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Abstract

In this paper, we obtain some criteria for p-nilpotency and p-supersolvability of a finite group and extend
some known results concerning weakly S -permutably embedded subgroups. In particular, we generalise
the main results of Zhang et al. [‘Sylow normalizers and p-nilpotence of finite groups’, Comm. Algebra
43(3) (2015), 1354-1363].
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1. Introduction

Throughout the paper, we suppose that G is a finite group and p is a prime. Let
7(G) be the set of all the prime divisors of |G|. To state our results, we need to
recall some notation. According to Kegel [10], a subgroup H of a finite group G is
called an S -permutable subgroup of G if H permutes with every Sylow subgroup of G.
According to Ballester-Bolinches and Pedraza-Aguilera [2], a subgroup H of a finite
group G is said to be S-permutably embedded in G if, for each prime p dividing
|H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some §-permutable
subgroup of G. According to Li et al. [16], a subgroup H of a finite group G is
called a weakly §-permutably embedded subgroup of G if there exist T < <G and
Hy <Gsuchthat G=HT,HNT < H; <H and H; is S -permutably embedded in G.
Following Berkovich and Isaacs [3], if G is a finite group and p is a prime divisor
of |G|, we denote by G, the unique smallest normal subgroup of G for which the
corresponding factor group is abelian of exponent dividing p — 1. It is well known that
G is p-supersolvable if and only if G, is p-nilpotent (see [3]).

Let p be a prime dividing the order of a finite group G and P € Syl,(G). Let D(P)
denote the set of subgroups P; < P for which there exists P, < G with P; N OP (G;) <
P, < Py and P, is S -permutably embedded in G. It is not difficult to see that if P; < P
is weakly S -permutably embedded in G, then P, € D(P). However, there exist a finite
group G with p an odd prime divisor of |G|, and P € Syl (G) with |P| > pe*l, where e
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is a positive integer, such that every subgroup P; of P of order p° is in D(P), but P has
a subgroup P3 of order p® which is not weakly S -permutably embedded in G. See the
following example.

Exawveie 1.1 Let T ={a,b|a” =b* = 1,b"'ab = a”')y = D, 2, where p is an odd
prime. There exists ¢ € Aut(T') such that a° = a and b° = ba. Consider G =T > {c) =
{a, b, c| a’ =br=c = I,b'ab=a"',c'ac = a,c™"bc = ba). Let P = (a) X {(c).
Then P is the normal Sylow p-subgroup of G with order p*. It is not difficult to
see that G is p-supersolvable and thus P N O”(G),) = 1. Hence, for any subgroup P,
of P with order p, P; € D(P). Consider (c”) and note that [(c”)| = p. It is not difficult
to see that (c”) is not weakly S -permutably embedded in G.

There are many criteria for p-nilpotency of a finite group in the literature. Recently,
Huang et al. and Zhang et al. both proved the following theorem.

TueorEM 1.2 ([7, Theorem 1.8] and [20, Theorem 3.2]). Let p be a prime dividing the
order of a finite group G, e a positive integer and P € Syl (G) with |P| > peL. Suppose
that Ng(P) is p-nilpotent and, for any subgroup D of P with order p°, D is weakly
S -permutably embedded in G. In addition, suppose that all cyclic subgroups of P with
order 4 are weakly S -permutably embedded in G if p =2, e = 1 and P is nonabelian.
Then G is p-nilpotent.

In [18], the author investigated some necessary and sufficient conditions for
p-supersolvability and p-nilpotency of a finite group. In this note, we continue the
work of [18] and prove the following results, which generalise the main theorems
of [7, 11-13, 19] and [20].

TueorEM 1.3. Let p be an odd prime dividing the order of a finite group G, e a positive
integer and P € Syl (G) with |P| > p°*1. Then G is p-nilpotent if and only if Ng(P) is
p-nilpotent and, for any subgroup P\ of P with order p°, P, € D(P).

DeriniTiON 1.4. Let p be a prime and P a nonidentity p-group with |P| = p”. Fix an

integer k with 1 < k < n. We define the set L;(P) as follows.

(i) Assume that k = 1. If p =2 and P is nonabelian, L;(P) = {P; | P; < P,|P| = 2}
U{P, | P, < P and P; is a cyclic subgroup of order 4}. Otherwise, set L;(P) =
{P1| P; £ Pand|P;| = p}.

(i) Assume thatn > 2 and 2 < k < n. Then L;(P) = {P, | P; < P and |P;| = pX}.

THEOREM 1.5. Let p be a prime dividing the order of a finite group G and suppose that
(G|, p = 1) = 1. Let e be a positive integer and P € Sylp(G) with |P| > p°*'. Note that
G, = G. Then the following statements are equivalent.

(a) G is p-nilpotent.

(b) Forany Py € L,(P), P, € D(P).

(c) Forany Py € L,(P), P N OP(G) is S -permutably embedded in G.

Theorems 1.3 and 1.5 generalise [7, Theorems 1.3 and 1.8] and [20, Theorem 3.2].
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THEOREM 1.6. Let p be an odd prime dividing the order of a finite group G, e a positive
integer and P € Syl (G) with |P| > p°*L. Then G is p-nilpotent if and only if for any
subgroup Py < P with |P;| = p¢, Py € D(P) and Ng(P,) is p-nilpotent.

Theorems 1.5 and 1.6 generalise [11, Theorem 1.2], [13, Theorem 1.3] and [19,
Theorem 3.2].

Tueorem 1.7. Let p be a prime dividing the order of a finite group G, P € Syl (G)
and P’ < P; < ®(P). Assume that K < G with P; € Sylp(K). Also assume that there
exist H, Ky < G such that G = KH, KN H <K, <K and, for any L € Sylp(Kl), Lis
S -permutably embedded in G. If Ng(P) is p-nilpotent, then G is p-nilpotent.

Here, as usual, ®(P) denotes the Frattini subgroup of P. Theorem 1.7 generalises
[20, Theorems 3.3 and 3.4]. Finally, we also give another criterion for p-nilpotency of
a finite group.

Tueorem 1.8. Let p be a prime dividing the order of a finite group G and P € Syl (G).
Then G is p-nilpotent if and only if Ng(P) is p-nilpotent and there exists P, € D(P)
such that P’ < P; < O(P).

The proofs of the main results of [7, 11, 12, 19] and [20] all require Thompson’s
normal p-complement criterion (see [9, Theorem 7.1]). However, our proof does not
appeal to Thompson’s normal p-complement criterion and is much more elementary.

2. Preliminaries

Lemma 2.1. Let p be a prime dividing the order of a finite group G and let Py < G be
a p-group, X <G and N 4 G.

(@) If Py is S-permutable in G, then P; < O,(G) and OP(G) < Ng(Py) [18,
Lemma 2.5(a)].

(b) Py is S-permutable in G if and only if O’(G) < Ng(P;) [18, Lemma 2.5(b)].

() If Pyis S-permutable in G, then Py N N is S -permutable in G [corollary of (b)].

(d) IfXis S-permutable in G, then X 1 <G [10].

() IfXisS-permutable in G and L < G, then X N L is S -permutable in L.

®) If X is S-permutably embedded in G and X < L, then X is S-permutably
embedded in L [corollary of (e)].

(g) If X is S-permutable (S-permutably embedded) in G, then XN/N is
S -permutable (S -permutably embedded) in G/N.

(h) If X is S-permutable (S-permutably embedded) in G, then X N OP(G) is
S -permutable (S -permutably embedded) in G.

Proor. (d) See [10]. Here we derive Lemma 2.1(d) from Wielandt’s famous zipper
lemma (see [9, Theorem 2.9]). Firstly, we claim that if H < K <G, then H is
S-permutable in K. For any p € n(K) and for any P; € Syl (K), there exists
Pe Sylp(G) with P; = PN K. Since HP = PH, by Dedekind’s lemma, it follows that
HP, = P1H. Hence, H is S -permutable in K.
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We claim that for any p € 7(G) and for any P € Syl (G), H < <HP. Note that H
is S -permutable in HP. Since [HP : H] is a power of p, it is not difficult to see that
OP(HP) < H and thus H < <HP.

Suppose that G is a counterexample with minimal order; we work to obtain a
contradiction. Note that H < G. For any proper subgroup K of G such that H < K,
H is S-permutable in K. Hence, H < < K. Recall that we assumed that H is not
subnormal in G. By Wielandt’s zipper lemma, there is a unique maximal subgroup
L of G that contains H. For any p € n(G) and for any P € Syl p(G), since H A< HP,
it follows that HP < G and thus HP < L. In particular, we have P < L. Since G is
generalised by all of its Sylow subgroups, it follows that G < L. This is the desired
contradiction.

(e) It is no loss to assume that L > 1. For any p € n(L) and for any P € Sylp(L),
there is a P € Syl (G) such that Py = PN L. By (d), X 4<G. Since PX = XP, we
see that OP(PX) = O”(X) < X. Consider PX N L. Since Py = PN L € Syl (L) and
Py =PNL<PXNLZL,itfollows that Py € Syl ,(PX N L). Observe that OP(PX N L)
<PXNLNO’PX)<PXNLNX=XNL Hence, PXNL=PO(PXNL)=
Pi(XNL)and P(X NL)= (XN L)P,. This completes the proof.

(g) The proof is not difficult.

(h) It suffices to show that if X is S-permutable in G, then X N OF(G) is
S -permutable in G. If 7(G)\{p} # 0, then for any g € 7(G)\{p} and any Q € Syl (G),
XQ = 0X. By Dedekind’s lemma, (X N OP(G))Q = Q(X N OP(G)). For any P €
Syl,(G), we have PX = XP. By (d), X 9<G and O(PX) = 07(X) < X N O7(G).
Hence, PX = POP(X) = P(X N O?(G)) and P(X N OP(G)) = (X N OP(G))P. This
completes the proof. O

LemMma 2.2 [18, Lemma 2.1]. Let p be a prime dividing the order of a finite group G,
P e Syl (G), N 4G and e a positive integer. Write Py = PN N. Assume that Py S N
and N is not p-nilpotent. Also assume that |Pi| < p¢ and |P| > p**'. Then P has a
normal subgroup P, of order p® with [Py : Py N Py] = p.

Lemma 2.3 [18, Lemma 2.2]. Let p be a prime dividing the order of a finite group G
and P € Sylp(G). Write Py = PN OP(G)). Assume that Py > 1 and Py has a maximal
subgroup T with T 2 G. Then P, 4 G.

Lemma 2.4 [18, Theorem 1.3]. Let p be a prime dividing the order of a finite group
G, e > 2 an integer and P € Syl (G) with |P| = p°*l. Then G is p-supersolvable if and
only if Py N OP(G)) is S -permutable in G for all subgroups Py < P with |Py| = p*.

Lemma 2.5 [18, Theorem 1.4]. Let p be a prime dividing the order of a finite
group G and P € Syl ,(G). Then G is p-supersolvable if and only if P\ N OP(G)) is
S -permutable in G for all subgroups Py < P with |P||=p and, if p=2 and P is
nonabelian, P, N OP(G)) is also S -permutable in G for all cyclic subgroups P, < P
with |P,| = 4.
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Lemma 2.6 [18, Lemma 2.8]. Let p be a prime dividing the order of a finite group G
and Py be a p-subgroup of G. Let L G and N be a normal p’-subgroup of G. Then
P\N/NNLN/N = (P, NL)N/N.

Lemma 2.7 [18, Lemma 2.9]. Let p be a prime dividing the order of a finite group
G and N 2G. Then (G/N), = G,N/N, O’(G/N) = OP(G)N/N and O"((G/N),) =
O”(G})N/N.

Levva 2.8. Let p be a prime dividing the order of a finite group G and P € Syl,(G).
Let X < G be S -permutable in G. Assume that PN OP(G) « PN X. Then PX < G.

Proor. By Lemma 2.1(d), X < 4G. If PX =G, then O”(G) = OP(X) < X and thus
P N OP(G) £ PN X, which is a contradiction. O

Levma 2.9. Let p be a prime dividing the order of a finite group G, P € Syl (G) and
Py < P. Assume that there exists X < G such that Py N OP(G) € Sylp(X) and X is
S -permutable in G. If PN OP(G) £ Py, then PX < G.

Proor. Note that PN X = P; N OP(G). By Lemma 2.8, it follows that PX < G. O

Levma 2.10. Let p be a prime dividing the order of a finite group G, P € Syl,(G),
P, <Pand P, <G.

(a) If Py < ©(P) and G| Py is p-nilpotent, then G is p-nilpotent [18, Lemma 2.13].
(b) IfP’ < Py < ®(P) and Ng(P) is p-nilpotent, then G is p-nilpotent.

Proor. (b) Consider G/P;. Note that P/P; € Sylp(G/Pl) and P/P; is abelian. Since
Ng/p,(P/Py) = Ng(P)/P; is p-nilpotent, by Burnside’s theorem (see [9, Theorem
5.13]), G/P; is p-nilpotent. By (a), G is p-nilpotent. O

Lemma 2.11 (Tate; see [8, Satz IV.4.7] or [6, Theorem Al). Let p be a prime dividing

the order of a finite group G, P € Syl (G) and N < G. If PN N < ®(P), then N is
p-nilpotent.

Lemma 2.12 [18, Corollary 3.8]. Let p be a prime dividing the order of a finite group
G and P € Syl,(G). Then G is p-nilpotent if and only if No(P) is p-nilpotent and there
exists P’ < Py < ®(P) such that Py N O7(G))) < G,

3. Main results

Proor oF THEOREM 1.3. We only need to prove the sufficiency. Suppose that G is
a counterexample with minimal order; we work in the following steps to obtain a
contradiction.

Step 1. If P < H <G, then H is p-nilpotent. By Lemma 2.1(f), the hypotheses are
inherited by H. Hence, H is p-nilpotent.

Step 2. Op(G) =1. By Lemmas 2.1(g), 2.6 and 2.7, the hypotheses are inherited
by G/0,(G). If 0,(G) > 1, then G/O,(G) is p-nilpotent and thus G is p-nilpotent.
Hence, 0,(G) = 1.
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Step 3. G is not p-supersolvable, G}, = G and, for any subgroup P, of P with order
P, P1 N OP(G) is S-permutably embedded in G. Assume that G is p-supersolvable
and thus G is p-solvable with p-length 1. Since O, (G) = 1, it follows that P < G and
thus G = Ng(P) is p-nilpotent. Hence, G is not p-supersolvable. Assume that G, <G.
By Step 1, it follows that G, is p-nilpotent and thus G is p-supersolvable. This is a
contradiction. Hence, G}, = G. For any subgroup P; of P with order p°, there exists
P, < Gsuchthat Py N OP(G) < P, < Py and P, is S -permutably embedded in G. Since
Py N OP(G) = P, N OP(G), by Lemma 2.1(h), P; N OP(G) is S -permutably embedded
in G.

Step 4. There exists a subgroup P, of P with order p¢ such that P, N OP(G) is not
S -permutable in G. Assume that for any subgroup P; of P with order p¢, Py N OP(G) is
S -permutable in G. By Lemmas 2.4 and 2.5, G is p-supersolvable. But this contradicts
Step 3.

Step 5. If Py < P with |P{| = p°, X < G is such that P; N OP(G) € Sylp(X) and X is
S-permutable in G and PX < G, then P; N OP(G) is S -permutable in G. By Step 1,
PX is p-nilpotent and thus X is p-nilpotent. Since X < <G (Lemma 2.1(d)) and
0,(G) = 1, it follows that X = P; N OP(G). Hence, P; N OP(G) is S -permutable in G.

Step 6. If P; < P is such that |Pj| = p® and P N OP(G) £ Py, then P; N OP(G) is
S-permutable in G. There exists X < G such that P} N O?(G) € Sylp(X) and X is
S -permutable in G. By Lemma 2.9, it follows that PX < G. By Step 5, P N O”(G) is
S -permutable in G.

Step 7. |P N OP(G)| < p°. By Steps 4 and 5, there exist P; < P with |P| = p° and
X < G such that P; N OP(G) € Syl (X), X is §-permutable in G and G = PX. Since
X 9 <G (Lemma 2.1(d)), it follows that O”(G) = OP(X) < X and thus P N OP(G) <
PNX=P NO’G)<P.

Step 8. If P=Pn 0?(G), then P has a maximal subgroup T such that T < O0,(G).
Since |P| < p®and |P| > p*!, there exists P < Psuchthat|P| = p**' and P < P. Assume
that P < ®(P). Observe that Pe Syl (POP (G)). By Lemma 2. 1 1, OP(G) is p-nilpotent,

that is, G is p-nilpotent. This is a contradiction. Hence, P & <D(P) and P has a
maximal subgroup P w1th P & P;. Then |Py| = p°, P= PP1 and [P PN Pi]=
Let T = PN Py. Since P« P, by Step 6, P; N OP(G) is S-permutable in G. By
Lemma 2.1(a), T = PN Py = P; N OP(G) < 0,(G).

Step 9. The final contradiction. Consider NG(P) Assume that Ng(P) < G. Then
T = OP(O"(G)) Note that P < N(;(P) < G. By Step 1, NG(P) is p- nllpotent Hence,
Nop(G)/T(P/T) is p-nilpotent. Note that P/T € Sylp(OP(G)/T) and |P/T| p. By
Burnside’s theorem, OP(G)/T is p-nilpotent. Then OF(0”(G)) < OP(G). This is
a contradiction. Assume that Ng(P) = G, that is, P < G. Since O”(G) is not
p-nilpotent, by Lemma 2.2, P has a normal subgroup P, with order p such that
[P: PN Pi]= pand, in particular, PP, By Step 6, P1 N OP(G) is S -permutable in
G. By Lemma 2.1(b), PN P, = Py N OP(G) < 0O7(G). Since P P, < P, it follows that
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PN P, < P. Hence, PN P, € G. Recall that G; =G. By Lemma 2.3, Fﬂ G. This

contradicts Fﬂ G. Hence, we obtain the final contradiction. O

Proor oF THEOREM 1.5. The implications (a) = (b) and (a) = (c) are not difficult to
prove. By Lemma 2.1(h), (b) is equivalent to (c).

To prove (c) = (a), we modify the proof of Theorem 1.3. Since (|G|, p-1)=1,G
is p-nilpotent if and only if G is p-supersolvable. Suppose that G is a counterexample
with minimal order; we work in the following steps to obtain a contradiction. Steps
1-6 use the same arguments as in the proof of Theorem 1.3.

Step 1. If P < H < G, then H is p-nilpotent.
Step 2. Op(G) = 1.
Step 3. G is not p-supersolvable.

Step 4. There exists a subgroup P; € L.(P) such that P N O?(G) is not S -permutable
inG.

Step 5. 1If Py € L.(P), X < G is such that P; N OP(G) € Syl (X) and X is § -permutable
in G and PX < G, then Py N OP(G) is S -permutable in G.

Step 6. If Py € L ,(P) and P N OP(G) « Py, then Py N OP(G) is S -permutable in G.

Step 7. e >2 and |P N OP(G)| < p°. By Steps 4 and 5, there exist P; € L,(P) and
X < G such that Py N OP(G) € Sylp(X), X is S -permutable in G and G = PX. By the
proof of Step 7 of Theorem 1.3, PN OP(G) < PN X = P; N OP(G) < P;. Assume that
e = 1; we work to obtain a contradiction. Since e = 1, it follows that P; is cyclic
and thus P N OP(G) is cyclic. Since (|G|, p — 1) = 1, by Burnside’s theorem, O”(G) is
p-nilpotent, that is, G is p-nilpotent. This is the desired contradiction. Hence, e > 2,
|Pi| = p¢ and |P N OP(G)| < p°.

Step 8. If P=Pn 0?(G), then P has a maximal subgroup T such that T < OP(G).
The assertion follows by the same argument as in the proof of Step 8 of Theorem 1.3.

Step 9. The final contradiction. Consider O”(G)/T. Note that P/T € Syl,(0P(G)/T)

and |F/T| = p. Since (|G|, p — 1) = 1, by Burnside’s theorem, it follows that O”(G)/T
is p-nilpotent. Then O”(0OP(G)) < OP(G). This is a contradiction. O

Proor oF THEOREM 1.6. We only need to prove the sufficiency. Suppose that G is a
counterexample with minimal order; we work to obtain a contradiction. We mimic the
proof of Theorem 1.3. In fact, we only need to modify Step 3 of Theorem 1.3.

Step 3. G is not p-supersolvable and G}, = G and, for any subgroup P; of P with order
p¢, P1 N OP(G)is S -permutably embedded in G. Assume that G is p-supersolvable and
thus G is p-solvable with p-length 1. Since O, (G) =1 (Step 2), P 2 G. Since G is
p-supersolvable, there exists a subgroup P; < P such that |P;| = p® and P; < G. Then
G = Ng(P)) is p-nilpotent. Hence, G is not p-supersolvable. By the proof of Step 3
of Theorem 1.3, it follows that G;, = G and, for any subgroup P; of P with order p°,
Py N OP(G) is S -permutably embedded in G. O
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Levva 3.1. Let p be a prime dividing the order of a finite group G, P € Syl (G)
and P’ < Py < ®(P). Suppose that Py is S -permutably embedded in G and Ng(P) is
p-nilpotent; then G is p-nilpotent.

Proor. By the hypotheses, there exists X <G such that Py € Syl (X) and X is
S -permutable in G. We work by induction on |G|. By Lemma 2.1(g), the hypotheses
are inherited by G/0,(G). If 0,(G) > 1, by induction, G/O,(G) is p-nilpotent and
thus G is p-nilpotent. Hence, we can assume that O, (G) = 1.

By Lemma 2.1(d), X < <G. Since PX = XP, we have PN OP(PX) = PN O?(X) <
PNX=P; <O(P). In the subgroup PX, by Lemma 2.11, PX is p-nilpotent and thus
X is p-nilpotent. Since X < <G and O,(G) = 1, it follows that X = P;. Then P, is
S-permutable in G. By Lemma 2.1(a), O’(G) < Ng(P;). Since P’ < P, < P, we see
that P; < P. Hence, P; < G. By Lemma 2.10(b), G is p-nilpotent. |

Proor oF THEorREM 1.7. By Sylow’s second theorem, there exists k € K such that
P¥N H € Syl (H). Since G = KH, it follows that P* = P{(P* N H). Since P} < ®(P*),
it follows that P* = P* N H. Hence, P* < H and thus P’f <KNH<K; <K. Hence,
Pl € Syl (K}) and thus P is S-permutably embedded in G. By Lemma 3.1, G is
p-nilpotent. O

Proor oF TheorEM 1.8. It is no loss to assume that O,,(G) = 1. Since Py € D(P), there
exist P>, X < G such that P; N OF(G;‘,) <P,<P,Pe Sylp(X) and X is S -permutable
in G. By the proof of Lemma 3.1, it follows that P, = X is S-permutable in G.
By Lemma 2.1(a), O”(G) < Ng(P2). Hence, P1 N OP(G,) = P, N OP(G}) 2 O7(G).
Since P’ < Py < P, it follows that P N 0?(G,) 4 P. Hence, P; N O"(G,) 2 G. By
Lemma 2.12, it follows that G is p-nilpotent. O

4. Applications

Recently, Ballester-Bolinches and Li proved the following theorem, which includes
the main theorems of [17].

TueorEM 4.1 [1, Theorem 3]. Let p be a prime dividing the order of a finite group G, e
a positive integer and P € Syl (G) with |P| > petL. Suppose that for any subgroup P,
of P with order p°, Py is S -permutably embedded in G. In addition, suppose that all
cyclic subgroups of P of order 4 are S -permutably embedded in G if p =2, ¢ = 1 and
P is nonabelian. Then G is p-supersolvable.

Here we take a different approach to Theorem 4.1. We need the following lemma.
Lemma 4.2. Let P be a finite nonidentity p-group, where p is a prime. Let Py < P with

Py £ O(P)andlet L=AT | T is a maximal subgroup of P with Py £ T}. We write |L| to
denote the cardinality of L. Then |L| > p.
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Proor. Note that Py®(P) < P. Let L; ={T | T is a maximal subgroup of P} and
L, ={T | T is a maximal subgroup of P with P; < T}, so L = L;\L,. Since P, £ ®(P),
it follows that |L| > 1. Now L, = {T' | T is a maximal subgroup of P with P ®(P) < T}.
There existn,m € N, such that [P : ®(P)] = p" and [P : P1®(P)] = p™. Itis not difficult
to see that |[Li| = (p" — 1)/(p — 1) and |L,| = (p™ — 1)/(p — 1). Hence, |[L|| = |L;| =1
(mod p) and [L] =0 (mod p). Since |L| > 1, it follows that || > p. O

We modify the proof of Theorem 1.3 to prove Theorem 4.1.

Proor oF THEorREM 4.1. By Theorem 1.5, it suffices to prove the theorem for the case
that p is an odd prime. Suppose that G is a counterexample with minimal order; we
work in the following steps to obtain a contradiction.

Step 1. If P < H < G, then H is p-supersolvable. By Lemma 2.1(f), the hypotheses
are inherited by H. Hence, H is p-supersolvable.

Step 2. Op(G) =1. By Lemma 2.1(g), the hypotheses are inherited by G/0, (G). If
O, (G) > 1, then G/O,(G) is p-supersolvable and thus G is p-supersolvable. Hence,
0,(G)=1.

Step 3. There exists a subgroup P; of P with order p¢ such that P; is not S -permutable
in G. Assume that for any subgroup P; of P with order p¢, P; is S-permutable in G.
By Lemmas 2.4 and 2.5, G is p-supersolvable. This is a contradiction.

Step 4. If Py <P with |P|=p° X <G is such that P, € Sylp(X) and X is
S-permutable in G and PX < G, then P; is S-permutable in G. By Step 1, PX is
p-supersolvable and thus X is p-supersolvable and, in particular, X is p-solvable with
p-length 1. Since X < 4G (Lemma 2.1(d)) and O,/(G) = 1, it follows that P, is the
normal Sylow p-subgroup of X and thus P; < <G. For any g € 7(G)\{p} and any
Q € Syl (G), we have XQ = QX. Since P; <G and Py € Syl,(XQ), it follows that P,
is the normal Sylow p-subgroup of X0 and thus Q < Ng(P;). Hence, OP(G) < Ng(P)).
By Lemma 2.1(b), P; is S -permutable in G.

Step 5. 1If Py < Pis such that |P;| = p®and PN OP(G;) & Py, then P; is S -permutable
in G. There exists X < G such that P, € Syl (X) and X is S -permutable in G. Assume
that G = PX; we work to obtain a contradiction. Since X < <G (Lemma 2.1(d)), it
follows that OP(G) = OP(X) < X and thus PN OP(G),) < PN OP(G) < PNX = Py.
This is the desired contradiction. Hence, PX < G. By Step 4, P; is S-permutable
in G.

Step 6. [P N OP(G,)| <|PNOP(G)| < p°. By Steps 3 and 4, there exist P; < P with
|Py| = p® and X < G such that P € Sylp(X), X is §-permutable in G and G = PX. By
the proof of Step 5, PN OP(G,) < PNOP(G) < PNX = Py.

Step 7. The final contradiction. Let P=PnN OP(G;‘,). Since |F| < p® and |P| > p**!,

there exists P < P such that |F| = p*! and P < P. Assume that P < d)(ﬁ). Observe
that P € Sylp(POI’(G;)). By Lemma 2.11, OP(G;) is p-nilpotent and thus G is
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p-supersolvable. This is a contradiction. Hence, P« (D(IE). By Lemma 4.2, P has
two different maximal subgroups P, P, with P « Py and P £ P,. By Step 5, Py and
P> are both S -permutable in G. By Lemma 2.1(a), Py, P> < O,(G) and thus P < 0,(G).

Hence, P < 0,(G) and thus P = 0,(G) N O”(G’;) < G. Since O”(G?) is not p-nilpotent,
by Lemma 2.2, P }ES a normal subgroup P; with order p° such that [75: PN Pil=p
and, in particular, P £ P;. By Step 5, P, is S-permutable in G. By Lemma 2.1(a),

0”(G) < Ng(Py) and thus P N Py = P N O”(G;) < O7(G). Since P, Py < P, it follows
that P N P; < P. Hence, PN Py <G. By Lemma 2.3, Fﬂ G. This contradicts Fsl G.

Hence, we obtain the final contradiction. |

RemArk 4.3. There exists a finite non-p-supersolvable group G such that p is an odd
prime divisor of |G|, e is a positive integer, P € Syl (G) and |P| > p°*! such that for
every subgroup P; of P with |P| = p®, there are nonidentity subgroups P, and X of G
with Py N OP (G;‘,) <P, <Py, P, €Syl »(X) and X is S -permutable in G. For example,
let p > 5 be a prime and e > 2 be an integer and consider G = S L(2, p) X Z..

However, for p-solvable groups, we have the following result.

THEOREM 4.4. Let p be an odd prime dividing the order of a finite p-solvable group G,
e a positive integer and P € Syl (G) with |P| > p¢*Y. Then G is p-supersolvable if and
only if for any subgroup Py of P with order p°¢, P, € D(P).

Proor. We only need to prove the sufficiency. Suppose that G is a counterexample
with minimal order; we work in the following steps to obtain a contradiction. The
arguments are the same as in Steps 1-8 of Theorem 1.3.

Step 1. If P < H <G, then H is p-supersolvable.
Step 2. Op(G) =1.

Step 3. There exists a subgroup Py of P with order p® such that Py N O”(G)) is not
S -permutable in G.

Step 4. If P, <Py <P, X <G is such that |P| = p*, PLNOP(G))) < P, < Py, Py €
Sylp(X) and X is S -permutable in G and if PX < G, then P} N O”(G}’;) is S -permutable
in G.

Step 5. If Py < P is such that [P| = p® and P N OP(G)) £ Py, then Py N OP(G)) is
S -permutable in G.

Step 6. |P N OP(G))| < p°.

Step 7. If P=PNOP (G), then P has a maximal subgroup T such that T < 0,(G).

Step 8. The final contradiction. Let L = O,(G) N OP(G}). By Step 7, T < L.

Note that L < P. Assume that L = T. Consider G/T. Assume that T > 1. Since
IT| < p°~', by induction, G/T is p-supersolvable. Hence, 0P(G,)/T is p-nilpotent.
Then O7(0P(G,)) < OP(G,). This is a contradiction. Assume that 7' =1. Since
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P<aPand PN 0,(G)=L=T =1, we have [75, 0,(G)] = 1. Since G is p-solvable and
0,(G) = 1, by the Hall-Higman lemma (see [9, Theorem 3.21]), it follows that P = 1
and thus G, is p-nilpotent. Hence, G is p-supersolvable. This is also a contradiction.

Assume that L = P, that is, P < G. Using the same arguments as in the proof of Step 9
of Theorem 1.3, we can obtain the final contradiction. |

Recently, Li et al. (see [12, 14, 15]) introduced the concept of E—S -supplemented
subgroups. A subgroup H of a finite group G is said to be E—S -supplemented in G if
there is a subnormal subgroup 7 of G such that G = HT and H N T < H,g, where H,¢
is the subgroup of H generated by all those subgroups of H which are S -permutably
embedded in G. They used E—S-supplemented subgroups to establish many results.
One of their results is the following theorem.

TueorREM 4.5 [12, Theorem 1.4]. Let p be an odd prime dividing |G| and P a Sylow
p-subgroup of G. Suppose that there exists a subgroup D of P with 1 < D < P such
that every subgroup H of P with order |D| is E-S -supplemented in G and Ng(P) is
p-nilpotent. Then G is p-nilpotent.

We point out that for a p-subgroup H of G, the concept of E—S-supplemented
subgroups coincides with the concept of weakly S -permutably embedded subgroups.
In order to show this, we appeal to the following significant theorem of Deskins.

THeEOREM 4.6 [5, Theorem 1]. If a subgroup H of a finite group G is S -permutable in
G, then H/Coreg(H) is nilpotent and thus, for any p € n(G) and for any P € SylP(G),
PCoreg(H)/Coreg(H) is S -permutable in G/Coreg(H).

Lemma 4.7. Let p be a prime dividing the order of a finite group G, P € Syl,(G) and
P{,P, < P. If P, and P, are both S-permutably embedded in G, then (P, P,) is
S -permutably embedded in G.

Proor. There exist X;, X, < G such that P; € Sylp(Xl), P, € Sylp(Xz) and X, X
are S-permutable in G. Let H, = Coreg(X;) and H, = Coreg(X;). By Deskins’
theorem 4.6, P1H|/H; is S-permutable in G/H, and P,H,/H; is S-permutable in
G/H,. In G/H|H,, by Lemma 2.1(g), P, and P, are both S -permutable in G. Itis
not difficult to see that (P, P,) = (P_l, P_z) is S -permutable in G. Hence, (P, P,)HH,
is S-permutable in G. Let B = (P, P,)HH;,. Since P permutes with B, we have
PNBe Sylp(B). It is not difficult to see that P N H;H, = (P N H{)(P N H). Hence,
by Dedekind’s lemma, P N B = (P}, P>)(P N H{)(P N Hy) = (P, P»). Hence, (P}, P>)
is § -permutably embedded in G. O

Let p be a prime dividing the order of a finite group G and H a p-subgroup of
G. By Lemma 4.7, H,g is S -permutably embedded in G. Hence, for H, the concept
of E-S -supplemented subgroups coincides with the concept of weakly S -permutably
embedded subgroups. Hence, our Theorems 1.3, 1.5 and 1.6 also generalise the main
theorems of [12].
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Recently, in [4], Chen et al. introduced the concept of S E-quasinormal subgroups,
which is the same as the concept of E—S-supplemented subgroups. Hence, our
Theorem 1.5 also generalises [4, Theorem B].

(1]
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