr+1 with respect to the first variable and Dk
xg is continuous in U*

for 0<fc<r+l,
(iiii) /(0) = 0 and Df(0) is hyperbolic,
(iv) g is T-periodic with respect to the second variable and Jo g(x, t, e) dt = 0 for all

xe U and ee[0, eo).
Then given a compact set Be: (Jcontaining the origin there exist e1, M,N>0 such

that
(1) | |F £ - / | | r + 1 , B <M e , | |Ge- / | | r + 1 ,B<Me,

(2) | |FE-Ge | | r ,B<ATe
3, /Ore£[0, e i ) .

The proof of this proposition is analogous to that of Proposition 2.4 and so we
omit it. We notice that the bound in (2) is Ne3. It is essentially due to hypothesis
(iv) and the fact that both Fe and Ge come from flows.

With this result we can finally give the following.

Proof of Theorem C. The existence of the periodic orbit is a consequence of
Proposition 5.1. From (ii) and (iii) we have that the eigenvalues of Df(0) are ±/x
with fi > 0. Let B c U be a compact set which contains o- and let Fe and Ge be
defined as in Proposition 5.2. From that proposition ||DFe(0) - DGE(0)|| < Ne3. That
implies that the coefficients of the characteristic polynomials of DFe(0) and DGc(0)
differ in terms of order e3 and that the eigenvalues differ in terms of order s2.

From this we see that if e is small enough, DFE(0) is hyperbolic and hence y is
hyperbolic. That finishes the proofof(l). Corollary 4.1 tells us that Fe has homoclinic
points and the distance between the invariant manifolds is O(er) (O(ek) for all k
if r = oo).

This finishes the proof for the invariant manifolds of x(t) = 0 of (5.7). The same
holds for the invariant manifolds of y of (5.1) because the latter are related with
the former by a translation. •
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