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Abstract

We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds.
Specifically, we find conditions on the second fundamental form that characterise the shrinking sphere
among compact ancient solutions for the mean curvature flow in codimension two surfaces.
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1. Introduction

We study ancient solutions of the mean curvature flow of immersed submanifolds. The
mean curvature flow is described by

∂ϕ

∂t
(x, t) = H(x, t), (1.1)

where ϕ(·, t) is a family of immersions of a closed n-dimensional manifold Mn into
Rn and H is the mean curvature. A solution is called ancient if it is defined on a
time interval from (−∞, T ). These solutions typically arise as limits of rescalings and
model the asymptotic profile of the flow near a singularity (see, for example, [13]).
Ancient solutions have also been considered in theoretical physics, where they appear
as steady-state solutions of the renormalisation-group flow in the boundary sigma
model [6, 21].

There are many investigations of ancient solutions of the mean curvature flow in
codimension one. In particular, attention has focused on ancient solutions which are
convex, since this property is enjoyed by the blow-up limits of general mean convex
solutions (see [16, 17]). The easiest example is provided by the shrinking sphere,
which is the only compact convex homothetically contracting solution. An example of
an ancient solution which is not self-similar is the so-called Angenent oval [3]. This
is a convex solution of the curve-shortening flow in the plane which has larger and
larger eccentricity as t→ −∞. Compact convex ancient solutions in the plane have
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been completely classified by Daskalopoulos et al. [12] and are either shrinking round
circles or Angenent ovals.

In higher dimensions, other examples of nonhomothetical ancient solutions of the
mean curvature flow have been constructed and analysed in [4, 5, 8, 14, 23]. These
examples suggest that the class of convex compact ancient solutions of the mean
curvature flow is wide and that a complete classification is difficult to obtain. However,
it is possible to prove rigidity results which provide a partial structural description of
this class. A typical result of this kind is the following theorem, stating that an ancient
solution with uniformly pinched principal curvature is necessarily a shrinking sphere.

Theorem 1.1 ([17]; see also [14]). Let {Mt}t∈(−∞,0) be a family of closed convex
hypersurfaces of Rn+1 evolving by mean curvature flow, with n > 1. Let λ1 denote
the smallest principal curvature of Mt and H the mean curvature. Suppose that there
exists ε > 0 such that λ1 > εH on Mt for every t. Then Mt is a family of shrinking
spheres.

Several other characterisations of the sphere have been obtained in terms of a
control on the diameter growth as t → −∞, or on the ratio between the outer and
inner radius (see [14, 17]). An equivalence similar to Theorem 1.1 involving pinching
properties of the intrinsic curvature was obtained in [9] for the ancient solution of the
Ricci flow. Another interesting rigidity result, proved by Haslhofer and Kleiner [15],
is that a closed mean convex ancient solution which is uniformly noncollapsed in the
sense of Andrews [1] is necessarily convex. A similar statement has been obtained
by Langford [18], replacing the noncollapsing property by the assumption that λ1/H
is bounded below. Langford and Lynch [19] generalised these results to a large class
of flows with speed given by a function of the curvatures homogeneous of degree
one. Very recently, Bourni et al. [8] have shown uniqueness of rotationally symmetric
collapsed ancient solutions in all dimensions.

In the case of the mean curvature flow in the sphere Sn+1, there is an ancient solution
consisting of shrinking geodesic n-dimensional spheres, converging to an equator as
t→−∞ and to a point as t→ 0. In [17], some characterisations of the shrinking round
solution in terms of curvature pinching are given. Compared to the case of Euclidean
ambient space, it can be observed that the positive curvature of the ambient space
increases rigidity and weaker pinching conditions suffice to obtain the result. A strong
result in this context was obtained by Bryan et al. [10] for curvature flows on the sphere
Sn+1 for very general speed functions. They proved that the shrinking geodesic sphere
is the only closed convex ancient solution with bounded curvature for large negative
times. In dimension one (that is, for curve-shortening flow), Bryan and Louie [11]
proved that embeddedness is sufficient to conclude that a closed ancient curve in S2 is
either a shrinking circle or an equator.

Recently, Risa and Sinestrari [22] derived rigidity results for ancient solutions of
more general curvature flows, by considering either mean curvature flow in higher
codimension, or the hypersurface case with more general speeds than mean curvature.
They consider various kinds of flows and their results are in a similar spirit to
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Theorem 1.1, showing that a suitable uniform pinching condition characterises the
shrinking sphere among convex ancient solutions.

We consider ancient solutions on codimension two surfaces with some different
pinching conditions from [22]. Our pinching conditions are inspired by [7] and our
result is given in the following theorem.

Theorem 1.2. Let {Mt}t = ϕ(M, t) be a closed ancient solution of (1.1) in R4, with
n = 2, k = 2. Suppose that, for all t ∈ (−∞, 0), we have |H|2 > 0 and

|A|2 + 2γ|K⊥| ≤ k|H|2,

where γ = 1 − 4
3 k and k ≤ 29

40 . Suppose, furthermore, that the norm of the second
fundamental form is uniformly bounded away from the singularity, so there exists
A0 > 0 such that |A|2 ≤ A0 in (−∞,−1). Then Mt is a family of shrinking spheres.

2. Notation and preliminary results
We adhere to the notation of [2] and, in particular, use the canonical space-time

connections introduced in that paper. A fundamental ingredient in the derivation of
the evolution equations is Simons’ identity:

4hi j = ∇i∇ jH + H · hiphp j − hi jhpqhpq + 2h jqhiphpq − hiqhpqhp j − h jqhqphpi.

The timelike Codazzi equation, combined with Simons’ identity, produces the
evolution equation for the second fundamental form:

∇∂thi j = 4hi j + hi jhpqhpq + hiqhpqhp j − hiph jqhpq. (2.1)

The evolution equation for the mean curvature vector is found by taking the trace
with gi j:

∇∂tH = 4H + Hhpqhpq.

The evolution equations of the squared lengths of the second fundamental form and
the mean curvature vector are

∂

∂t
|A|2 = 4|A|2 − 2|∇A|2 + 2

∑
α,β

(∑
i, j

hi jαhi jβ

)2
+ 2

∑
i, j,α,β

(∑
p

hipαh jpβ − h jpαhipβ

)2
,

(2.2)

∂

∂t
|H|2 = 4|H|2 − 2|

⊥

∇A|2 + 2
∑
i, j

(∑
α

hαhi jβ

)2
.

The last term of (2.2) is the squared length of the normal curvature, which we denote
by |Rm⊥|2. For convenience we label the reaction terms of these evolution equations
by

R1 = 2
∑
α,β

(∑
i, j

hi jαhi jβ

)2
+ |Rm⊥|2,

R2 =
∑
i, j

(∑
α

hαhi jβ

)2
.
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3. Evolution of normal curvature

In this section we compute the evolution equation for the normal curvature. The
normal curvature tensor in local orthonormal frames for the tangent {ei : i = 1, 2} and
normal {υα : α = 1, 2} bundles is given by

R⊥i jαβ = hipαh jpβ − h jpαhipβ. (3.1)

We will often compute in a local orthonormal normal frame {υα : α = 1, 2} where
υ1 = H/|H|. As the normal bundle is two-dimensional, υ2 is determined by υ1 up
to sign. With this choice of frame the second fundamental form becomes

◦

A1 = A1 −
|H|
n

Id,
◦

A2 = A2

and {
tr A1 = |H|,
tr A2 = 0.

It is also always possible to choose the tangent frame {ei : i = 1,2} to diagonalise A1.
We often refer to the orthonormal frame {e1, e2, e3, e4} = {e1, e2, υ1, υ2}, where the {ei}

diagonalise A1 and υ1 = H/|H|, as the ‘special orthonormal frame’. Codimension two
surfaces have four independent components of the second fundamental form, which
still makes it tractable to work with individual components, similar to the role of
principal curvatures in hypersurface theory. Working in the special orthonormal frame,
we often find it convenient to represent the second fundamental form by

hi j =

[
|H|/2 + a 0

0 |H|/2 − a

]
ν1 +

[
b c
c −b

]
ν2,

so that h111 = |H|/2 + a, h221 = b, h122 = c and so on. Note that |
◦

A|2 = 2a2 + 2b2 + 2c2.
Just as a surface has only one sectional curvature K, a codimension two surface also

has only one normal curvature, which we denote by K⊥. In the special orthonormal
frame the normal curvature is

K⊥ = R⊥1234 =
∑

p

(h1p1h2p2 − h2p1h1p2)

= h111h212 − h211h112 + h121h222 − h221h122

= 2ac.

Note also that |Rm⊥|2 = 16a2c2. Differentiating (3.1) and using Equation (2.1),

∂

∂t
R⊥i jαβ = 4R⊥i jαβ − 2

∑
p,r

(∇phipα∇qh jpβ − ∇qh jpα∇qhipβ) (3.2)

+
∑

p

( d
dt

hipαh jpβ + hipα
d
dt

h jpβ −
d
dt

h jpαhipβ + h jpα
d
dt

hipβ

)
.
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Computing in the special orthonormal frame and denoting the reaction terms by
dK⊥/dt, the nonlinearity for codimension two surfaces simplifies to

d
dt

K⊥ = 4ac
((
|H|
2
− a

)2
−

(
|H|
2

+ a
)(
|H|
2
− a

)
+ 2b2

)
+ 4ac

(
3c2 +

(
|H|
2

+ a
)2)

= K⊥(|A|2 + |
◦

A|2 − 2b2).

For notational convenience we set

∇evolK⊥ =
∑
p,q

(∇qhipα∇qh jpβ − ∇qh jpα∇qhipβ)

and

R3 = K⊥(|A|2 + |
◦

A|2 − 2b2).

Substituting the simplified nonlinearity into (3.2), we obtain the evolution equation for
the normal curvature

d
dt

K⊥ = 4K⊥ − 2∇evolK⊥ + K⊥(|A|2 + |
◦

A|2 − 2b2),

and a little more computation shows that the length of the normal curvature evolves by

d
dt
|K⊥| = 4|K⊥| − 2

K⊥

|K⊥|
∇evolK⊥ + |K⊥|(|A|2 + |

◦

A|2 − 2b2).

We remark that the complicated structure of the gradient terms prevents an application
of the maximum principle to conclude the flat normal bundle is preserved.

With the exception of the latter estimates, the following gradient estimates are well
known; the third estimate is new and was proved in [7].

Proposition 3.1. We have

|∇A|2 ≥
3

n + 2
|∇H|2,

|∇A|2 −
1
n
|∇H|2 ≥

2(n − 1)
3n

|∇A|2,

|∇A|2 ≥ 2∇evolK⊥ if n = 2.

4. Flow in Euclidean space

In this section we will prove the following result.

Theorem 4.1. Let {Mt}t = ϕ(M, t) be a closed ancient solution of (1.1) in R4, with
n = 2, k = 2. Suppose that, for all t ∈ (−∞, 0), we have |H|2 > 0 and

|A|2 + 2γ|K⊥| ≤ k|H|2,

where γ = 1 − 4
3 k and k ≤ 29

40 . Suppose, furthermore, that the norm of the second
fundamental form is uniformly bounded away from the singularity, so there exists
A0 > 0 such that |A|2 ≤ A0 in (−∞,−1). Then Mt is a family of shrinking spheres.

RETRACTED

https://doi.org/10.1017/S0004972720000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000179


[6] Ancient solutions of codimension two surfaces 167

As in [2, 17], for fixed small σ > 0, we consider the function

fσ =
|
◦

A| + 2γ|K⊥|
H2(1−σ) ,

and we observe that, for any σ, fσ vanishes at x ∈ M if and only if x is an
umbilical point. Therefore, if fσ = 0 everywhere on Mt, then Mt is a totally umbilical
submanifold, hence an n-dimensional sphere in Rn+k.

As spheres evolve by homothetic shrinking, fσ will remain zero for all subsequent
times. Thus, to obtain Theorem 4.1, it is enough to show that f is identically zero on
some time interval (−∞, T1], with T1 < 0. For this purpose, we prove the following
estimate.

Proposition 4.2. Under the hypotheses of Theorem 4.1, there are constants α, β > 0
depending only on n, k and C = C(k, n, A0) > 0 such that, for all [T0, T1] ∈ (−∞,−1)
and for all p > α, σ < β/

√
p, σp > n, we have( ∫

Mt

f p
σ

)1/σp
≤

C
|T0|

1−n/σp − |t|1−n/σp for all t ∈ (T0,T1]. (4.1)

The proposition immediately implies Theorem 4.1. Indeed, sending T0 to −∞ in
(4.1), we see that f p

σ is zero for every t < T1 for suitable values of σ and p. Mt is then
a family of shrinking spheres.

Proof of Proposition 4.2. The first part of the proof follows the strategy of [17]
together with the estimates of [7] (see also [20]). If we set

ε∇ = 1 − 4
3 k − γ,

differentiate fσ in time and substitute in the relevant evolution equations, then

∂

∂t
fσ =

4|A|2 − 2|∇A|2 + 2R1

|H|2(1−σ) +
2γ(4|K|⊥ − 2(K⊥/|K⊥|)∇evolK⊥ + R3)

|H|2(1−σ)

−
(1 − σ)(|A|2 + 2γ|K⊥| − 1/n|H|2)

|H|2(2−σ) (4|H|2 − 2|∇H|2 + 2R2)

−
1
n

(4|H|2 − 2|∇H|2 + 2R2)
|H|2(1−σ) .

After some computation, we find that the Laplacian of fσ is

4 fσ =
(2 − σ)(1 − σ)(|A|2 + 2γ|K⊥| − 1/n|H|2)

(|H|2)3−σ |∇|H|2|2

−
2(1 − σ)
|H|2(2−σ) 〈∇i(|A|2 + 2γ|K⊥| − 1/n|H|2),∇i|H|2〉

−
(1 − σ)(|A|2 + 2γ|K⊥| − 1/n|H|2)

|H|2(1−σ) 4|H|2 +
4(|A|2 + 2γ|K⊥| − 1/n|H|2)

|H|2(1−σ) ,
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and the gradients satisfy

−
2(1 − σ)
|H|2(2−σ) 〈∇i(|A|2 + 2γ|K⊥| − 1/n|H|2),∇i|H|2〉

= −
2(1 − σ)
|H|2

〈∇i|H|2,∇ fσ〉 −
(1 − σ)2

(|H|2)2 fσ|∇|H|2|2.

These two formulae yield

∂

∂t
fσ ≤ 4 fσ +

2(1 − σ)
|H|2

〈∇i|H|2,∇i fσ〉 −
2ε∇
|H|2(1−σ) |∇A|2 + 2σ|A|2 fσ. (4.2)

Using the above evolution inequality, we can derive the evolution inequality for the
Lp norm of f p

σ . Firstly,

∂t

∫
f p
σ dµ = p

∫
( f p−1
σ ∂t fσ − H2 f p

σ ) dµ.

We insert (4.2) into the above equation to get

∂t

∫
f p
σ dµ ≤ −p(p − 1)

∫
f p−2
σ |∇ fσ|2 −

∫
2pε∇

H2(1−σ) |∇A|2 f p−1
σ dµ

+

∫
2p(1 − σ)H
|H|2

|∇H||∇ fσ f p−1
σ dµ + 2σ

∫
|A|2 f p

σ dµ.

By the well-known inequality

|∇A|2 ≥
3

n + 2
|∇H|2

and the pinching condition

|A|2 + 2γ|K⊥| ≤ k|H|2,

where γ = 1 − 4
3 k and k ≤ 29

40 , we get

∂t

∫
f p
σ dµ ≤ −p(p − 1)

∫
f p−2
σ |∇ fσ|2 −

∫
3pε∇

2|H|2(1−σ) |∇H|2 f p−1
σ dµ

+

∫
2p(1 − σ)H
|H|2

|∇H||∇ fσ| f
p−1
σ dµ +

29
20
σ

∫
|H|2 f p

σ dµ. (4.3)

Using Young’s inequality,

2p(1 − σ)
∫

Mt

H
|H|2
|∇H||∇ fσ,η| f

p−1
σ,η dµ

≤ p
∫

Mt

1
|H|2

(1
β

f p−2
σ,η |H|2|∇ fσ,η|2 + β f p

σ,η|∇H|2|
)

dµ

≤
p
β

∫
Mt

f p−2
σ,η |∇ fσ,η|2 + pβ

∫
Mt

f p−1
σ,η

|H|2(1−σ) |∇H|2 dµ.
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If we take β = 1/(p − 1) and p > (2/ε∇) + 1, and use the above inequality in (4.3), then

∂t

∫
f p
σ dµ ≤ −

p(p − 1)
2

∫
f p−2
σ |∇ fσ|2

−

∫
pε∇

|H|2(1−σ) |∇H|2 f p−1
σ dµ +

29
20
σ

∫
|H|2 f p

σ dµ. (4.4)

In addition, [1, Proposition 12] shows that there exists a constant ε0 such that∫
Mt

|H|2 f p
σ dµ ≤

pη
ε0

∫
Mt

f p−1
σ

|H|2(1−σ) |∇H|2 dµ +
p − 1
ε0η

∫
Mt

f p−2
σ |∇ fσ|2 dµ

for all p ≥ 2, η > 0. If we fix η = 8σ/ε0 and we take any p, σ such that p > 16/ε∇,
σ ≤ (ε0/8)

√
ε∇/p, we obtain

4pσ
∫

Mt

|H|2 f p
σ dµ ≤

(32σ2 p
ε0

2 +
16σ
ε0

)
p
∫

Mt

f p−1
σ

|H|2(1−σ) |∇H|2 dµ

+
p(p − 1)

2

∫
Mt

f p−2
σ |∇ fσ|2

≤

(
ε0

2
+
ε0

2

)
p
∫

Mt

f p−1
σ

|H|2(1−σ) |∇H|2 dµ +
p(p − 1)

2

∫
Mt

f p−2
σ |∇ fσ|2,

so that (4.4) implies

∂t

∫
f p
σ dµ ≤ −

p(p − 1)
2

∫
f p−2
σ |∇ fσ|2

−

∫
pε∇

|H|2(1−σ) |∇H|2 f p−1
σ dµ +

29
20
σ

∫
|H|2 f p

σ dµ.

≤ −
p(p − 1)

2

∫
f p−2
σ |∇ fσ|2

−

∫
pε∇

|H|2(1−σ) |∇H|2 f p−1
σ dµ + 4σ

∫
|H|2 f p

σ dµ.

≤ −2pσ
∫

Mt

|H|2 f p
σ dµ

for p > 16/ε∇, σ ≤ (ε0/8)
√
ε∇/p.

Thanks to the definition and our pinching assumption,

0 ≤ fσ ≤ |H|2σ,

so we obtain

d
dt

∫
Mt

f p
σ dµ ≤ −2pσ

∫
Mt

f p+1/σ
σ dµ ≤

( ∫
Mt

f p
σ dµ

)1+1/σ
· |Mt |

−1/(σp) (4.5)

using Hölder’s inequality, where |Mt | is the volume of Mt.
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From [22], there exists a constant C = C(n, A0) such that

|Mt | ≤ C|t|n,

for all t ≤ −1. Using this fact, the statement of the proposition follows easily. Setting

ψ(t) =

∫
Mt

f p
σ dµ,

and using (4.5),

d
dt
ψ−1/(σp) = −

−1
σp

ψ((1/σp)+1) d
dt
ψ ≥ C(|t|)n/(σp).

As ψ(t) , 0 implies ψ(s) , 0 for s < t, we obtain, by integrating on a time interval
(T0, t] with t ≤ T1,

ψ−1/(σp)(t) ≥ ψ−1/(σp)(T0) + C
∫ |T0 |

|t|
τ−n/(σp) > −

1
σp

> C(|T0|
1−1/(σp) − |t|1−1/(σp))

as σp > n. �
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