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On Identities with Composition of
Generalized Derivations

Münevver Pınar Eroǧlu and Nurcan Argaç

Abstract. Let R be a prime ring with extended centroid C, Q maximal right ring of quotients of R,
RC central closure of R such that dimC(RC) > 4, f (X1 , . . . , Xn) a multilinear polynomial over C
that is not central-valued on R, and f (R) the set of all evaluations of the multilinear polynomial
f (X1 , . . . , Xn) in R. Suppose that G is a nonzero generalized derivation of R such that G2

(u)u ∈ C
for all u ∈ f (R). _en one of the following conditions holds:

(i) there exists a ∈ Q such that a2
= 0 and either G(x) = ax for all x ∈ R or G(x) = xa for all

x ∈ R;
(ii) there exists a ∈ Q such that 0 /= a2

∈ C and either G(x) = ax for all x ∈ R or G(x) = xa for
all x ∈ R and f (X1 , . . . , Xn)

2 is central-valued on R;
(iii) char(R) = 2 and one of the following holds:

(a) there exist a, b ∈ Q such that G(x) = ax + xb for all x ∈ R and a2
= b2

∈ C;
(b) there exist a, b ∈ Q such thatG(x) = ax+xb for all x ∈ R, a2 , b2

∈ C and f (X1 , . . . , Xn)
2

is central-valued on R;
(c) there exist a ∈ Q and an X-outer derivation d of R such that G(x) = ax + d(x) for all

x ∈ R, d2
= 0 and a2

+ d(a) = 0;
(d) there exist a ∈ Q and an X-outer derivation d of R such that G(x) = ax + d(x) for all

x ∈ R, d2
= 0, a2

+ d(a) ∈ C and f (X1 , . . . , Xn)
2 is central-valued on R.

Moreover, we characterize the formof nonzero generalized derivationsG of R satisfyingG2
(x) = λx

for all x ∈ R, where λ ∈ C.

1 Introduction

_roughout the paper, unless specially stated, R always denotes a noncommutative
prime ring of characteristic char(R) with center Z(R). Let Q denote the maximal
right ring of quotients of R and let C denote the center of Q. It is known that Q is
also a prime ring and C is a ûeld that is called the extended centroid of R (see [2] for
more details). For a, b ∈ R, let [a, b] = ab − ba, the commutator of a and b, let
f (X1 , . . . , Xn) a multilinear polynomial over C that is not central-valued on R, f (R)
the set of all evaluations of the multilinear polynomial f (X1 , . . . , Xn) in R and s4 the
standard polynomial in 4 variables.
By a derivation of R, we mean an additive map d from R into itself satisfying

d(xy) = d(x)y + xd(y) for all x , y ∈ R. An additive mapping G∶R → R is called
a generalized derivation of R if there exists a derivation d of R such that G(xy) =
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G(x)y+xd(y) for all x , y ∈ R, and d is called the associated derivation ofG. Evidently,
any derivation is a generalized derivation. For b ∈ R, the mapping [b, x] = bx − xb
is a derivation of R and is known as an inner derivation induced by the element b and
is denoted by ad(b). A derivation of R is called outer if it is not inner. A generalized
derivationG is called inner if its associated derivation d is inner; otherwise,G is called
outer.
By T.-K. Lee, [18, _eorem 4], a generalized derivation G of a semiprime ring R is

of the form G(x) = ax + d(x) for all x ∈ R, where a ∈ Q and d is a derivation of Q.
Moreover, a and d are uniquely determined by G and d is also called the associated
derivation ofG. For b ∈ Q, if d(x) = bx − xb for all x ∈ R, then d is said to be X-inner
derivation of R. Derivations that are not X-inner are known as X-outer. _e notion
of generalized derivations was introduced by Brešar [3], and these maps had been
extensively studied in ring theory and operator algebras. _erefore, any investigation
from the algebraic point of view might be interesting (see, for example, [14, 18, 20]).
A well-known result proved by Posner in [24] states that if a prime ring R has a

nonzero derivation such that [d(x), x] ∈ Z(R) for all x ∈ R, then R must be com-
mutative. In [4], Brešar proved that if d and g are derivations of a prime ring R
such that d(x)x − xg(x) ∈ Z(R) for all x ∈ R, then d = 0 = g or R is commu-
tative. T.-L. Wong [27] extended this result to multilinear polynomials. He prove
that if R is a prime ring, f (X1 , . . . , Xn) is a multilinear polynomial over C that is not
central-valued on R, and d, δ are derivations of R such that d(u)u − uδ(u) ∈ Z(R)
for all u ∈ f (R), then either d = δ = 0 or δ = −d and f (X1 , . . . , Xn)2 is central-
valued on R, except when char(R) = 2 and R satisûes s4. In [19], T.-K. Lee and W.-
K. Shiue extended this result to polynomials. _ey prove that if R is a prime ring,
h(X1 , . . . , Xn) is a polynomial over C that is not central-valued on RC, h(R) the
set of all evaluations of the polynomial h(X1 , . . . , Xn) in R, and d, δ are two deriva-
tions of R such that d(u)u − uδ(u) ∈ C for all u ∈ h(R), then either d = 0 = δ or
δ = −d and h(X1 , . . . , Xn)2 is central-valued on RC, except when char(R) = 2 and
dimC(RC) = 4.

On the other hand, Albaş and Argaç [1] extended Posner’s theorem to generalized
derivations by proving that if R is a noncommutative prime ring with a nonzero gen-
eralized derivation G such that [G(x), x] ∈ Z(R) for all x ∈ R, then there exists q ∈ C
such thatG(x) = qx for all x ∈ R. F. Rania [25] proved that ifG is a generalized deriva-
tion of a prime ring R such that G(u)u = 0 for all u ∈ L, where L is a non-central Lie
ideal of R, thenG = 0. Ma and Xu [22] gave a generalization of the result of Brešar [4]
for generalized derivations on Lie ideals. _ey proved that if D and G are generalized
derivations of a prime ring R such that D(x)x − xG(x) ∈ Z(R) for all x ∈ L, where
L is a non-central Lie ideal of R, then either R satisûes s4 or there exists a ∈ Q such
that D(x) = xa and G(x) = ax for all x ∈ R. Recently, in [11], Ç. Demir and the
second author gave a generalization of the result of T.-L. Wong [27] for generalized
derivations as follows: if R is a prime ring, f (X1 , . . . , Xn) is a multilinear polynomial
over C that is not central-valued on R andG is a generalized derivation of R such that
G(u)u ∈ C for all u ∈ f (R), then G(x) = ax, where a ∈ C and f (X1 , . . . , Xn)2 is
central-valued on R, except when char(R) = 2 and R satisûes s4.

We note that most of above results were investigated in the case when char(R) /= 2.
Our aim here is to consider the composition of nonzero generalized derivations on
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multilinear polynomials in prime rings in the cases when both char(R) = 2 and
char(R) /= 2. Motivated by these results, we characterize the structure of rings satisûed
generalized polynomial identities with composition of nonzero generalized deriva-
tions, and we also characterize the form of the generalized derivations involved in the
identities. More precisely, we will prove the following theorems.

Main _eorem Let R be a prime ring with dimC(RC) > 4, extended centroid C, Q
maximal right ring of quotients of R, f (X1 , . . . , Xn) a multilinear polynomial over C
that is not central-valued on R and G a nonzero generalized derivation of R. Suppose
that

G2( f (r1 , . . . , rn)) f (r1 , . . . , rn) ∈ C
for all r1 , . . . , rn ∈ R. _en one of the following conditions holds:
(i) there exists a ∈ Q such that a2 = 0 and either G(x) = ax for all x ∈ R or G(x) =

xa for all x ∈ R;
(ii) there exists a ∈ Q such that 0 /= a2 ∈ C and either G(x) = ax for all x ∈ R or

G(x) = xa for all x ∈ R and f (X1 , . . . , Xn)2 is central-valued on R;
(iii) char(R) = 2 and one of the following holds:

(a) there exist a, b ∈ Q such that G(x) = ax + xb for all x ∈ R and a2 = b2 ∈ C;
(b) there exist a, b ∈ Q such that G(x) = ax + xb for all x ∈ R, a2 , b2 ∈ C and

f (X1 , . . . , Xn)2 is central-valued on R;
(c) there exist a ∈ Q and an X-outer derivation d of R such thatG(x) = ax+d(x)

for all x ∈ R, d2 = 0 and a2 + d(a) = 0;
(d) there exist a ∈ Q and an X-outer derivation d of R such that G(x) = ax +

d(x) for all x ∈ R, d2 = 0, a2 + d(a) ∈ C and f (X1 , . . . , Xn)2 is central-
valued on R.

To prove the main theorem we need the following theorems.

_eorem 1.1 Let R be a prime ring with a nonzero generalized derivation G. Suppose
that G2(x) = λx for all x ∈ R, where λ ∈ C. _en one of the following holds:
(i) there exists a ∈ Q such that a2 = λ ∈ C and either G(x) = ax for all x ∈ R or

G(x) = xa for all x ∈ R;
(ii) char(R) = 2 and one of the following holds:

(a) there exist a, b ∈ Q such that G(x) = ax + xb for all x ∈ R and a2 , b2 ∈ C;
(b) there exist a ∈ Q and an X-outer derivation d of R such that G(x) = ax +

d(x), d2 = 0 and a2 + d(a) ∈ C.

In view of _eorem 1.1, we have the following special case.

Corollary 1.2 Let R be a prime ring with a nonzero generalized derivationG. Suppose
that G2(x) = 0 for all x ∈ R. _en one of the following holds:
(i) there exists a ∈ Q such that a2 = 0 and either G(x) = ax for all x ∈ R or G(x) =

xa for all x ∈ R;
(ii) char(R) = 2 and one of the following holds:

(a) there exist a, b ∈ Q such that G(x) = ax + xb for all x ∈ R and a2 = b2 ∈ C;
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(b) there exist a ∈ Q and an X-outer derivation d of R such that G(x) = ax +
d(x), d2 = 0 and a2 + d(a) = 0.

_eorem 1.3 Let R be a prime ring with a nonzero generalized derivation G. Suppose
that

G2( f (x1 , . . . , xn)) f (x1 , . . . , xn) = 0

for all x1 , . . . , xn ∈ R. _en one of the following holds:
(i) there exists a ∈ Q such that a2 = 0 and either G(x) = ax for all x ∈ R or G(x) =

xa for all x ∈ R;
(ii) char(R) = 2 and one of the following holds:

(a) there exist a, b ∈ Q such that G(x) = ax + xb for all x ∈ R and a2 = b2 ∈ C;
(b) there exist a ∈ Q and an X-outer derivation d of R such that G(x) = ax +

d(x), d2 = 0 and a2 + d(a) = 0.
Note that we have G2 = 0 in all conditions.

_e following is an example for a nonzero outer derivation d such that d2 = 0 on
a prime ring R with char(R) = 2.

Example 1.4 Let F be a ûeld and let R ∶= Mn(F[X]) be the n by n matrix ring over
F[X], where n > 2 and char(F) = 2, the derivative of a function f , denoted by f ′.
Deûne d(( f i j(x))) = ( f ′i j(x)) for ( f i j(x)) ∈ R. _en it is clear that d2 = 0 on R, as
required.

2 Preliminaries

In this section, recall that unless specially stated R is a noncommutative prime
ring with extended centroid C, Q the maximal right ring of quotients of R and
f (X1 , . . . , Xn) a multilinear polynomial over C, which is not central-valued on R.
In order to prove the main theorem we will frequently use the theory of generalized
polynomial identities and diòerential identities (see [2, 9, 16, 18, 23]). In particular we
need to recall the following facts.

Fact 2.1 ([9]) If R is a prime ring, then R andQ satisfy same generalized polynomial
identities with coeõcients in Q.

Fact 2.2 ([18]) Every generalized derivation G of R can be uniquely extended to a
generalized derivation of Q. In particular, there exist a ∈ Q and a derivation d of Q
such that G(x) = ax + d(x) for all x ∈ R.

_e following result is one of the cornerstones of the theory of generalized poly-
nomial identities. Its original version was proved by Martindale in [23, _eorem 2].

Fact 2.3 ([6,_eoremA.7.]) Let R be a prime ring with extended centroid C and let
a i , b i , c j , d j ∈ Q be such that Σn

i=1a ixb i = Σm
j=1c jxd j for all x ∈ R. If b1 , . . . , bn are lin-

early independent overC, then each a i is a linear combination of c1 , . . . , cm . Similarly,
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if a1 , . . . , an are linearly independent over C, then each b i is a linear combination of
d1 , . . . , dm .

Fact 2.4 ([10, Lemma 1.5]) Let K be an inûnite ûeld and m ≥ 2. If A1 , . . . ,Ak are
not scalar matrices in Mm(K), then there exists some invertible matrix P ∈ Mm(K)
such that each matrix PA1P−1 , . . . , PAkP−1 has all non-zero entries.

Fact 2.5 Let C{X} be the free C-algebra with the noncommutative indetermi-
nates in X ∶= {X1 , X2 , . . .}. We denote by Q ∗C C{X} the free product of C-algebras
Q and C{X} over C. Any element of Q ∗C C{X} can be written in the form g =
∑i α im i , where the coeõcients α i ∈ C and the elements m i ’s called monomials,m i =
q0Y1q1 . . .Yhqh , with q i ∈ Q and Yi ∈ {X1 , . . . , Xn}. _e elements of Q ∗C C{X} are
said to be generalized polynomialswith coeõcients in Q. Nontrivial generalized poly-
nomial means a nonzero element ofQ∗CC{X}. Let g = g(X1 , . . . , Xn) ∈ Q∗CC{X},
if g(r1 , . . . , rn) = 0 for all r1 , . . . , rn ∈ R; then g is said to be a generalized polynomial
identity (GPI) of R and also R is said to be a GPI-ring if R satisûes a nontrivial gen-
eralized polynomial identity (see [2], for more details).

Fact 2.6 We need to recall the following notation for a multilinear polynomial
f (X1 , . . . , Xn) over C:

f (X1 , . . . , Xn) = X1 ⋅ ⋅ ⋅Xn + ∑
σ∈Sn ,σ /=1

ασXσ(1) ⋅ ⋅ ⋅Xσ(n)

for some ασ ∈ C, and Sn is the symmetric group of degree n.

3 Results

In this section, recall that unless specially stated, R is a noncommutative prime ring
with extended centroid C, Q the maximal right ring of quotients of R, f (X1 , . . . , Xn)
a multilinear polynomial over C that is not central-valued on R, f (R) the set of all
evaluations of the multilinear polynomial f (X1 , . . . , Xn) in R.

We start with proof of the _eorem 1.1.

Proof of the_eorem 1.1 By Fact 2.2, there exist a ∈ Q and a derivation d of Q such
that G(x) = ax + d(x) for all x ∈ R. If d = 0, then G(x) = ax for all x ∈ R, and so we
have that a2 = λ ∈ C, by primeness of R, as required. _erefore, we can assume that
d /= 0. By hypothesis, we get that

(3.1) ( a2 + d(a))x + 2ad(x) + d2(x) − λx = 0

for all x ∈ R. Suppose that char(R) /= 2. In this case, we assume ûrst that d is an
X-inner derivation. _en there exists q ∈ Q ∖ C such that d(x) = [q, x], d2(x) =
[q, [q, x]] and so G(x) = (a + q)x − xq for all x ∈ R. By (3.1), we obtain that

( a2 + [q, a] + 2aq + q2 − λ)x − 2(a + q)xq + xq2 = 0

for all x ∈ R. It follows from q ∉ C that 2(a + q) ∈ C, by Fact 2.3. _erefore, since
char(R) /= 2, we get a + q ∈ C, which means that G(x) = xa for all x ∈ R, and so
a2 = λ ∈ C, as required.
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We assume now that d is not X-inner. On the other hand, since char(R) /= 2 and
d /= 0, we know that d2 is not a derivation. _en by applying Kharchenko’s theorem
in [16] to (3.1), we have that (a2 + d(a))x + 2ay+ z− λx = 0 for all x , y, z ∈ R. Taking
x = 0 = y, we get a contradiction.

Suppose now that char(R) = 2. _en by (3.1) we obtain that

(3.2) ( a2 + d(a))x + d2(x) − λx = 0

for all x ∈ R. Assume ûrst that d is X-inner derivation. _en there exists q ∈ Q ∖ C
such that d(x) = [q, x], d2(x) = [q2 , x], G(x) = (a + q)x + xq, and so G2(x) =
(a2 + d(a))x + d2(x) for all x ∈ R. By (3.2), we have that

((a + q)2 + λ)x − xq2 = 0

for all x ∈ R. _us, by Fact 2.3, we get q2 ∈ C and (a+q)2 ∈ C, and so condition (ii)(a)
holds, as required.

Now assume that d is not X-inner. On the other hand, since char(R) = 2, it is clear
that d2 is a derivation. If d and d2 are C-independent module X-inner derivations,
then by applyingKharchenko’s theorem to (3.2), we have that (a2+d(a))x+y−λx = 0
for all x , y ∈ R. Taking x = 0, we get a contradiction. _us, we can assume that d and
d2 areC-dependentmodule X-inner derivations. _en there exist µ ∈ C and 0 /= c ∈ Q
such that d2 = µd + ad(c). If µ = 0, then d2 = ad(c), namely, d2(x) = [c, x] for all
x ∈ R. By (3.2), R satisûes (a2 + d(a) + c − λ)x − xc. Hence by Fact 2.3, c ∈ C and
a2 + d(a) ∈ C, which means that d2 = 0 and so the condition (b) of (ii) holds, as
required. Finally we may assume that µ /= 0. _en by (3.2), we have that R satisûes
(a2 + d(a))x + µd(x) + [c, x] − λx. By Kharchenko’s theorem in [16], R satisûes
(a2 + d(a))x + µy + [c, x] − λx. Taking x = 0, we get a contradiction.

To prove the Main _eorem we need the following lemmas. For the ûrst lemma,
we will study the case where R = Mm(F) is the algebra ofm ×m matrices over a ûeld
F. Here wewill assume that there exist c, q elements of R such that c(cx+xq)x+(cx+
xq)qx = 0 for all x ∈ f (R). Notice that the set f (R) = { f (r1 , . . . , rn) ∶ r1 , . . . , rn ∈ R}
is invariant under the action of all inner automorphisms of R = Mm(F). Let us denote
as usual by e i j the matrix unit with 1 in (i , j)-entry and zero elsewhere. And then we
will study the previous result when R is a prime ring.

Lemma 3.1 Let F be a ûeld of char(F) /= 2 and let R = Mm(F) be the algebra of
m×m matrices over F, Z(R) the center of R. Assume that there exist c, q ∈ R such that
c(cx + xq)x + (cx + xq)qx = 0 for all x ∈ f (R). _en (c + q)2 = 0, and, moreover,
either c ∈ Z(R) or q ∈ Z(R).

Proof Denote c = ∑i j c i je i j and q = ∑i j q i je i j , for suitable c i j , q i j ∈ F. First, we
assume that F is an inûnite ûeld. To prove this lemma, we assume that c and q are
non-central matrices. By Fact 2.4, there exists some invertible matrix P ∈ Mm(F)
such that PcP−1 = c′ and PqP−1 = q′ have all non-zero entries. We say c′ = ∑i j c′i je i j
and q′ = ∑i j q′i je i j , for suitable c′i j , q

′
i j ∈ F, the conjugates of elements c, q. Now let

φ be an automorphism ofMm(F) such that φ(x) = PxP−1 for all x ∈ R. We note that
f (R) is invariant under the action of all inner automorphisms of R. _en we have
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that

0 = φ(c)(φ(c)x + xφ(q))x + (φ(c)x + xφ(q))φ(q)x
= c′(c′x + xq′)x + (c′x + xq′)q′x

for all x ∈ f (R). Since f (X1 , . . . , Xn) is a not-central polynomial for Mm(F), then
by [21], there exist u1 , . . . , un ∈ Mm(F) and 0 /= α ∈ F, such that f (u1 , . . . , un) = αe i j
with i /= j. _erefore,

0 = c′(c′αe i j + αe i jq′)αe i j + (c′αe i j + αe i jq′)q′αe i j = 2α2c′e i jq′e i j + α2e i j(q′)2e i j
and le� multiplying by e j j , we get 2e j jc′e i jq′e i j = 0. It implies the contradiction
c′jiq

′
ji = 0. Hence either c ∈ Z(R) or q ∈ Z(R). First, we suppose that c is a central

element of Mm(F). Hence it follows from the hypothesis that x(c + q)2x = 0 for all
x ∈ f (R). In other words,

f (x1 , . . . , xn)(c + q)2 f (x1 , . . . , xn) = 0

for all x1 , . . . , xn ∈ R. In this case, since f (X1 , . . . , Xn) is not central-valued on R, by
the result of [11, Lemma 1] we get (c+q)2 = 0. Similarly, in case q is a central element,
we have that (c + q)2 = 0.

Now let K be an inûnite ûeld which is an extension of the ûeld F and let R =
Mm(K) ≅ R ⊗F K. _e generalized polynomial

φ(x1 , . . . , xn) = c( c f (x1 , . . . , xn) + f (x1 , . . . , xn)q) f (x1 , . . . , xn)
+ ( c f (x1 , . . . , xn) + f (x1 , . . . , xn)q)q f (x1 , . . . , xn),

which is a generalized polynomial identity for R, is multi-homogeneous of multi-
degree (2, . . . , 2) in the indeterminates x1 , . . . , xn . Completing the linearization of
φ(x1 , . . . , xn), we get themultilinear generalized polynomial ϕ(x1 , . . . , xn , y1 , . . . , yn)
in 2n indeterminates such that

ϕ(x1 , . . . , xn , x1 , . . . , xn) = 2nφ(x1 , . . . , xn).
_us, the multilinear polynomial ϕ(x1 , . . . , xn , y1 , . . . , yn) is a generalized polyno-
mial for R and R too. Since char(F) /= 2, we have that φ(x1 , . . . , xn) = 0 for all
x1 , . . . , xn ∈ R. Moreover, since the multilinear polynomial f (x1 , . . . , xn) is central-
valued on R if and only if it is central valued on R, we have that f (x1 , . . . , xn) is
not central valued on R. Hence, the required conclusion follows from the ûrst ar-
gument.

Lemma 3.2 Let R be a prime ring with char(R) /= 2 and c, q ∈ Q such that

c(cx + xq)x + (cx + xq)qx = 0

for all x ∈ f (R). If R is not aGPI-ring, then (c+q)2 = 0, and, moreover, either c ∈ Z(R)
or q ∈ Z(R).

Proof Since R does not satisfy any non-trivial generalized polynomial identity,

φ(X1 , . . . , Xn) =c( c f (X1 , . . . , Xn) + f (X1 , . . . , Xn)q) f (X1 , . . . , Xn)
+ ( c f (X1 , . . . , Xn) + f (X1 , . . . , Xn)q)q f (X1 , . . . , Xn)

(3.3)
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is a trivial generalized polynomial identity for R. It follows from Fact 2.5 that
φ(X1 , . . . , Xn) is a zero element of Q ∗C C{X}. _erefore by (3.3), we get that

c2 f (X1 , . . . , Xn) + 2c f (X1 , . . . , Xn)q + f (X1 , . . . , Xn)q2

is a zero element of Q ∗C C{X}. _is implies that either c ∈ C or q ∈ C by [9]. In any
case, clearly it is obtained that (c + q)2 = 0, as required.

Lemma 3.3 Let R be a prime ring with char(R) /= 2 and c, q ∈ Q such that

c(cx + xq)x + (cx + xq)qx = 0

for all x ∈ f (R). _en (c + q)2 = 0, and, moreover, either c ∈ Z(R) or q ∈ Z(R).

Proof We consider the generalized polynomial

φ(x1 , . . . , xn) = c( c f (x1 , . . . , xn) + f (x1 , . . . , xn)q) f (x1 , . . . , xn)
+ ( c f (x1 , . . . , xn) + f (x1 , . . . , xn)q)q f (x1 , . . . , xn).

By Lemma 3.2, if R is not a GPI-ring, then the proof is ûnished. So we can assume
that R is a GPI-ring. _en by Martindale’s result in [23], RC is a primitive ring with
nonzero socle. _ere exists a vector space V over a division ring D such that RC is a
dense subring of D-linear transformations of V over D. Assume ûrst that V is ûnite-
dimensional over D. _en RC is a simple ring that satisûes a non-trivial generalized
polynomial identity. By [17], RC ⊆ Mt(F) for suitable ûeld F such that char(F) /= 2,
and, moreover, Mt(F) satisûes the same generalized identity of RC. Hence,

c( c f (x1 , . . . , xn) + f (x1 , . . . , xn)q) f (x1 , . . . , xn)
+ ( c f (x1 , . . . , xn) + f (x1 , . . . , xn)q)q f (x1 , . . . , xn) = 0

for all x1 , . . . , xn ∈ Mt(F). In this case, the conclusion follows by Lemma 3.1. Now
consider the case where dimD(V) = ∞. _en by [26, Lemma 2], we get that RC
satisûes the identity c(cx + xq)x + (cx + xq)qx. Linearizing this identity, we have
that (c(cx + xq) + (cx + xq)q)y + (c(cy + yq) + (cy + yq)q)x = 0 for all x , y ∈ RC.
By [5, Lemma 4.4], we see that c(cx + xq) + (cx + xq)q = 0. _is implies that

c2x + 2cxq + xq2 = 0(3.4)

for all x ∈ RC. If c ∉ C, then {1, c} are linearly C-independent. _us, in view of Fact
2.3 and (3.4), we have that {1, q} are C-dependent, i.e., q ∈ C. Hence by (3.4), we see
that (c + q)2x = 0 for all x ∈ RC. Namely, we get (c + q)2 = 0. Similarly, in case q ∉ C,
we have that c ∈ C and so (c + q)2 = 0.

Proof of the_eorem 1.3 By Fact 2.2, there exist a ∈ Q and a derivation d of Q
such that G(x) = ax + d(x) for all x ∈ R. If d = 0, then G(x) = ax for all x ∈ R
and so the conclusion follows from Lemma 3.3. _erefore, we can assume that d /= 0.
Let f d(x1 , . . . , xn), f d

2(x1 , . . . , xn) be the polynomials obtained from f (x1 , . . . , xn)
replacing each coeõcient ασ with d(ασ) and d2(ασ), respectively.
First, we assume that char(R) /= 2. By using Fact 2.6, we have that

d( f (X1 , . . . , Xn)) = f d(X1 , . . . , Xn) +∑
i
f (X1 , . . . , d(X i), . . . , Xn),
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and so,

d2( f (X1 , . . . , Xn))

= f d
2
(X1 , . . . , Xn) +∑

i
f d(X1 , . . . , d(X i), . . . , Xn)

+∑
i
f d(X1 , . . . , d(X i), . . . , Xn) +∑

i
f (X1 , . . . , d2(X i), . . . , Xn)

+∑
i /= j
f (X1 , . . . , d(X i), . . . , d(X j), . . . , Xn).

By the hypothesis, we have that R satisûes

G( a f (X1 , . . . , Xn) + d( f (X1 , . . . , Xn))) f (X1 , . . . , Xn)

and hence,

(3.5) ( a2 f (X1 , . . . , Xn) + ad( f (X1 , . . . , Xn))) f (X1 , . . . , Xn)

+ (d( a f (X1 , . . . , Xn)) + d2( f (X1 , . . . , Xn))) f (X1 , . . . , Xn).

Suppose ûrst that d is X-inner derivation; then there exists b ∈ Q such that d(x) =
[b, x] for all x ∈ R. In this case by (3.5) we have that R satisûes

( a2 f (X1 , . . . , Xn) + a[b, f (X1 , . . . , Xn)]) f (X1 , . . . , Xn)

+ ([b, a f (X1 , . . . , Xn)] + [b, [b, f (X1 , . . . , Xn)]]) f (X1 , . . . , Xn)

that is, R satisûes

(a + b)((a + b) f (X1 , . . . , Xn) + f (X1 , . . . , Xn)(−b)) f (X1 , . . . , Xn)

+((a + b) f (X1 , . . . , Xn) + f (X1 , . . . , Xn)(−b))(−b) f (X1 , . . . , Xn).

By Lemma 3.3, we have that G is either of the form G(x) = ax or G(x) = xa; more-
over, a2 = 0, as required.

Nowwe consider that d is X-outer derivation. _enby (3.5), we have thatR satisûes

( a2 + d(a)) f (X1 , . . . , Xn)2 + 2ad( f (X1 , . . . , Xn)) f (X1 , . . . , Xn)
+ d2( f (X1 , . . . , Xn)) f (X1 , . . . , Xn);

that is, R satisûes
( a2 + d(a)) f (X1 , . . . , Xn)2

+ 2a( f d(X1 , . . . , Xn) +∑
i
f (X1 , . . . , d(X i), . . . , Xn)) f (X1 , . . . , Xn)

+ ( f d
2
(X1 , . . . , Xn) + 2∑

i
f d(X1 , . . . , d(X i), . . . , Xn)

+∑
i
f (X1 , . . . , d2(X i), . . . , Xn)

+∑
i /= j
f (X1 , . . . , d(X i), . . . , d(X j), . . . , Xn)) f (X1 , . . . , Xn).

(3.6)

https://doi.org/10.4153/CMB-2016-072-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-072-4
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Since d /= 0 and d is not X-inner, by applying Kharchenko’s theorem in [16] to
(3.6), we get that R satisûes the generalized polynomial

( a2 + d(a)) f (x1 , . . . , xn)2

+ 2a( f d(x1 , . . . , xn) +∑
i
f (x1 , . . . , y i , . . . , xn)) f (x1 , . . . , xn)

+ ( f d
2
(x1 , . . . , xn) + 2∑

i
f d(x1 , . . . , y i , . . . , xn)

+∑
i
f (x1 , . . . , z i , . . . , xn)

+∑
i /= j
f (x1 , . . . , y i , . . . , y j , . . . , xn)) f (x1 , . . . , xn),

which implies that R satisûes the blended component

f (x1 , . . . , z i , . . . , xn) f (x1 , . . . , xn),
and so R satisûes f (X1 , . . . , Xn)2. By [21], this implies that f (X1 , . . . , Xn) is a poly-
nomial identity for R, a contradiction.

Now we assume that charR = 2. _en it is clear that G2 is a generalized derivation
with associated derivation d2. Namely,G(x) = ax+d(x) andG2(x) = (a2+d(a))x+
d2(x). _erefore by the hypothesis, we note that G2(u)u = 0 for all u ∈ f (R), where
G2 is a generalized derivation of R. It follows from [11, Corollary 1] that G2(x) = 0
for all x ∈ R. Hence we are done by the Corollary 1.2.

Lemma 3.4 Let F be a ûeld of char(F) /= 2 and let R = Mm(F) be the algebra of
m×m matrices over F, Z(R) the center of R. Assume that there exist c, q ∈ R such that

c(cx + xq)x + (cx + xq)qx ∈ Z(R)
for all x ∈ f (R). _en one of the following holds:
(i) c ∈ Z(R), and, moreover, either (c + q)2 = 0 or f (X1 , . . . , Xn)2 is central valued

on R and (c + q)2 ∈ Z(R);
(ii) q ∈ Z(R), and, moreover, either (c + q)2 = 0 or f (X1 , . . . , Xn)2 is central valued

on R and (c + q)2 ∈ Z(R).

Proof Let c = ∑i j c i je i j and q = ∑i j q i je i j , for suitable c i j , q i j ∈ F. First, we assume
that F is an inûnite ûeld. To prove this lemma, we assume that c and q are non-central
matrices. We know from the proof of Lemma 3.1 that there exist c′ = ∑i j c′i je i j and
q′ = ∑i j q′i je i j for suitable c′i j , q

′
i j ∈ F have all non-zero entries; moreover, c′(c′x +

xq′)x + (c′x + xq′)q′x ∈ Z(R) for all x ∈ f (R). Since f (X1 , . . . , Xn) is not-central
polynomial for Mm(F), then by [21], there exist u1 , . . . , un ∈ Mm(F) and 0 /= α ∈ F
such that f (u1 , . . . , un) = αe i j with i /= j. _erefore,

c′(c′αe i j + αe i jq′)αe i j + (c′αe i j + αe i jq′)q′αe i j =
2α2c′e i jq′e i j + α2e i j(q′)2e i j ∈ Z(R).

_en [2α2c′e i jq′e i j + α2e i j(q′)2e i j , e j j] = 0, and so we get 2e j jc′e i jq′e i j = 0. Since
char(F) /= 2, we get that c′jiq

′
ji = 0. _en a contradiction follows from Fact 2.4.
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Hence, we must have either c ∈ Z(R) or q ∈ Z(R). First, we assume that c is
central. _en by the hypothesis, we have

f (x1 , . . . , xn)(c + q)2 f (x1 , . . . , xn) ∈ Z(R)
for all x1 , . . . , xn ∈ R. _en from above it follows that there exist u1 , . . . , un ∈ Mm(F)
and 0 /= α ∈ F such that f (u1 , . . . , un) = αekl with k /= l . Moreover, since the
set f (R) is invariant under the action of all F inner-automorphisms of Mm(F), for
any i /= j, there exist r1 , . . . , rn ∈ Mm(F) such that f (r1 , . . . , rn) = αe i j . Hence,
α2e i j(c + q)2e i j ∈ Z(R) for all i /= j. _is means that that( j, i)-entry of matrix
(c + q)2 is zero for all i /= j; i.e., (c + q)2 is a diagonal matrix.

Now let φ be an inner-automorphism of Mm(F). Since the set f (R) is invariant
under the action of all inner-automorphisms, the element φ((c + q)2) must satisfy
the same conclusions that are satisûed by (c + q)2. _erefore, φ((c + q)2) must be a
diagonal matrix. Set a = (c + q)2. In particular, choose φ(x) = (1 + e i j)x(1 − e i j),
for any i /= j. _en φ(a) = a + e i ja − ae i j − e i jae i j = a + (a j j − a i i)e i j . Since a and
φ(a) are diagonal, it follows that a i i = a j j for all i /= j; that is, a = (c + q)2 must be
central. _is implies that (c + q)2 f (x1 , . . . , xn)2 ∈ Z(R). By the primeness of R, one
obtains (c + q)2 = 0 or f (x1 , . . . , xn)2 ∈ Z(R) for all x1 , . . . , xn ∈ R. Hence, we get
the conclusion (i).

Now suppose that q is central. _en by the hypothesis we have

(c + q)2 f (x1 , . . . , xn)2 ∈ Z(R)

for all x1 , . . . , xn ∈ R. If f (x1 , . . . , xn)2 ∈ Z(R) for all x1 , . . . , xn ∈ R, then (c + q)2 ∈
Z(R), and we are done. _us, we can assume that f (X1 , . . . , Xn)2 is not central on
R. Let A be the additive subgroup generated by the evaluations of f (R)2. In [8], it is
proved that if char(R) /= 2 and f (X1 , . . . , Xn)2 is not central-valued, then A contains
a noncentral Lie ideal L of R. Moreover, it is well known that, in case char(R) /= 2,
we also have [R, R] ⊆ L ⊆ A, by [12]. _us, (c + q)2x ∈ Z(R) for all x ∈ [R, R]. Fix
x = e i j ∈ [R, R] with i /= j; then (c + q)2e i j ∈ Z(R). Again, set a = (c + q)2. _us, we
get that [ae i j , e i j] = 0, which means that a ji = 0 for any i /= j, that is, a is a diagonal
matrix: a = ∑i i a i i e i i . Moreover, it follows from ae i j ∈ Z(R) that [ae i j , e ji] = 0,
which means that ae i i − e jiae i j = 0 for any i /= j. Le� multiplying by e i i , we get
a i i = 0 for all i. It means that a = (c + q)2 = 0, and we have conclusion (ii).

Now letK be an inûnite ûeld that is an extension of the ûeld F and letR = Mm(K) ≅
R⊗F K. Notice that the multilinear polynomial f (X1 , . . . , Xn) is central-valued on R
if and only if it is central valued on R. _e generalized polynomial

ϕ(x1 , . . . , xn+1) = [ c( c f (x1 , . . . , xn) + f (x1 , . . . , xn)q) f (x1 , . . . , xn)
+ ( c f (x1 , . . . , xn) + f (x1 , . . . , xn)q)q f (x1 , . . . , xn), xn+1]

which is a generalized polynomial identity for R, ismultihomogeneous ofmultidegree
(2, . . . , 2) in the indeterminates x1 , . . . , xn+1.
Completing the linearization of ϕ(x1 , . . . , xn+1), we have the multilinear general-

ized polynomial θ(x1 , . . . , xn+1 , y1 , . . . , yn+1) in 2n+1 indeterminates such that

θ(x1 , . . . , xn+1 , x1 , . . . , xn+1) = 2n+1ϕ(x1 , . . . , xn , xn+1).
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Clearly themultilinear polynomial θ(x1 , . . . , xn+1 , y1 , . . . , yn+1) is a generalized poly-
nomial for R and R too. It follows from char(F) /= 2 that

ϕ(r1 , . . . , rn+1) = 0

for all r1 , . . . , rn+1 ∈ R. Hence, the required conclusion follows from the ûrst argu-
ment.

We are now in a position to prove the main theorem.

Proof of the Main_eorem By Fact 2.2, there exist a ∈ Q and a derivation d of Q
such that G(x) = ax + d(x) for all x ∈ R. If

G2( f (x1 , . . . , xn)) f (x1 , . . . , xn) = 0

for all x1 , . . . , xn ∈ R, then we are done by the _eorem 1.3. Otherwise, there exist
r1 , . . . , rn ∈ R such that G2( f (r1 , . . . , rn)) f (r1 , . . . , rn) /= 0. _erefore, we can also
assume G2(Q) /= 0.
First, we assume that char(R) /= 2. By assumption, we have that R possesses a

central diòerential polynomial identity

( a2 f (x1 , . . . , xn) + ad( f (x1 , . . . , xn))) f (x1 , . . . , xn)

+ (d( a f (x1 , . . . , xn)) + d2( f (x1 , . . . , xn))) f (x1 , . . . , xn).
_en by [7, _eorem 1], we get that R is a PI-ring and hence a GPI-ring, and by Fact
2.1, so is Q.

Suppose ûrst that d is X-inner. _en there exists b ∈ Q such that d(x) = [b, x] for
all x ∈ R, so we have G(x) = (a + b)x − xb. Since R is a GPI-ring by Martindale’s
theorem in [23], Q is primitive ring. It follows fromKaplansky’s well-known theorem
[15, _eorem 6.1.10], that Q is a ûnite dimensional central simple algebra over C. In
view of [17, Lemma 2], there exists a suitable ûeld F of char(F) /= 2 such that Q ⊆
Mt(F) for some positive integer t, and moreover, Q andMt(F) satisfy the same GPI.
_en by Lemma 3.4, we are done. _us, we can assume that d /= 0.

Now we suppose that d is not X-inner. _en by Fact 2.6 and the hypothesis, we
have that

( a2 + d(a)) f (x1 , . . . , xn)2 + 2ad( f (x1 , . . . , xn)) f (x1 , . . . , xn)
+ d2( f (x1 , . . . , xn)) f (x1 , . . . , xn) ∈ C;

that is,

( a2 + d(a)) f (x1 , . . . , xn)2(3.7)

+2a( f d(x1 , . . . , xn) +∑
i
f (x1 , . . . , d(x i), . . . , xn)) f (x1 , . . . , xn)

+( f d
2
(x1 , . . . , xn) + 2∑

i
f d(x1 , . . . , d(x i), . . . , xn)

+∑
i
f (x1 , . . . , d2(x i), . . . , xn)

+∑
i /= j
f (x1 , . . . , d(x i), . . . , d(x j), . . . , xn)) f (x1 , . . . , xn) ∈ C
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for all x1 , . . . , xn ∈ R.
Since d /= 0 and d is not X-inner, by applying Kharchenko’s theorem to (3.7), we

get that

( a2 + d(a)) f (x1 , . . . , xn)2

+ 2a( f d(x1 , . . . , xn) +∑
i
f (x1 , . . . , y i , . . . , xn)) f (x1 , . . . , xn)

+ ( f d
2
(x1 , . . . , xn) + 2∑

i
f d(x1 , . . . , y i , . . . , xn)

+∑
i
f (x1 , . . . , z i , . . . , xn)

+∑
i /= j
f (x1 , . . . , y i , . . . , y j , . . . , xn)) f (x1 , . . . , xn) ∈ C

for all x1 , . . . , xn , y1 , . . . , yn , z1 , . . . , zn ∈ R. In particular,

f (x1 , . . . , z i , . . . , xn) f (x1 , . . . , xn) ∈ C

for all i = 1, . . . , n. Let c ∈ Q ∖ C, then we have

[ c, f (x1 , . . . , xn)] f (x1 , . . . , xn) =
∑
i
f (x1 , . . . , [c, x i], . . . , xn) f (x1 , . . . , xn) ∈ C .

In other words [c, f (x1 , . . . , xn)] f (x1 , . . . , xn) ∈ C for all x1 , . . . , xn ∈ R. Since
char(R) /= 2 and c ∉ C, we get the contradiction that f (X1 , . . . , Xn) is central val-
ued on R by [19, _eorem 2].
Finally, we assume that char(R) = 2. _en it is clear that G2 is a generalized

derivation with associated derivation d2. Namely, G(x) = ax + d(x) and G2(x) =
(a2 + d(a))x + d2(x). _erefore, by the hypothesis, we note that G2(u)u ∈ C for
all u ∈ f (R), where G2 is a generalized derivation of R. It follows from G2 /= 0 and
[11, Lemma 3] that f (X1 , . . . , Xn)2 is central valued on R and there exists λ ∈ C such
that G2(x) = λx for all x ∈ R. Hence, we are done by _eorem 1.1.

Corollary 3.5 Let R be a prime ring with char(R) /= 2, let L be a non-central Lie ideal
of R, and let G be a nonzero generalized derivation of R. Suppose that G2(x)x ∈ Z(R)
for all x ∈ L. _en G(x) = ax or G(x) = xa and moreover either a2 = 0 or [x , y]2 ∈ C
and a2 ∈ C.

Proof Since char(R) /= 2 and L is a non-central Lie ideal of R, we recall that we
also have [R, R] ⊆ L. _erefore, we can assume that G2([x , y])[x , y] ∈ Z(R) for
any x , y ∈ R. By the main theorem, there exists a ∈ Q such that either G(x) = ax
or G(x) = xa, and, moreover, either a2 = 0 or [x , y]2 is central valued on R. If
[x , y]2 ∈ C for all x , y ∈ R, then R satisûes s4 by [13]. Now the proof is complete.

_e following example shows that the condition char(R) /= 2 cannot be omitted in
Corollary 3.5.

https://doi.org/10.4153/CMB-2016-072-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-072-4
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Example 3.6 Let R = M3(Z2) and δ(x) = [b, x] for all x ∈ R where

b =
⎛
⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟
⎠

is a noncentral element of R. Since

b2 =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
∈ Z(R) and char(R) = 2,

we get that

G2(x)x = G(G(x))x = G([b, x])x = [b, [b, x]]x = b2x2 + 2bxbx + xb2x = 0

for all x ∈ R.
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