ON WEAKLY S-PERMUTABLY EMBEDDED SUBGROUPS OF FINITE GROUPS

HAORAN YU

(Received 15 March 2016; accepted 19 March 2016; first published online 21 July 2016)

Abstract

In this paper, we obtain some criteria for *p*-nilpotency and *p*-supersolvability of a finite group and extend some known results concerning weakly *S*-permutably embedded subgroups. In particular, we generalise the main results of Zhang *et al.* ['Sylow normalizers and *p*-nilpotence of finite groups', *Comm. Algebra* **43**(3) (2015), 1354–1363].

2010 Mathematics subject classification: primary 20D10.

Keywords and phrases: p-nilpotency, p-supersolvability, weakly S-permutably embedded subgroups.

1. Introduction

Throughout the paper, we suppose that G is a finite group and p is a prime. Let $\pi(G)$ be the set of all the prime divisors of |G|. To state our results, we need to recall some notation. According to Kegel [10], a subgroup H of a finite group G is called an S-permutable subgroup of G if H permutes with every Sylow subgroup of G. According to Ballester-Bolinches and Pedraza-Aguilera [2], a subgroup H of a finite group G is said to be S-permutably embedded in G if, for each prime P dividing |H|, a Sylow P-subgroup of G is also a Sylow P-subgroup of some G-permutable subgroup of G. According to Li G at G is a subgroup G if there exist G is called a weakly G-permutably embedded subgroup of G if there exist G is an G in G in G is a finite group and G is a prime divisor of G in G is a finite group and G is a prime divisor of G in G is a finite group of G for which the corresponding factor group is abelian of exponent dividing G is a finite group of G for which the corresponding factor group is abelian of exponent dividing G. It is well known that G is G-supersolvable if and only if G is G-nilpotent (see [3]).

Let p be a prime dividing the order of a finite group G and $P \in \operatorname{Syl}_p(G)$. Let $\mathbb{D}(P)$ denote the set of subgroups $P_1 \leq P$ for which there exists $P_2 \leq G$ with $P_1 \cap O^p(G_p^*) \leq P_2 \leq P_1$ and P_2 is S-permutably embedded in G. It is not difficult to see that if $P_1 \leq P$ is weakly S-permutably embedded in G, then $P_1 \in \mathbb{D}(P)$. However, there exist a finite group G with P an odd prime divisor of |G|, and $P \in \operatorname{Syl}_p(G)$ with $|P| \geq p^{e+1}$, where e

^{© 2016} Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

is a positive integer, such that every subgroup P_1 of P of order p^e is in $\mathbb{D}(P)$, but P has a subgroup P_3 of order p^e which is not weakly S-permutably embedded in G. See the following example.

EXAMPLE 1.1. Let $T = \langle a,b \mid a^{p^2} = b^2 = 1, b^{-1}ab = a^{-1} \rangle \cong D_{2p^2}$, where p is an odd prime. There exists $c \in Aut(T)$ such that $a^c = a$ and $b^c = ba$. Consider $G = T \rtimes \langle c \rangle \cong \langle a,b,c \mid a^{p^2} = b^2 = c^{p^2} = 1, b^{-1}ab = a^{-1}, c^{-1}ac = a, c^{-1}bc = ba \rangle$. Let $P = \langle a \rangle \rtimes \langle c \rangle$. Then P is the normal Sylow p-subgroup of G with order p^4 . It is not difficult to see that G is p-supersolvable and thus $P \cap O^p(G_p^*) = 1$. Hence, for any subgroup P_1 of P with order P, $P_1 \in \mathbb{D}(P)$. Consider P and note that |P| = p. It is not difficult to see that $P \cap P$ is not weakly P-permutably embedded in P.

There are many criteria for *p*-nilpotency of a finite group in the literature. Recently, Huang *et al.* and Zhang *et al.* both proved the following theorem.

THEOREM 1.2 ([7, Theorem 1.8] and [20, Theorem 3.2]). Let p be a prime dividing the order of a finite group G, e a positive integer and $P \in \operatorname{Syl}_p(G)$ with $|P| \geq p^{e+1}$. Suppose that $N_G(P)$ is p-nilpotent and, for any subgroup D of P with order p^e , D is weakly S-permutably embedded in G. In addition, suppose that all cyclic subgroups of P with order P are weakly P-permutably embedded in P if P is nonabelian. Then P is P-nilpotent.

In [18], the author investigated some necessary and sufficient conditions for p-supersolvability and p-nilpotency of a finite group. In this note, we continue the work of [18] and prove the following results, which generalise the main theorems of [7, 11–13, 19] and [20].

THEOREM 1.3. Let p be an odd prime dividing the order of a finite group G, e a positive integer and $P \in \operatorname{Syl}_p(G)$ with $|P| \ge p^{e+1}$. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and, for any subgroup P_1 of P with order p^e , $P_1 \in \mathbb{D}(P)$.

DEFINITION 1.4. Let p be a prime and P a nonidentity p-group with $|P| = p^n$. Fix an integer k with $1 \le k \le n$. We define the set $\mathbb{L}_k(P)$ as follows.

- (i) Assume that k = 1. If p = 2 and P is nonabelian, $\mathbb{L}_1(P) = \{P_1 \mid P_1 \le P, |P_1| = 2\}$ $\cup \{P_2 \mid P_2 \le P \text{ and } P_2 \text{ is a cyclic subgroup of order 4}\}$. Otherwise, set $\mathbb{L}_1(P) = \{P_1 \mid P_1 \le P \text{ and } |P_1| = p\}$.
- (ii) Assume that $n \ge 2$ and $2 \le k \le n$. Then $\mathbb{L}_k(P) = \{P_1 \mid P_1 \le P \text{ and } |P_1| = p^k\}$.

THEOREM 1.5. Let p be a prime dividing the order of a finite group G and suppose that (|G|, p-1) = 1. Let e be a positive integer and $P \in \operatorname{Syl}_p(G)$ with $|P| \ge p^{e+1}$. Note that $G_p^* = G$. Then the following statements are equivalent.

- (a) G is p-nilpotent.
- (b) For any $P_1 \in \mathbb{L}_e(P)$, $P_1 \in \mathbb{D}(P)$.
- (c) For any $P_1 \in \mathbb{L}_e(P)$, $P_1 \cap O^p(G)$ is S-permutably embedded in G.

Theorems 1.3 and 1.5 generalise [7, Theorems 1.3 and 1.8] and [20, Theorem 3.2].

THEOREM 1.6. Let p be an odd prime dividing the order of a finite group G, e a positive integer and $P \in \operatorname{Syl}_p(G)$ with $|P| \geq p^{e+1}$. Then G is p-nilpotent if and only if for any subgroup $P_1 \leq P$ with $|P_1| = p^e$, $P_1 \in \mathbb{D}(P)$ and $N_G(P_1)$ is p-nilpotent.

Theorems 1.5 and 1.6 generalise [11, Theorem 1.2], [13, Theorem 1.3] and [19, Theorem 3.2].

THEOREM 1.7. Let p be a prime dividing the order of a finite group G, $P \in \operatorname{Syl}_p(G)$ and $P' \leq P_1 \leq \Phi(P)$. Assume that $K \leq G$ with $P_1 \in \operatorname{Syl}_p(K)$. Also assume that there exist $H, K_1 \leq G$ such that G = KH, $K \cap H \leq K_1 \leq K$ and, for any $L \in \operatorname{Syl}_p(K_1)$, L is S-permutably embedded in G. If $N_G(P)$ is p-nilpotent, then G is p-nilpotent.

Here, as usual, $\Phi(P)$ denotes the Frattini subgroup of P. Theorem 1.7 generalises [20, Theorems 3.3 and 3.4]. Finally, we also give another criterion for p-nilpotency of a finite group.

THEOREM 1.8. Let p be a prime dividing the order of a finite group G and $P \in \operatorname{Syl}_p(G)$. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and there exists $P_1 \in \mathbb{D}(P)$ such that $P' \leq P_1 \leq \Phi(P)$.

The proofs of the main results of [7, 11, 12, 19] and [20] all require Thompson's normal p-complement criterion (see [9, Theorem 7.1]). However, our proof does not appeal to Thompson's normal p-complement criterion and is much more elementary.

2. Preliminaries

Lemma 2.1. Let p be a prime dividing the order of a finite group G and let $P_1 \leq G$ be a p-group, $X \leq G$ and $N \leq G$.

- (a) If P_1 is S-permutable in G, then $P_1 \leq O_p(G)$ and $O^p(G) \leq N_G(P_1)$ [18, Lemma 2.5(a)].
- (b) P_1 is S-permutable in G if and only if $O^p(G) \leq N_G(P_1)$ [18, Lemma 2.5(b)].
- (c) If P_1 is S-permutable in G, then $P_1 \cap N$ is S-permutable in G [corollary of (b)].
- (d) If X is S-permutable in G, then $X \subseteq G$ [10].
- (e) If X is S-permutable in G and $L \leq G$, then $X \cap L$ is S-permutable in L.
- (f) If X is S-permutably embedded in G and $X \le L$, then X is S-permutably embedded in L [corollary of (e)].
- (g) If X is S-permutable (S-permutably embedded) in G, then XN/N is S-permutable (S-permutably embedded) in G/N.
- (h) If X is S-permutable (S-permutably embedded) in G, then $X \cap O^p(G)$ is S-permutable (S-permutably embedded) in G.

PROOF. (d) See [10]. Here we derive Lemma 2.1(d) from Wielandt's famous zipper lemma (see [9, Theorem 2.9]). Firstly, we claim that if $H \le K \le G$, then H is S-permutable in K. For any $p \in \pi(K)$ and for any $P_1 \in \operatorname{Syl}_p(K)$, there exists $P \in \operatorname{Syl}_p(G)$ with $P_1 = P \cap K$. Since P = PH, by Dedekind's lemma, it follows that $P = P \cap K$. Hence, $P \in S$ is $P \in S$.

We claim that for any $p \in \pi(G)$ and for any $P \in \operatorname{Syl}_p(G)$, $H \subseteq B$. Note that H is S-permutable in HP. Since [HP:H] is a power of p, it is not difficult to see that $O^p(HP) \subseteq H$ and thus $H \subseteq B$.

Suppose that G is a counterexample with minimal order; we work to obtain a contradiction. Note that H < G. For any proper subgroup K of G such that $H \le K$, H is S-permutable in K. Hence, $H \le K$. Recall that we assumed that K is not subnormal in K. By Wielandt's zipper lemma, there is a unique maximal subgroup K of K that contains K. For any K and for any K is a unique maximal subgroup K it follows that K is K and thus K in particular, we have K is generalised by all of its Sylow subgroups, it follows that K is the desired contradiction.

- (e) It is no loss to assume that L > 1. For any $p \in \pi(L)$ and for any $P_1 \in \operatorname{Syl}_p(L)$, there is a $P \in \operatorname{Syl}_p(G)$ such that $P_1 = P \cap L$. By (d), $X \leq d \leq G$. Since PX = XP, we see that $O^p(PX) = O^p(X) \leq X$. Consider $PX \cap L$. Since $P_1 = P \cap L \in \operatorname{Syl}_p(L)$ and $P_1 = P \cap L \leq PX \cap L \leq L$, it follows that $P_1 \in \operatorname{Syl}_p(PX \cap L)$. Observe that $O^p(PX \cap L) \leq PX \cap L \cap O^p(PX) \leq PX \cap L \cap X = X \cap L$. Hence, $PX \cap L = P_1O^p(PX \cap L) = P_1(X \cap L)$ and $P_1(X \cap L) = (X \cap L)P_1$. This completes the proof.
 - (g) The proof is not difficult.
- (h) It suffices to show that if X is S-permutable in G, then $X \cap O^p(G)$ is S-permutable in G. If $\pi(G) \setminus \{p\} \neq \emptyset$, then for any $q \in \pi(G) \setminus \{p\}$ and any $Q \in \operatorname{Syl}_q(G)$, XQ = QX. By Dedekind's lemma, $(X \cap O^p(G))Q = Q(X \cap O^p(G))$. For any $P \in \operatorname{Syl}_p(G)$, we have PX = XP. By (d), $X \leq G$ and $G^p(PX) = G^p(X) \leq X \cap G^p(G)$. Hence, $G^p(X) = G^p(X) = G^p(X) = G^p(X)$ and $G^p(X) = G^p(X) = G^p(X)$. This completes the proof.
- LEMMA 2.2 [18, Lemma 2.1]. Let p be a prime dividing the order of a finite group G, $P \in \operatorname{Syl}_p(G)$, $N \subseteq G$ and e a positive integer. Write $P_1 = P \cap N$. Assume that $P_1 \subseteq N$ and N is not p-nilpotent. Also assume that $|P_1| \subseteq p^e$ and $|P| \ge p^{e+1}$. Then P has a normal subgroup P_2 of order p^e with $[P_1: P_1 \cap P_2] = p$.
- **Lemma** 2.3 [18, Lemma 2.2]. Let p be a prime dividing the order of a finite group G and $P \in \operatorname{Syl}_p(G)$. Write $P_1 = P \cap O^p(G_p^*)$. Assume that $P_1 > 1$ and P_1 has a maximal subgroup T with $T \preceq G$. Then $P_1 \not \preceq G$.
- LEMMA 2.4 [18, Theorem 1.3]. Let p be a prime dividing the order of a finite group G, $e \ge 2$ an integer and $P \in \operatorname{Syl}_p(G)$ with $|P| \ge p^{e+1}$. Then G is p-supersolvable if and only if $P_1 \cap O^p(G_p^*)$ is S-permutable in G for all subgroups $P_1 \le P$ with $|P_1| = p^e$.
- **Lemma** 2.5 [18, Theorem 1.4]. Let p be a prime dividing the order of a finite group G and $P \in \operatorname{Syl}_p(G)$. Then G is p-supersolvable if and only if $P_1 \cap O^p(G_p^*)$ is S-permutable in G for all subgroups $P_1 \leq P$ with $|P_1| = p$ and, if p = 2 and P is nonabelian, $P_2 \cap O^p(G_p^*)$ is also S-permutable in G for all cyclic subgroups $P_2 \leq P$ with $|P_2| = 4$.

LEMMA 2.6 [18, Lemma 2.8]. Let p be a prime dividing the order of a finite group G and P_1 be a p-subgroup of G. Let $L ext{ } ex$

LEMMA 2.7 [18, Lemma 2.9]. Let p be a prime dividing the order of a finite group G and N leq G. Then $(G/N)_p^* = G_p^* N/N$, $O^p(G/N) = O^p(G)N/N$ and $O^p((G/N)_p^*) = O^p(G_p^*)N/N$.

Lemma 2.8. Let p be a prime dividing the order of a finite group G and $P \in \operatorname{Syl}_p(G)$. Let $X \leq G$ be S-permutable in G. Assume that $P \cap O^p(G) \not\leq P \cap X$. Then PX < G.

PROOF. By Lemma 2.1(d), $X \le G$. If PX = G, then $O^p(G) = O^p(X) \le X$ and thus $P \cap O^p(G) \le P \cap X$, which is a contradiction.

LEMMA 2.9. Let p be a prime dividing the order of a finite group G, $P \in \operatorname{Syl}_p(G)$ and $P_1 \leq P$. Assume that there exists $X \leq G$ such that $P_1 \cap O^p(G) \in \operatorname{Syl}_p(X)$ and X is S-permutable in G. If $P \cap O^p(G) \not\leq P_1$, then PX < G.

PROOF. Note that $P \cap X = P_1 \cap O^p(G)$. By Lemma 2.8, it follows that PX < G.

Lemma 2.10. Let p be a prime dividing the order of a finite group G, $P \in \text{Syl}_p(G)$, $P_1 \leq P$ and $P_1 \leq G$.

- (a) If $P_1 \le \Phi(P)$ and G/P_1 is p-nilpotent, then G is p-nilpotent [18, Lemma 2.13].
- (b) If $P' \leq P_1 \leq \Phi(P)$ and $N_G(P)$ is p-nilpotent, then G is p-nilpotent.

PROOF. (b) Consider G/P_1 . Note that $P/P_1 \in \operatorname{Syl}_p(G/P_1)$ and P/P_1 is abelian. Since $N_{G/P_1}(P/P_1) = N_G(P)/P_1$ is *p*-nilpotent, by Burnside's theorem (see [9, Theorem 5.13]), G/P_1 is *p*-nilpotent. By (a), G is *p*-nilpotent.

LEMMA 2.11 (Tate; see [8, Satz IV.4.7] or [6, Theorem A]). Let p be a prime dividing the order of a finite group G, $P \in \operatorname{Syl}_p(G)$ and $N \subseteq G$. If $P \cap N \subseteq \Phi(P)$, then N is p-nilpotent.

LEMMA 2.12 [18, Corollary 3.8]. Let p be a prime dividing the order of a finite group G and $P \in \operatorname{Syl}_p(G)$. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and there exists $P' \leq P_1 \leq \Phi(P)$ such that $P_1 \cap O^p(G_p^*) \leq G_p^*$.

3. Main results

PROOF OF THEOREM 1.3. We only need to prove the sufficiency. Suppose that G is a counterexample with minimal order; we work in the following steps to obtain a contradiction.

Step 1. If $P \le H < G$, then H is p-nilpotent. By Lemma 2.1(f), the hypotheses are inherited by H. Hence, H is p-nilpotent.

Step 2. $O_{p'}(G) = 1$. By Lemmas 2.1(g), 2.6 and 2.7, the hypotheses are inherited by $G/O_{p'}(G)$. If $O_{p'}(G) > 1$, then $G/O_{p'}(G)$ is p-nilpotent and thus G is p-nilpotent. Hence, $O_{p'}(G) = 1$.

- Step 3. G is not p-supersolvable, $G_p^* = G$ and, for any subgroup P_1 of P with order p^e , $P_1 \cap O^p(G)$ is S-permutably embedded in G. Assume that G is p-supersolvable and thus G is p-solvable with p-length 1. Since $O_{p'}(G) = 1$, it follows that P leq G and thus $G = N_G(P)$ is p-nilpotent. Hence, G is not p-supersolvable. Assume that $G_p^* < G$. By Step 1, it follows that G_p^* is p-nilpotent and thus G is p-supersolvable. This is a contradiction. Hence, $G_p^* = G$. For any subgroup P_1 of P with order p^e , there exists $P_2 \leq G$ such that $P_1 \cap O^p(G) \leq P_2 \leq P_1$ and P_2 is S-permutably embedded in G. Since $P_1 \cap O^p(G) = P_2 \cap O^p(G)$, by Lemma 2.1(h), $P_1 \cap O^p(G)$ is S-permutably embedded in G.
- Step 4. There exists a subgroup P_1 of P with order p^e such that $P_1 \cap O^p(G)$ is not S-permutable in G. Assume that for any subgroup P_1 of P with order p^e , $P_1 \cap O^p(G)$ is S-permutable in G. By Lemmas 2.4 and 2.5, G is p-supersolvable. But this contradicts Step 3.
- Step 5. If $P_1 \le P$ with $|P_1| = p^e$, $X \le G$ is such that $P_1 \cap O^p(G) \in \operatorname{Syl}_p(X)$ and X is S-permutable in G and PX < G, then $P_1 \cap O^p(G)$ is S-permutable in G. By Step 1, PX is p-nilpotent and thus X is p-nilpotent. Since $X \le G$ (Lemma 2.1(d)) and $O_{p'}(G) = 1$, it follows that $X = P_1 \cap O^p(G)$. Hence, $P_1 \cap O^p(G)$ is S-permutable in G.
- Step 6. If $P_1 \le P$ is such that $|P_1| = p^e$ and $P \cap O^p(G) \not \le P_1$, then $P_1 \cap O^p(G)$ is S-permutable in G. There exists $X \le G$ such that $P_1 \cap O^p(G) \in \operatorname{Syl}_p(X)$ and X is S-permutable in G. By Lemma 2.9, it follows that PX < G. By Step 5, $P_1 \cap O^p(G)$ is S-permutable in G.
- Step 7. $|P \cap O^p(G)| \le p^e$. By Steps 4 and 5, there exist $P_1 \le P$ with $|P_1| = p^e$ and $X \le G$ such that $P_1 \cap O^p(G) \in \operatorname{Syl}_p(X)$, X is S-permutable in G and G = PX. Since $X \le G$ (Lemma 2.1(d)), it follows that $O^p(G) = O^p(X) \le X$ and thus $P \cap O^p(G) \le P \cap X = P_1 \cap O^p(G) \le P_1$.
- Step 8. If $\widehat{P} = P \cap O^p(G)$, then \widehat{P} has a maximal subgroup T such that $T \leq O_p(G)$. Since $|\widehat{P}| \leq p^e$ and $|P| \geq p^{e+1}$, there exists $\widetilde{P} \leq P$ such that $|\widetilde{P}| = p^{e+1}$ and $\widehat{P} \leq \widetilde{P}$. Assume that $\widehat{P} \leq \Phi(\widetilde{P})$. Observe that $\widetilde{P} \in \operatorname{Syl}_p(\widetilde{P}O^p(G))$. By Lemma 2.11, $O^p(G)$ is p-nilpotent, that is, G is p-nilpotent. This is a contradiction. Hence, $\widehat{P} \not \in \Phi(\widetilde{P})$ and \widetilde{P} has a maximal subgroup P_1 with $\widehat{P} \not \in P_1$. Then $|P_1| = p^e$, $\widetilde{P} = \widehat{P}P_1$ and $[\widehat{P} : \widehat{P} \cap P_1] = p$. Let $T = \widehat{P} \cap P_1$. Since $\widehat{P} \not \in P_1$, by Step 6, $P_1 \cap O^p(G)$ is S-permutable in G. By Lemma 2.1(a), $T = \widehat{P} \cap P_1 = P_1 \cap O^p(G) \leq O_p(G)$.
- Step 9. The final contradiction. Consider $N_G(\widehat{P})$. Assume that $N_G(\widehat{P}) < G$. Then $T = O_p(O^p(G))$. Note that $P \le N_G(\widehat{P}) < G$. By Step 1, $N_G(\widehat{P})$ is p-nilpotent. Hence, $N_{O^p(G)/T}(\widehat{P}/T)$ is p-nilpotent. Note that $\widehat{P}/T \in \operatorname{Syl}_p(O^p(G)/T)$ and $|\widehat{P}/T| = p$. By Burnside's theorem, $O^p(G)/T$ is p-nilpotent. Then $O^p(O^p(G)) < O^p(G)$. This is a contradiction. Assume that $N_G(\widehat{P}) = G$, that is, $\widehat{P} \le G$. Since $O^p(G)$ is not p-nilpotent, by Lemma 2.2, P has a normal subgroup P_1 with order P0 such that $[\widehat{P}:\widehat{P}\cap P_1] = p$ and, in particular, $P \not \le P_1$. By Step 6, $P_1 \cap O^p(G)$ is P0-permutable in P1. By Lemma 2.1(b), P1 or P1 = P1 or P1 since P2. Since P3, P4 it follows that

 $\widehat{P} \cap P_1 \leq P$. Hence, $\widehat{P} \cap P_1 \leq G$. Recall that $G_p^* = G$. By Lemma 2.3, $\widehat{P} \not \leq G$. This contradicts $\widehat{P} \leq G$. Hence, we obtain the final contradiction.

PROOF OF THEOREM 1.5. The implications (a) \Rightarrow (b) and (a) \Rightarrow (c) are not difficult to prove. By Lemma 2.1(h), (b) is equivalent to (c).

To prove $(c) \Rightarrow (a)$, we modify the proof of Theorem 1.3. Since (|G|, p-1) = 1, G is *p*-nilpotent if and only if *G* is *p*-supersolvable. Suppose that *G* is a counterexample with minimal order; we work in the following steps to obtain a contradiction. Steps 1–6 use the same arguments as in the proof of Theorem 1.3.

Step 1. If $P \le H < G$, then H is p-nilpotent.

Step 2. $O_{p'}(G) = 1$.

Step 3. G is not p-supersolvable.

Step 4. There exists a subgroup $P_1 \in \mathbb{L}_e(P)$ such that $P_1 \cap O^p(G)$ is not S-permutable in G.

Step 5. If $P_1 \in \mathbb{L}_e(P)$, $X \le G$ is such that $P_1 \cap O^p(G) \in \operatorname{Syl}_p(X)$ and X is S-permutable in G and PX < G, then $P_1 \cap O^p(G)$ is S-permutable in G.

Step 6. If $P_1 \in \mathbb{L}_e(P)$ and $P \cap O^p(G) \not\leq P_1$, then $P_1 \cap O^p(G)$ is S-permutable in G.

Step 7. $e \ge 2$ and $|P \cap O^p(G)| \le p^e$. By Steps 4 and 5, there exist $P_1 \in \mathbb{L}_e(P)$ and $X \le G$ such that $P_1 \cap O^p(G) \in \operatorname{Syl}_p(X)$, X is S-permutable in G and G = PX. By the proof of Step 7 of Theorem 1.3, $P \cap O^p(G) \le P \cap X = P_1 \cap O^p(G) \le P_1$. Assume that e = 1; we work to obtain a contradiction. Since e = 1, it follows that P_1 is cyclic and thus $P \cap O^p(G)$ is cyclic. Since (|G|, p - 1) = 1, by Burnside's theorem, $O^p(G)$ is p-nilpotent, that is, G is p-nilpotent. This is the desired contradiction. Hence, $e \ge 2$, $|P_1| = p^e$ and $|P \cap O^p(G)| \le p^e$.

Step 8. If $\widehat{P} = P \cap O^p(G)$, then \widehat{P} has a maximal subgroup T such that $T \leq O^p(G)$. The assertion follows by the same argument as in the proof of Step 8 of Theorem 1.3.

Step 9. The final contradiction. Consider $O^p(G)/T$. Note that $\widehat{P}/T \in \operatorname{Syl}_p(O^p(G)/T)$ and $|\widehat{P}/T| = p$. Since (|G|, p-1) = 1, by Burnside's theorem, it follows that $O^p(G)/T$ is p-nilpotent. Then $O^p(O^p(G)) < O^p(G)$. This is a contradiction.

PROOF OF THEOREM 1.6. We only need to prove the sufficiency. Suppose that G is a counterexample with minimal order; we work to obtain a contradiction. We mimic the proof of Theorem 1.3. In fact, we only need to modify Step 3 of Theorem 1.3.

Step 3. G is not p-supersolvable and $G_p^* = G$ and, for any subgroup P_1 of P with order p^e , $P_1 \cap O^p(G)$ is S-permutably embedded in G. Assume that G is p-supersolvable and thus G is p-solvable with p-length 1. Since $O_{p'}(G) = 1$ (Step 2), $P \unlhd G$. Since G is p-supersolvable, there exists a subgroup $P_1 \subseteq P$ such that $|P_1| = p^e$ and $P_1 \subseteq G$. Then $G = N_G(P_1)$ is p-nilpotent. Hence, G is not p-supersolvable. By the proof of Step 3 of Theorem 1.3, it follows that $G_p^* = G$ and, for any subgroup P_1 of P with order $P_1 \cap O^p(G)$ is S-permutably embedded in G.

Lemma 3.1. Let p be a prime dividing the order of a finite group G, $P \in \operatorname{Syl}_p(G)$ and $P' \leq P_1 \leq \Phi(P)$. Suppose that P_1 is S-permutably embedded in G and $N_G(P)$ is p-nilpotent; then G is p-nilpotent.

PROOF. By the hypotheses, there exists $X \le G$ such that $P_1 \in \operatorname{Syl}_p(X)$ and X is S-permutable in G. We work by induction on |G|. By Lemma 2.1(g), the hypotheses are inherited by $G/O_{p'}(G)$. If $O_{p'}(G) > 1$, by induction, $G/O_{p'}(G)$ is p-nilpotent and thus G is p-nilpotent. Hence, we can assume that $O_{p'}(G) = 1$.

By Lemma 2.1(d), X riangleleft riangleleft G. Since PX = XP, we have $P \cap O^p(PX) = P \cap O^p(X) riangleleft P \cap X = P_1 riangleleft \Phi(P)$. In the subgroup PX, by Lemma 2.11, PX is p-nilpotent and thus X is p-nilpotent. Since X riangleleft G and $O_{p'}(G) = 1$, it follows that $X = P_1$. Then P_1 is S-permutable in G. By Lemma 2.1(a), $O^p(G) riangleleft N_G(P_1)$. Since $P' riangleleft P_1 riangleleft P$, we see that $P_1 riangleleft P$. Hence, $P_1 riangleleft G$. By Lemma 2.10(b), G is P-nilpotent.

PROOF OF THEOREM 1.7. By Sylow's second theorem, there exists $k \in K$ such that $P^k \cap H \in \operatorname{Syl}_p(H)$. Since G = KH, it follows that $P^k = P_1^k(P^k \cap H)$. Since $P_1^k \leq \Phi(P^k)$, it follows that $P^k = P^k \cap H$. Hence, $P^k \leq H$ and thus $P_1^k \leq K \cap H \leq K_1 \leq K$. Hence, $P_1^k \in \operatorname{Syl}_p(K_1)$ and thus P_1^k is S-permutably embedded in G. By Lemma 3.1, G is P-nilpotent.

PROOF OF THEOREM 1.8. It is no loss to assume that $O_{p'}(G) = 1$. Since $P_1 \in \mathbb{D}(P)$, there exist $P_2, X \leq G$ such that $P_1 \cap O^p(G_p^*) \leq P_2 \leq P_1$, $P_2 \in \operatorname{Syl}_p(X)$ and X is S-permutable in G. By the proof of Lemma 3.1, it follows that $P_2 = X$ is S-permutable in G. By Lemma 2.1(a), $O^p(G) \leq N_G(P_2)$. Hence, $P_1 \cap O^p(G_p^*) = P_2 \cap O^p(G_p^*) \leq O^p(G)$. Since $P' \leq P_1 \leq P$, it follows that $P_1 \cap O^p(G_p^*) \leq P$. Hence, $P_1 \cap O^p(G_p^*) \leq G$. By Lemma 2.12, it follows that G is p-nilpotent.

4. Applications

Recently, Ballester-Bolinches and Li proved the following theorem, which includes the main theorems of [17].

THEOREM 4.1 [1, Theorem 3]. Let p be a prime dividing the order of a finite group G, e a positive integer and $P \in \operatorname{Syl}_p(G)$ with $|P| \geq p^{e+1}$. Suppose that for any subgroup P_1 of P with order p^e , P_1 is S-permutably embedded in G. In addition, suppose that all cyclic subgroups of P of order P are P-permutably embedded in P if P is nonabelian. Then P is p-supersolvable.

Here we take a different approach to Theorem 4.1. We need the following lemma.

LEMMA 4.2. Let P be a finite nonidentity p-group, where p is a prime. Let $P_1 < P$ with $P_1 \nleq \Phi(P)$ and let $L = \{T \mid T \text{ is a maximal subgroup of } P \text{ with } P_1 \nleq T\}$. We write |L| to denote the cardinality of L. Then $|L| \geq p$.

PROOF. Note that $P_1\Phi(P) < P$. Let $L_1 = \{T \mid T \text{ is a maximal subgroup of } P\}$ and $L_2 = \{T \mid T \text{ is a maximal subgroup of } P \text{ with } P_1 \le T\}$, so $L = L_1 \setminus L_2$. Since $P_1 \not \le \Phi(P)$, it follows that $|L| \ge 1$. Now $L_2 = \{T \mid T \text{ is a maximal subgroup of } P \text{ with } P_1\Phi(P) \le T\}$. There exist $n, m \in N_+$ such that $[P : \Phi(P)] = p^n$ and $[P : P_1\Phi(P)] = p^m$. It is not difficult to see that $|L_1| = (p^n - 1)/(p - 1)$ and $|L_2| = (p^m - 1)/(p - 1)$. Hence, $|L_1| = |L_2| = 1$ (mod p) and |L| = 0 (mod p). Since $|L| \ge 1$, it follows that $|L| \ge p$.

We modify the proof of Theorem 1.3 to prove Theorem 4.1.

PROOF OF THEOREM 4.1. By Theorem 1.5, it suffices to prove the theorem for the case that p is an odd prime. Suppose that G is a counterexample with minimal order; we work in the following steps to obtain a contradiction.

- Step 1. If $P \le H < G$, then H is p-supersolvable. By Lemma 2.1(f), the hypotheses are inherited by H. Hence, H is p-supersolvable.
- Step 2. $O_{p'}(G) = 1$. By Lemma 2.1(g), the hypotheses are inherited by $G/O_{p'}(G)$. If $O_{p'}(G) > 1$, then $G/O_{p'}(G)$ is *p*-supersolvable and thus *G* is *p*-supersolvable. Hence, $O_{p'}(G) = 1$.
- Step 3. There exists a subgroup P_1 of P with order p^e such that P_1 is not S-permutable in G. Assume that for any subgroup P_1 of P with order p^e , P_1 is S-permutable in G. By Lemmas 2.4 and 2.5, G is p-supersolvable. This is a contradiction.
- Step 4. If $P_1 \leq P$ with $|P_1| = p^e$, $X \leq G$ is such that $P_1 \in \operatorname{Syl}_p(X)$ and X is S-permutable in G and PX < G, then P_1 is S-permutable in G. By Step 1, PX is p-supersolvable and thus X is p-supersolvable and, in particular, X is p-solvable with p-length 1. Since $X \leq G$ (Lemma 2.1(d)) and $O_{p'}(G) = 1$, it follows that P_1 is the normal Sylow p-subgroup of X and thus $P_1 \leq G$. For any $Q \in \operatorname{Syl}_q(G)$, we have $Q \in \operatorname{Syl}_q(G)$, we have $Q \in \operatorname{Syl}_q(G)$, we have $Q \in \operatorname{Syl}_q(G)$, it follows that $Q \in \operatorname{Syl}_q(G)$, it follows that $Q \in \operatorname{Syl}_q(G)$. Hence, $Q \in \operatorname{Syl}_q(G)$ is the normal Sylow $Q \in \operatorname{Syl}_q(G)$. Hence, $Q \in \operatorname{Syl}_q(G)$ is $Q \in \operatorname{Syl}_q(G)$. By Lemma 2.1(b), $Q \in \operatorname{Syl}_q(G)$ is $Q \in \operatorname{Syl}_q(G)$.
- Step 5. If $P_1 \le P$ is such that $|P_1| = p^e$ and $P \cap O^p(G_p^*) \not\leq P_1$, then P_1 is S-permutable in G. There exists $X \le G$ such that $P_1 \in \operatorname{Syl}_p(X)$ and X is S-permutable in G. Assume that G = PX; we work to obtain a contradiction. Since $X \le G$ (Lemma 2.1(d)), it follows that $O^p(G) = O^p(X) \le X$ and thus $P \cap O^p(G_p^*) \le P \cap O^p(G) \le P \cap X = P_1$. This is the desired contradiction. Hence, PX < G. By Step 4, P_1 is S-permutable in G.
- Step 6. $|P \cap O^p(G_p^*)| \le |P \cap O^p(G)| \le p^e$. By Steps 3 and 4, there exist $P_1 \le P$ with $|P_1| = p^e$ and $X \le G$ such that $P_1 \in \operatorname{Syl}_p(X)$, X is S-permutable in G and G = PX. By the proof of Step 5, $P \cap O^p(G_p^*) \le P \cap O^p(G) \le P \cap X = P_1$.
- Step 7. The final contradiction. Let $\widehat{P} = P \cap O^p(G_p^*)$. Since $|\widehat{P}| \le p^e$ and $|P| \ge p^{e+1}$, there exists $\widetilde{P} \le P$ such that $|\widetilde{P}| = p^{e+1}$ and $\widehat{P} \le \widetilde{P}$. Assume that $\widehat{P} \le \Phi(\widetilde{P})$. Observe that $\widetilde{P} \in \operatorname{Syl}_p(\widetilde{P}O^p(G_p^*))$. By Lemma 2.11, $O^p(G_p^*)$ is p-nilpotent and thus G is

446 H. Yu [10]

p-supersolvable. This is a contradiction. Hence, $\widehat{P} \not\in \Phi(\widetilde{P})$. By Lemma 4.2, \widetilde{P} has two different maximal subgroups P_1, P_2 with $\widehat{P} \not\in P_1$ and $\widehat{P} \not\in P_2$. By Step 5, P_1 and P_2 are both S-permutable in G. By Lemma 2.1(a), $P_1, P_2 \leq O_p(G)$ and thus $\widetilde{P} \leq O_p(G)$. Hence, $\widehat{P} \leq O_p(G)$ and thus $\widehat{P} = O_p(G) \cap O^p(G_p^*) \leq G$. Since $O^p(G_p^*)$ is not p-nilpotent, by Lemma 2.2, P has a normal subgroup P_1 with order P such that $[\widehat{P}:\widehat{P}\cap P_1] = p$ and, in particular, $\widehat{P} \not\in P_1$. By Step 5, P_1 is S-permutable in G. By Lemma 2.1(a), $O^p(G) \leq N_G(P_1)$ and thus $\widehat{P} \cap P_1 = P_1 \cap O^p(G_p^*) \leq O^p(G)$. Since $\widehat{P}, P_1 \leq P$, it follows that $\widehat{P} \cap P_1 \leq P$. Hence, $\widehat{P} \cap P_1 \leq G$. By Lemma 2.3, $\widehat{P} \not\subseteq G$. This contradicts $\widehat{P} \subseteq G$. Hence, we obtain the final contradiction. □

REMARK 4.3. There exists a finite non-p-supersolvable group G such that p is an odd prime divisor of |G|, e is a positive integer, $P \in \operatorname{Syl}_p(G)$ and $|P| \ge p^{e+1}$ such that for every subgroup P_1 of P with $|P_1| = p^e$, there are nonidentity subgroups P_2 and X of G with $P_1 \cap O^p(G_p^*) \le P_2 \le P_1$, $P_2 \in \operatorname{Syl}_p(X)$ and X is S-permutable in G. For example, let $p \ge 5$ be a prime and $e \ge 2$ be an integer and consider $G = SL(2, p) \times \mathbb{Z}_{p^e}$.

However, for *p*-solvable groups, we have the following result.

THEOREM 4.4. Let p be an odd prime dividing the order of a finite p-solvable group G, e a positive integer and $P \in \operatorname{Syl}_p(G)$ with $|P| \ge p^{e+1}$. Then G is p-supersolvable if and only if for any subgroup P_1 of P with order p^e , $P_1 \in \mathbb{D}(P)$.

PROOF. We only need to prove the sufficiency. Suppose that G is a counterexample with minimal order; we work in the following steps to obtain a contradiction. The arguments are the same as in Steps 1–8 of Theorem 1.3.

- Step 1. If $P \le H < G$, then H is p-supersolvable.
- *Step 2.* $O_{n'}(G) = 1$.
- Step 3. There exists a subgroup P_1 of P with order p^e such that $P_1 \cap O^p(G_p^*)$ is not S-permutable in G.
- Step 4. If $P_2 \le P_1 \le P$, $X \le G$ is such that $|P_1| = p^e$, $P_1 \cap O^p(G_p^*) \le P_2 \le P_1$, $P_2 \in \operatorname{Syl}_p(X)$ and X is S-permutable in G and if PX < G, then $P_1 \cap O^p(G_p^*)$ is S-permutable in G.
- Step 5. If $P_1 \le P$ is such that $|P_1| = p^e$ and $P \cap O^p(G_p^*) \not\leq P_1$, then $P_1 \cap O^p(G_p^*)$ is S-permutable in G.
- Step 6. $|P \cap O^p(G_n^*)| \leq p^e$.
- Step 7. If $\widehat{P} = P \cap O^p(G_p^*)$, then \widehat{P} has a maximal subgroup T such that $T \leq O_p(G)$.
- Step 8. The final contradiction. Let $L = O_p(G) \cap O^p(G_p^*)$. By Step 7, $T \leq L$. Note that $L \leq \widehat{P}$. Assume that L = T. Consider G/T. Assume that T > 1. Since $|T| \leq p^{e-1}$, by induction, G/T is p-supersolvable. Hence, $O^p(G_p^*)/T$ is p-nilpotent. Then $O^p(O^p(G_p^*)) < O^p(G_p^*)$. This is a contradiction. Assume that T = 1. Since

 $\widehat{P} \unlhd P$ and $\widehat{P} \cap O_p(G) = L = T = 1$, we have $[\widehat{P}, O_p(G)] = 1$. Since G is p-solvable and $O_{p'}(G) = 1$, by the Hall–Higman lemma (see [9], Theorem 3.21]), it follows that $\widehat{P} = 1$ and thus G_p^* is p-nilpotent. Hence, G is p-supersolvable. This is also a contradiction. Assume that $L = \widehat{P}$, that is, $\widehat{P} \unlhd G$. Using the same arguments as in the proof of Step 9 of Theorem 1.3, we can obtain the final contradiction.

Recently, Li *et al.* (see [12, 14, 15]) introduced the concept of E–S-supplemented subgroups. A subgroup H of a finite group G is said to be E–S-supplemented in G if there is a subnormal subgroup T of G such that G = HT and $H \cap T \leq H_{eG}$, where H_{eG} is the subgroup of H generated by all those subgroups of H which are S-permutably embedded in G. They used E–S-supplemented subgroups to establish many results. One of their results is the following theorem.

THEOREM 4.5 [12, Theorem 1.4]. Let p be an odd prime dividing |G| and P a Sylow p-subgroup of G. Suppose that there exists a subgroup D of P with 1 < D < P such that every subgroup H of P with order |D| is E-S-supplemented in G and $N_G(P)$ is p-nilpotent. Then G is p-nilpotent.

We point out that for a p-subgroup H of G, the concept of E-S-supplemented subgroups coincides with the concept of weakly S-permutably embedded subgroups. In order to show this, we appeal to the following significant theorem of Deskins.

THEOREM 4.6 [5, Theorem 1]. If a subgroup H of a finite group G is S-permutable in G, then $H/Core_G(H)$ is nilpotent and thus, for any $p \in \pi(G)$ and for any $P \in Syl_p(G)$, $PCore_G(H)/Core_G(H)$ is S-permutable in $G/Core_G(H)$.

LEMMA 4.7. Let p be a prime dividing the order of a finite group G, $P \in \operatorname{Syl}_p(G)$ and $P_1, P_2 \leq P$. If P_1 and P_2 are both S-permutably embedded in G, then $\langle P_1, P_2 \rangle$ is S-permutably embedded in G.

PROOF. There exist $X_1, X_2 \leq G$ such that $P_1 \in \operatorname{Syl}_p(X_1)$, $P_2 \in \operatorname{Syl}_p(X_2)$ and X_1, X_2 are S-permutable in G. Let $H_1 = \operatorname{Core}_G(X_1)$ and $H_2 = \operatorname{Core}_G(X_2)$. By Deskins' theorem 4.6, P_1H_1/H_1 is S-permutable in G/H_1 and P_2H_2/H_2 is S-permutable in G/H_2 . In G/H_1H_2 , by Lemma 2.1(g), $\overline{P_1}$ and $\overline{P_2}$ are both S-permutable in \overline{G} . It is not difficult to see that $\overline{\langle P_1, P_2 \rangle} = \overline{\langle P_1, P_2 \rangle}$ is S-permutable in \overline{G} . Hence, $\overline{\langle P_1, P_2 \rangle}H_1H_2$ is S-permutable in G. Let $B = \overline{\langle P_1, P_2 \rangle}H_1H_2$. Since P permutes with B, we have $P \cap B \in \operatorname{Syl}_p(B)$. It is not difficult to see that $P \cap H_1H_2 = (P \cap H_1)(P \cap H_2)$. Hence, by Dedekind's lemma, $P \cap B = \overline{\langle P_1, P_2 \rangle}(P \cap H_1)(P \cap H_2) = \overline{\langle P_1, P_2 \rangle}$. Hence, $\overline{\langle P_1, P_2 \rangle}$ is S-permutably embedded in G.

Let p be a prime dividing the order of a finite group G and H a p-subgroup of G. By Lemma 4.7, H_{eG} is S-permutably embedded in G. Hence, for H, the concept of E-S-supplemented subgroups coincides with the concept of weakly S-permutably embedded subgroups. Hence, our Theorems 1.3, 1.5 and 1.6 also generalise the main theorems of [12].

Recently, in [4], Chen *et al.* introduced the concept of SE-quasinormal subgroups, which is the same as the concept of E-S-supplemented subgroups. Hence, our Theorem 1.5 also generalises [4, Theorem B].

References

- [1] A. Ballester-Bolinches and Y. Li, 'On S-permutably embedded subgroups of finite groups', Monatsh. Math. 172 (2013), 247–257.
- [2] A. Ballester-Bolinches and M. C. Pedraza-Aguilera, 'Sufficient conditions for supersolubility of finite groups', *J. Pure Appl. Algebra* **127** (1998), 113–118.
- [3] Y. Berkovich and I. M. Isaacs, 'p-supersolvability and actions on p-groups stabilizing certain subgroups', J. Algebra 414 (2014), 82–94.
- [4] X. Chen, W. Guo and A. N. Skiba, 'Some conditions under which a finite group belongs to a Baer-local formation', Comm. Algebra 42(10) (2014), 4188–4203.
- [5] W. E. Deskins, 'On quasinormal subgroups of finite groups', Math. Z. 82 (1963), 125–132.
- [6] S. M. Gagola Jr and I. M. Isaacs, 'Transfer and Tate's theorem', Arch. Math. (Basel) 91 (2008), 300–306.
- [7] Y. Huang, Y. Li and S. Qiao, 'On weakly s-permutably embedded subgroups of finite groups (II)', Front. Math. China 8(4) (2013), 855–867.
- [8] B. Huppert, Endliche Gruppen, Vol. I (Springer, Berlin, 1967).
- [9] I. M. Isaacs, Finite Group Theory (American Mathematical Society, Providence, RI, 2008).
- [10] O. H. Kegel, 'Sylow-Gruppen and Subnormalteiler endlicher Gruppen', Math. Z. 78 (1962), 205–221.
- [11] Q. Kong, 'On an extension of the Frobenius' theorem about *p*-nilpotency of a finite group', *Monatsh. Math.* **175** (2014), 133–138.
- [12] C. Li, J. Huang and B. Hu, 'A note on p-nilpotency of finite groups', Monatsh. Math. 179 (2016), 253–258.
- [13] C. Li and F. Xie, 'A note on *S*-quasinormally embedded subgroups', *Monatsh. Math.* **176** (2015), 571–573.
- [14] C. Li, X. Yu and N. Tang, 'Finite *p*-supersoluble groups with some *E–S*-supplemented subgroups', *Rend. Semin. Mat. Univ. Padova* **133** (2015), 1–10.
- [15] C. Li, X. Zhang and X. Yi, 'On E-S-supplemented subgroups of finite groups', Colloq. Math. 131 (2013), 41–51.
- [16] Y. Li, S. Qiao and Y. Wang, 'On weakly s-permutably embedded subgroups of finite groups', Comm. Algebra 37(3) (2009), 1086–1097.
- [17] Z. Shen and Y. Chen, 'On normally embedded subgroups of a finite group', J. Algebra Appl. 13(7) 1450028 (2014), 6 pp.
- [18] H. Yu, 'Some sufficient and necessary conditions for p-supersolvablity and p-nilpotence of a finite group', J. Algebra Appl. 16(1) (2017), 1750052, 9 pp, doi:10.1142/S0219498817500529.
- [19] X. Zhang and X. Li, 'A criterion of p-nilpotency of finite groups', Comm. Algebra 40(10) (2012), 3652–3657.
- [20] X. Zhang, X. Li and L. Miao, 'Sylow normalizers and p-nilpotence of finite groups', Comm. Algebra 43(3) (2015), 1354–1363.

HAORAN YU, School of Mathematics, Peking University,

Beijing 100871, China

e-mail: sylowtheorem@pku.edu.cn