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Abstract
In order to improve the performance of k − ω SST model in turbomachinery, previous studies have used the machine-
learning (ML) technique to obtain turbulence models (for example, the ML-RANS EQ model). However, these
models do not lead to satisfactory results in complex flows in turbomachinery. In this study, we use non-equilibrium
training dataset to obtain a new turbulence model (i.e., the ML-RANS TR-NE-EQ model). Calculations in various
cases of turbine cascade flows show that ML-RANS TR-NE-EQ model performs obviously better than ML-RANS
EQ model as well as k − ω SST model.

Nomenclature
a anisotropy Reynolds stress tensor
Cε dissipation coefficient
Cpstatic pressure coefficient
Closs

ptotal
total pressue loss coefficient

d wall distance
db diameter of cylindrical bar in turbine cascades
h channel half width in high-fidelity training data
i, j index
I unit tensor
k turbulence variable in the k − ω SST model
l chord in turbine cascades
lax axial chord in turbine cascades
lb distance of cylindrical bar from the leading edge in turbine cascades
Lx streamwise location in high-fidelity training data
L integral length scale
m number of layers in the neural network
n number of nodes in the neural network
N number of high-fidelity training data
p pressure
ptotal total pressure
pinlet

total total pressure at inlet
q1 first input feature for the practical ML-RANS model
q2 second input feature for the practical ML-RANS model
Re Reynolds number
Rem Reynolds number based on bulk mean velocity

C© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

https://doi.org/10.1017/aer.2024.123 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.123
https://orcid.org/0000-0002-2026-4981
https://orcid.org/0000-0003-1397-0658
https://orcid.org/0000-0001-5756-7102
mailto:le.fang@buaa.edu.cn
mailto:tianwei.bao@bssturbotechltd.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/aer.2024.123&domain=pdf
https://doi.org/10.1017/aer.2024.123


2 Du et al.

Reλ Taylor-scale Reynolds number
Reτ Reynolds number based on friction velocity
S mean strain rate
Sh mean strain rate in high-fidelity training data
Sk skewness of longitudinal velocity derivative
t pitch of turbine cascades
uτ friction velocity
Ui component of time-averaged velocity
Um bulk mean velocity
U+ dimensionless time-averaged velocity
U 2 turbulent kinetic energy
wi,j one weight of the neural network
y pitchwise coordinate in turbine cascades
d+ dimensionless wall distance
d+|wall dimensionless wall distance of the first-level mesh near wall
z Streamwise coordinate in turbine cascades

Greek symbols
βs, β1, β2 three kinds of angle in experiment of turbine cascades
�x+ homogeneous streamwise mesh size
�y+ first-level normal mesh size from the wall
�z+ homogeneous spanwise mesh size
ε turbulence dissipation
λ L1 regularisation coefficient
ν kinematic viscosity
νt eddy viscosity
νm

t optimal eddy viscosity calculated with high-fidelity training data
ν∗

t initial learning target of the ML-RANS framework
ν0

t target variable for the practical ML-RANS model
ν0,i

t one target variable for the practical ML-RANS model in high-fidelity training data
ν̂

0,i
t one target variable predicted by the neural network

ξk dimensionless cross diffusion of k and ω

τ Reynolds stress
τ h Reynolds stress in high-fidelity training data
ω turbulence variable in the k − ω SST model
� rotation rate

Abbreviations
CFD computational fluid dynamics
DNS direct numerical simulation
EQ equilibrium
FIML field inversion machine learning
LES large eddy simulation
M1 method of calculating (k, ω) with their original physical definition
M2 method of calculating (k, ω) with k − ω SST model
ML machine learning
ML-RANS iterative machine-learning framework for RANS turbulence modeling
NE non-equilibrium
PSB periodic suction and blowing disturbance
RANS Reynolds-averaged Naviers-Stokes
SST shear stress transport
TR transition
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1.0 Introduction
In recent decades, numerical simulation methods have been widely applied and have generated a vast
amount of flow data. It is still expensive to employ high-fidelity methods such as direct numerical
simulation (DNS) and well-resolved large eddy simulation (LES) for complex flows. Thus, the Reynolds-
averaged Navier-Stokes (RANS) simulation remains a prevalent method in engineering applications.
RANS equations incorporate a Reynolds stress tensor term that necessitates closure through a turbu-
lence model. Towards the end of the 20th century, NASA researchers [1] conducted a comparative study
on popular eddy viscosity models including the k − ε model [2], k − ω model [3], k − ω SST model
[4, 5], and the Spalart-Allmaras model. They found that the SST model demonstrated the best over-
all performance because it not only matched the superior performance of other models in simulating
simple flows but also excelled in handling complex flows with adverse pressure gradient phenomena.
Recently, Chipongo et al. [6] compared the simulation outcomes of the realisable k − ε model, k − ω

SST model and the Reynolds stress model (RSM), which directly solves the Reynolds stress transport
equations, in spatially varied flows. Taking into account both cost and accuracy, they discovered that
these three models were comparably effective. Consequently, this study adopted the SST model as the
baseline model.

Despite the prevailing use of the Boussinesq eddy viscosity assumption, there are two issues worthy
of attention regarding two-equation models like the SST model. One issue is that deriving turbulence
models using theoretical knowledge and observational data derived from equilibrium flows inherently
renders these models unsuitable for numerical simulations of non-equilibrium flows at a fundamental
level. Fang et al. [7] quantitatively described non-equilibrium phenomena in compressor flows using
the equation of Lagrangian velocity gradient correlation, revealing that non-equilibrium time-scales
are comparable to the main flow time-scales. This underscores the prevalence of non-equilibrium phe-
nomena in turbomachinery. However, as Wilcox [8] explains, the scalar attribute and initial definition of
turbulence viscosity derive from the rigorous theoretical analysis of the Richardson-Kolmogorov energy
cascade. Calibration of turbulence model coefficients heavily relies on decay homogeneous isotropic tur-
bulence and zero-pressure-gradient boundary layers, leading Spalart [9] to advocate for a reduction in
the proportion of cases similar to homogeneous isotropic turbulence, aiming to improve the performance
of turbulence models in more practical cases such as jets, wakes, boundary layers, among others.

The other issue is that turbulence variables in eddy viscosity models may not adhere to their initial
definitions. As an example, in the k − ω models, Wilcox [8] introduce a stress limiter in the calculation
formula for turbulene viscosity, while Menter [4, 5] devises a blending function for the SST model. These
artificial or empirical enhancements, although improving the predictive accuracy of the k − ω models,
cause the turbulence viscosity and the eddy viscosity model to deviate from its physical underpinnings.
Furthermore, the modeled transport equations are not rigorously derived. The closure approximations
used in the transport equations for k and ε inevitably reduce the accuracy of the solution, and excessive
approximations can even render the transport equations overly dependent on the turbulence data required
for modeling. Additionally, the ω equation is derived via dimensional analysis based on the variation pro-
cess of specific dissipation rate. Hence, the necessary modeling of the transport equations within eddy
viscosity models constitutes a systematic factor contributing to the deviation of turbulence variables
from their physical definitions. In Spalart’s perspective [9], attempting to obtain accurate turbulence
variables from turbulence models represents a fallacy in turbulence modeling, given his observation
that the best k − ε model arguably possesses an inaccurate k, which significantly complicates the use of
DNS data for modeling purposes.

Machine learning (ML) methodologies have been increasingly employed to enhance the predictive
capabilities of computational fluid dynamics (CFD), particularly concerning the improvement and modi-
fication of established turbulence models [10, 11]. A notable strategy involves leveraging ML techniques
to ascertain a generalised formulation of the Reynolds stresses. This stress tensor can be represented as
a function of the strain rate (S) and rotation rate (�), formulated as a linear combination of ten tensorial
basis where the coefficients are functions of five scalar invariants [12]. Ling et al. [13] pioneeringly
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introduced a framework entitled Tensor Basis Neural Networks (TBNN), which maps the local scalar
features to the Reynolds stress anisotropy tensor. Following this groundbreaking work, Pope’s seminal
analysis [12] has been widely embraced by the majority of research endeavours in the same domain
and integrated with diverse methodologies, including the ensemble Kalman method [14], field inver-
sion techniques [15], symbolic regression approaches [16–18], and random forest algorithms [19, 20],
among others.

Another route pursued in the literature involves the application of ML to the transport equations of
turbulence models. Notably, Parish and Duraisamy [21] devised a framework known as field inversion
machine learning (FIML). Within this paradigm, the transport equations are adjusted by multiplica-
tion with a spatially variant factor inferred through field inversion techniques, while a machine learning
model is utilised to deduce regression functions characterising this factor based on selected input fea-
tures. This methodology has been successfully implemented across various flow regimes, including
turbomachinery flows [22], aerofoil aerodynamics [23], boundary layer transition processes [24] and
three-dimensional separation flows [25]. Although FIML delivers commendably accurate mean flow
fields, it may occasionally produce physically unreasonable Reynolds stresses. Moreover, Zhu et al. [26]
trained a radial basis function neural network model to replace the conventional Spalart-Allmaras model
equations. Concurrently, Zhang et al. [27] constructed a novel source term within the ε equation of the
k − ε model through deep learning techniques, thereby significantly reducing the overall field error in
simulation outputs.

A more cost-effective strategy centers on optimising the turbulence viscosity. Wu et al. [19, 28] pro-
posed decomposing the anisotropy stress tensor into linear and nonlinear components and computing
the optimal eddy viscosity via pointwise least-square approximation. This approach has gained trac-
tion among numerous researchers [29–31] and has been empirically shown to enhance the conditioning
of RANS equations. More recently, Sun et al. [32] developed an eddy viscosity model, trained on an
aerofoil turbulence dataset, which was subsequently tested under high Reynolds number conditions,
demonstrating promising results. Liu et al. [29] have introduced an iterative machine learning framework
for turbulence modeling, wherein a neural network is trained solely on DNS data of equilibrium channel
flow [33, 34] to emulate the eddy viscosity computation. This novel approach gives rise to a data-driven
turbulence model, denoted as ML-RANS EQ, which demonstrates enhanced performance over the base-
line model in scenarios involving separated flow phenomena, such as the two-dimensional periodic hill
[29] and the three-dimensional turbine cascade [35]. Acknowledging its potential for generalisability,
we adopt this framework in the present study, with a introduction provided in sec:theory-1.

Based on Spalart’s statement [9], turbulence models fail to provide precise estimates of turbulence
variables. Our previous work [35] illustrates this point, showing that in RANS simulations, the values
of k and ω can significantly differ from reality. In the same work [35], we classified the computation
methods for turbulence variables in the training phase of machine learning into two categories. One cat-
egory (M1) involves directly calculating the high-fidelity turbulence variables according to their original
physical definitions. The other category (M2) involves solving the transport equations of the turbulence
model based on the frozen mean flow field of high-fidelity data. In the prediction phase, all the input
features of neural network are constructed by performing the baseline RANS solver. As a result, the
M1 method establishes the consistency of the ML model with the DNS field, but does not guarantee
consistency with the RANS or LES environment [36], whereas the M2 method ensures the opposite. As
pointed out by Wu et al. [28], even small discrepancies in the Reynolds stress tensor lead to dramatic high
error in the mean flow field due to the ill-conditioning nature of RANS equations. Consequnetly, earlier
works noted that ML models based on the M1 method often give poor predictions of the mean flow
field in a-posteriori tests [37–39]. Since 1998, Parneix et al. [40] introduced the M2 method specifically
designed to process and derive turbulence variables from DNS datasets. Amidst the burgeoning field of
ML-informed turbulence modeling, several scholars [29, 37, 41, 42] have advocated for or applied the
M2 method to produce turbulence variables critical for machine learning model training. Our preceding
research [35] compared the turbulence variables based on M1 method and M2 method, and evidenced
M2 method’s merits in terms of improved accuracy, leading to its adoption in this investigation.
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The aforementioned quantitative investigation by Fang et al. [7] has evidenced non-equilibrium phe-
nomena within the regions of corner separation, wake, and boundary layers in compressors. To enhance
the precision of simulating such corner separation flows, both velocity helicity reflecting nonlinear tur-
bulence energy backscatter processes [43, 44] and kinematic vorticity accounting for fluid rotation and
deformation [45] have been integrated into the transport equations of conventional turbulence models.
Sun [46] showed that employing the SST model augmented with velocity helicity correction, together
with a good grid, effectively captures compressor flow characteristics with reasonable fidelity, thereby
yielding credible predictions of compressor performance and stage matching. Moreover, Spalart et al. [9]
highlighted that certain canonical flows deviate from the notion of equilibrium conditions. Flows such as
normally strained flows, boundary layers experiencing adverse or favourable pressure gradients, steady
and unsteady backward-facing step flows, amongst others, have been utilised by Klein et al. [47] to assess
turbulence models’ performance under basic equilibrium regimes. Notably, Liu et al. [48] scrutinised
and characterised the non-equilibrium turbulence zone within a spatially transitional channel flow. Xiao
et al. [49] contend that flows over periodically varying hill slopes exemplify strong non-local and non-
equilibrium effects, thus conducting direct numerical simulations to establish a database for data-driven
turbulence modeling. In complement to embedding non-equilibrium effects within the turbulence mod-
eling framework, as exemplified by Wu and Zhang’s work [42], the customisation of training datasets
is pivotal to enhancing the efficacy of data-driven turbulence models [13]. For example, incorporating
diverse geometries facilitates the generalisability of machine learning (ML)-based turbulence models
[16, 50]. In this paper, our objective is to engage a training dataset including non-equlibrium flows in
data-driven turbulence modeling to refine the accuracy of turbulence models applied in turbomachinery
contexts.

The remainder of the paper is organised as follows. In sec:theory, we will recall briefly the theoretical
basis of the ML-RANS framework [29, 35] and non-equilibrium flows. sec:modeling contains details of
a new training set and a brief introduction to the training process. The new ML-RANS model has been
applied to some in-house cascade test configurations with the previous ML-RANS model and the base-
line RANS model. Comparing their simulation results with experimental data, an a-posteriori evaluation
of the new ML-RANS model will be presented in sec:application. sec:conclusion is our conclusion and
perspectives.

2.0 Theoretical basis
Within this section, we initially present the iterative machine-learning framework for RANS turbulence
modeling, herein referred to as ML-RANS, as proposed by Liu et al. previously [29, 51, 52]. This
framework aims at replacing the conventional calculation formula for turbulence viscosity in the baseline
k − ω SST model using a neural network. Note that all theories and calculations, including a-priori
and a-posteriori tests, are 3D. However, statistical average in homogeneous directions can reduce the
data dimensions for training and turbulence modeling. Conclusively, we review some research on non-
equilibrium turbulence that motivate the incorporation of effects pertaining to three flow regimes within
the ML-RANS framework.

2.1 ML-RANS framework
The ML-RANS framework consists of two independent phases: training phase and prediction.
Throughout the ML-RANS modeling process, neural networks, input features and target variables play
integral roles. Liu et al. [29] employed the TensorFlow platform [53] to construct an artificial neu-
ral network. In the training phase, M2 method described in 1 is first adopted for the construction of
machine learning dataset. The machine learning regression algorithms, along with prescribed input fea-
tures and target variables, are used to determine the weights and biases of the neural network, resulting
in a machine learning model. During the prediction phase, this machine learning model is coupled with a
baseline turbulence model. It first computes the input features using numerical solutions of both transport
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Figure 1. Comparisons of (q1, q2) in the transitional channel flow in transition region (TR), non-equi-
librium region (NE) and equilibrium region (EQ) respectively [35].

equations in the baseline turbulence model and RANS equations. The comparison of turbulent quanti-
ties (k, ω, . . .) obtained with DNS/LES with those of RANS formulation can refer to previous studies,
for example Figs. 1 and 2 in Ref. [35]. Subsequently, these input features are mapped onto the target
variable to generate turbulence viscosity. This framework exhibits two notable attributes: consistency
in the computation of input features across both phases and the evolution of the turbulence viscosity
within the prediction phase.

In the ML-RANS framework, the target variable refers to the object of turbulence modeling, which
involves leveraging machine learning techniques to repesent Reynolds stresses, either as mathematical
expressions or through artificial neural networks, derived from high-fidelity flow data. However, certain
researchers [54, 55] have observed discrepancies between the resolved mean velocity when employing
the Reynolds stresses from high-fidelity data to close RANS equations and the mean velocity in the
original high-fidelity data. Wu et al. [28] highlighted that the RANS equations coupled with Reynolds
stress closure models could be ill-conditioned, where minor a-priori errors in modeled terms, such as the
Reynolds stresses, can escalate into significant a-posteriori errors during the solution of the RANS equa-
tions. To tackle this issue, Wu et al. [28] partitioned the Reynolds stresses into an implicitly treatment
(or linear) component involving νt and a nonlinear part, i.e.,

a = τ − 1

3
tr(τ )I = 2νtS + a⊥. (1)

The linear portion corresponds to one aspect of Pope’s proposed mathematical representation of the
Reynolds stress [12], which adheres to the Boussinesq eddy viscosity hypothesis. From the high-fidelity
dataset, the Reynolds stress tensor τh and the mean shear stress tensor Sh are extracted to calculate νt by
minimising the nonlinear part, resulting in

νt =
∣∣∣∣ τhij Shij

2Shij Shij

∣∣∣∣ . (2)
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Table 1. The input features and the target variable for the practical ML-RANS model [51, 52]

Variable Description Definition Normalisation Actual form

q1 Turbulence intensity k
1

2
UiUi

25k

25k + 0.5UiUi

q2 Estimated eddy viscosity
k

ω
ν

k

k + 50νω

ν0
t Authentic eddy viscosity νt

k

ω

5νt

5νt + 3
k

ω

Figure 2. Mean velocity profiles by use of different high-fidelity methods.

Their analysis showed that enhancing the implicit treatment of the Reynolds stress, for instance, by
adding an increment to the optimal νt while correspondingly subtracting from the nonlinear part, can
further improve the conditioning of the model, thereby reducing the sensitivity of the RANS equation
solution to the unclosed terms [28]. In earlier work, Wu et al. [19] had independently trained machine
learning models for the linear and nonlinear components of the Reynolds stress, culminating in a well-
conditioned and accurate Reynolds stress model. Liu et al. [29, 51, 52], building upon this, took a step
further by focusing solely on the turbulence viscosity as the target variable, bypassing the nonlinear part
of the Reynolds stress altogether. To enhance the effectiveness of the machine learning regression, they
first nondimensionalised the turbulence viscosity using the traditional definition k/ω from the k − ω

model [3, 8], followed by normalisation to arrive at the actual form of the target variable presented in
Table 1.

As for the input features, Liu et al. [29] initially derived from Pope’s analysis [12] an essential input
feature (i.e., k/νω) related to the target variable. Based on empirical evidence, Liu et al. bypassed tensor
invariances in the input features to stabilise simulations and introduced five supplementary input fea-
tures that included turbulence intensity, wall distance, cross-diffusion of k and ω, along with two SST
model variables specifically capturing properties of the viscous sublayer and the turbulent region [29].
In subsequent research [51, 52], they streamlined their approach by retaining only the first two input fea-
tures and subjected them to normalisation based on their initial design, as detailed in Table 1. Notably,
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our previous study [35] has demonstrated the ability to identify distinct regimes of turbulence devel-
opment exclusively using these two dimensionless and normalised input features (q1, q2), as illustrated
in Fig. 1. In previous practices, DNS datasets [33, 34] and RANS calculations [29, 51, 52] were used,
respectively.

2.2 Non-equilibrium flows
The property of multi-scale energy transfer is a good starting point for understanding turbulence. The
well-known Richardson-Kolmogorov energy cascade indicates an equilibrium dissipation law, that can
be depicted as a balance of high Reynolds turbulence between the forward energy transfer and the
dissipation.

ε = CεU 3

L . (3)

where U 2 is turbulent kinetic energy, L is the integral length scale and the dissipation coefficient Cε is
constant. In fact, in real flows there exist various dissipation laws, including the equilibrium or quasi-
equilibrium laws and the non-equilibrium laws, as Vassilicos [56] introduced. It was discovered that there
exists a non-equilibrium dissipation law between Cε and Taylor-scale Reynolds number Reλ, which is
approximately Cε ∼ Re−1

λ
, or rigorously by theoretical analysis [57],

Cε ∼ Re
− 15

14
λ . (4)

It denotes the imbalance between energy production and dissipation, which mainly exists with a
spatially inhomogeneous geometry, even when the flow is a fully developed turbulence. The non-
equilibrium canonical flows discussed in sec:intro largely conform to this dissipation rate. Researchers
have actively explored the integration of non-equilibrium phenomena within turbulence models by lever-
aging the ratio between the production and dissipation of turbulence kinetic energy [42, 58]. Recently,
it was found that for flows whose transfer spectrum is out-of-equilibrium, there also exists another
non-equilibrium dissipation law

Cε ∼ Re−2
λ

, (5)

which is usually rather evident in short-time evolution by comparing to the −15/14 scaling [59–62] and
is closely related to the self-organisation procedure in a flow that is (temporally or spacially) not fully
developed. During the evolution of turbulent flows, this novel scaling law typically implies the presence
of turbulence energy backscatter (i.e., the transfer of energy from smaller to larger scales). Despite
their appearance prior to the establishment of such a scaling law, the conventional turbulence modeling
efforts [43, 44] described in sec:intro, aiming at enhancing the Spalart-Allmaras and SST models by
incorporating helicity, can be regarded as early attempts to account for this out-of-equilibrium in third-
order statistical quantities. However, until now, there has not yet been a data-driven turbulence modeling
that specifically addresses the −2 scaling behaviour associated with energy backscatter phenomena.

In previous studies we showed that a spatially transitional channel flow can perfectly involve all the
known states of energy transfer of turbulence evolution, including both the −15/14 and −2 scalings
of non-equilibrium flows [59]. On another hand, we also illustrated that the flows in turbomachinery
are almost non-equilibrium everywhere [7]. In the present paper we then use this dataset, aiming at
involving various flows in the training procedure, and hoping to improve the performance of turbulence
models in turbomachinery.

3.0 Turbulence modeling
According to earlier research [16, 50], the test flow’s shape, pressure gradient, and other components
should be present in the training flow as well. Although its training set was created using the canonical
channel flow, the ML-RANS EQ model performed slightly better than its baseline model in the complex
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Table 2. Information of LES on the spatially transitional channel flow [48]

Variable Value Description
Rem 7,000 Rem = Umh/ν, with Um bulk mean velocity
Reτ 395 Reτ = uτ h/ν where uτ friction velocity
�x+ 77 Homogeneous streamwise mesh size
�y+ 0.2 First-level normal mesh size from the wall
�z+ 38 Homogeneous spanwise mesh size

geometry (see more details in the papers of Liu et al. [29] and Fang et al. [35]), indicating good gen-
eralisation of the present ML-RANS framework. Using a spatially transitional channel flow database
[48] with transition region (TR), non-equilibrium region (NE), and equilibrium region (EQ), we dis-
covered three essential constraints of this training set (i.e., sampling in one dimension, geometry of the
straight wall, and turbulence in equilibrium) in the previous study [35]. Moreover, we specified the issue
of expansibility from EQ to TR/NE in both a-priori and a-posteriori analysis. In the present study, we
create the ML-RANS TR-NE-EQ model by fusing the aforementioned transitional flow database [48]
with the present ML-RANS framework [51, 52].

3.1 Training set
A training set based on the spatially transitional channel flow [48] will be introduced and evaluated in
this subsection. The channel has a 64πh × 2h × 2πh domain with h channel half-width with a spatial
resolution 1, 024 × 96 × 64 in x, y, z directions, including a PSB (periodic suction and blowing dis-
turbance) region in the streamwise interval Lx ∈ [πh, 2πh] and a fringe region [63] in the streamwise
interval Lx ∈ [56πh, 64πh]. The existence of two regions contributes to the generation of the spatial tran-
sition. The commonly used dynamic Smagorinsky model was selected as the subgrid-scale model for
LES of the channel flow. No-slip boundary conditions are imposed at wall (excluding the PSB region),
whereas periodic boundary conditions are utilised along the spanwise direction with the LES. Laminar
flow distribution is set at inlet and zero-gradient is set at outlet. Furthermore, the grid spacings and
Reynolds numbers are documented in Table 2 for more details. More details refer to Refs [48, 64, 65].

The mean flow profile deviates from its parabolic shape within the range Lx > 12π with the maxi-
mum value of the mean velocity reaching approximately 1.14 at Lx ≈ 23.4π . This confirms the typical
morphology of a turbulent velocity profile beyond Lx > 23.4π , which is in good agreement with DNS
results from Moser et al. [34] and those from Abe et al. [33] at the same friction Reynolds number,
Reτ . However, the flow had not yet been fully developed until nearly Lx = 31π , at which the profile of
the total shear stress was a horizontal straight line. In the interval, Lx ∈ [23.4πh, 31πh], the dissipa-
tion coefficient Cε increased weakly to constant, and the skewness of longitudinal velocity derivative Sk

decreased slightly to constant. In addition, Cε was inversely proportional to the integral scale Reynolds
number at a low Reynolds number. The phenomena were also observed in the non-equilibrium study
of grid turbulence [66]. Consequently, the segment [23.4πh, 31πh] along the streamwise direction was
classified as NE, while Lx < 23.4π was characterised as TR and Lx > 31π was considered as EQ. The
near-wall mean velocity profile at EQ phase is compared with DNS results of Abe et al. [33], as well as
the experiment of Hussain and Reynolds [67]. Pope reviewed the classical wall law, including the linear
relation U+ = d+ in the viscous sublayer (d+ < 5) and the logarithmic law

U+ = 1

κ
ln(d+) + C, (6)

due to von Karman for d+ > 30, where κ ≈ 0.41 represents the Karman constant and C was taken as
5.2 despite dependance on Reynolds number [33, 68]. As shown in Fig. 2, all three simulations and
the experiment agree with the linear relation in the viscous sublayer. In the logarithmic region, the
DNS result at Reτ = 640 closely matches both the theoretical formula and corresponding experimental
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Table 3. Hyperparameters of the neural network for the ML-
RANS TR-NE-EQ model

Hyperparameter Value/Description
Number of hidden layers 3
Number of nodes per layer 24
Activation function tanh
Optimiser Adam optimiser
Learning rate 0.002
L1 regularisation coefficient 10−5

findings at the same Reynolds number, thereby substantiating the accuracy of the DNS programme
employed by Abe et al. At Reτ = 395, the LES result aligns closely with the DNS result, which indicates
that the LES result remains highly credible. For in-depth information, see the paper published by Liu
et al. [48].

In TR, positive Sk denotes the energy backscatter signal [69], which also occurs after altering the sign
of velocities in time-reversed turbulence [59] where the large-scale dynamics cannot feel the effect of
energy backscatter as concurrently as small-scale dynamics does. This non-equilibrium behaviour, char-
acterised by a −2 scaling law, continues to impact the channel flow until the large-scale structures within
NE are notably affected. Subsequently, the flows begins to conform to −15/14 scaling law. The flow
eventually transforms into equilibrium turbulence in EQ after the rapid and slow non-equilibrium pro-
cedures. The physical information of transition, non-equilibrium and equilibrium turbulence is retrieved
from the flow data in the two-dimensional mid-span section of the spatially transitional channel flow in
the current study.

3.2 Modeling process
During the training phase, Google’s TensorFlow [53] was adopted as the platform for machine learning.
The training dataset was separated randomly into the training part and the validation one in a ratio of
four to one. According to training effect, the hyperparameters in Table 3 were adopted to construct a
feedforward artificial neural network (i.e., multi-layer perception). For sake of prevention from overfit-
ting [70], L1 regularisation was adopted to minimise the weight of each layer in the neural network. The
total loss was thus defined as

Loss = 1

N

N∑
i=1

(
ν̂

0,i
t − ν0,i

t

)2 + λ

m,n∑
i,j

|wi,j|. (7)

where ν0,i
t is the target variable in the training data, ν̂0,i

t is the value predicted by the neural network, and
wi,j is the weight in the neural network. λ represents the L1 regularisation coefficient. N is the number
of training data, m and n are respectively the numbers of layers and nodes in the neural network. The
first part of the loss is the mean square error (MSE) from the training data, and the second part is the
L1 regularisation penalty. As seen in Fig. 3, the evolution of errors indicates that our model is rapidly
established once the training process starts. To estimate visually the model result, we plot the profiles
of the target variable ν0

t at different streamwise locations in Fig. 4, and the relation between the target
variable and both input features is shown in Fig. 5. It can be observed that the training data and ML
predictions are all in good agreement.

Following training, a comprehensive data-driven turbulence model is created by combining the
machine learning model with the predictor library [51]. Figure 6 illustrates that the target variable ν0

t is
pretty independent of the input features where q1 is large for the ML-RANS EQ model, while it decreases
obviously as q2 increases in the same region for the ML-RANS TR-NE-EQ model.
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Figure 3. Evolution of loss in the training process. The x-axis represents the ratio of current training
step and total steps.

Figure 4. Profiles of the target variable ν0
t at x/(πh) = 20, 30, 40, 50 in TR (blue), NE (red) and EQ

(green) regions: comparison of ML predictions (lines) and a snapshot of training dataset (points).

Figure 5. Relation between the target variable ν0
t and two input features (q1, q2) at four different

streamwise locations: comparison of ML predictions (line) and a snapshot of training dataset (point).

3.3 A-posteriori test
Having implemented the novel ML-RANS TR-NE-EQ model in OpenFOAM, we applied it into the
spatially transitional channel flow used during training, comparing its performance against the earlier
ML-RANS EQ model and the baseline model. Inspired by Zhao’s doctoral dissertation [71] where
several turbulence models were utilised for RANS simulations of this transitional channel flow, this
study followed suit by removing the fringe area close to the outlet. A computationally economical mesh
configuration of 440 × 50 × 32 was established across the computational domain of 55πh × 2h × 2πh,
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ML-RANS EQ model

(a) (b)

ML-RANS TR-NE-EQ model

Figure 6. Mapping from (q1, q2) to ν0
t in two ML-RANS models.

ensuring effective refinement near the top and bottom walls, particularly with the first cell layer meeting
the requirement of d+ < 1.

Consistent with LES conducted by Liu et al. [48], the transition is facilitated by the PSB region
near the inlet; thus, for the wall segment where the streamwise coordinates Lx lie within [πh, 2πh],
we also designed the PSB boundary condition for the velocity field while imposing a zero-gradient
condition for other physical quantities. For the remaining walls, we set the no-slip condition with
low-Reynolds number corrections. In the meantime, laminar flow inlet and zero-gradient outlet were
configured accordingly. Considering that the velocity boundary values vary over time in the PSB region,
we conducted unsteady RANS simulations using the baseline turbulence model, ML-RANS EQ model,
and the ML-RANS TR-NE-EQ model, each assisted by the PISO algorithm. To maintain numerical
stability, the time step was constrained to ensure a Courant number below 1.

For incompressible flows, the bulk mean velocity remains constant, and the transition from laminar
to turbulence can be reflected through variations in the maximum value of the mean velocity. Upon com-
paring the simulation outputs generated by the three turbulence models against the maximum value of
the mean velocity from the LES data, it is observed that the ML-RANS TR-NE-EQ model delivers supe-
rior performance among three RANS turbulence models, as shown in Fig. 7. Firstly, both ML-RANS
models effectively avoid the occurrence of the local velocity peak within the PSB region simulated by
the baseline model. Subsequently, following the PSB region, the maximum value of the mean velocity
computed by all three models begin to decline, which indicates that the flow starts to deviate from the
laminar. However, the ML-RANS TR-NE-EQ model exhibits a notably delayed initiation of flow transi-
tion, as its calculated mean velocity maximum doesn’t experience a sharp drop until reaching Lx = 10πh,
aligning closely with the LES-derived transitional point Lx = 12πh. The RANS simulation adopting the
ML-RANS TR-NE-EQ model presents remarkable agreement with the LES results in the NE region.
Within the EQ region where the large-scale non-equilibrium is virtually absent, the maximum value of
the mean velocity calculated by all four numerical simulations converge. Among three RANS models,
the ML-RANS TR-NE-EQ model’s prediction shows a closer resemblance to the LES result than that
of the baseline model. In summary, the ML-RANS TR-NE-EQ model provides the best simulation of
the transitional channel flow among the three RANS turbulence models.

4.0 Application in the turbine cascades
We apply two practical ML-RANS models and their baseline turbulence model (i.e., k − ω SST model)
to some turbine cascade flow cases which had been the subject of in-house experimental measurements,
respectively. Every cascade in the experiment consists of the same eight blades, which stand in for
the mid-span region of a low-pressure turbine rotor blade. Several cylindrical bars are fitted as wake
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Figure 7. Evolution of maximum value of the mean velocity along streamwise direction.

generators in front of these blades. The total pressure, total temperature and wall static pressure in the
cascade inlet are all monitored for the flow conditions. Certain aerodynamic parameters are monitored
using an L-shaped five-hole probe and wall static pressure holes at a distance of 0.4 axial chord (lax) from
the blade’s trailing edge (e.g., total pressure loss coefficient and Mach number). In the present study,
we analyse 15 cases with five various blade profiles (denoted as Blade 1, Blade 2, . . ., respectively) and
three different angles of attack (0◦, −15◦, and 15◦, respectively), under similar outlet Reynolds number
(i.e., 770,000) and outlet Mach number (i.e., 0.75). Figure 8 illustrates a few cascade case configurations
by using randomly Blade 2 and zero angle-of-attack as an example. In the figure the star symbols located
0.4lax before the leading edge are marked, corresponding to the observation positions of spanwise near-
wall behaviour in simulation, which will be represented later. More experimental details can refer to our
previous study [35].

All the computational domains containing five different blades are divided by an H–O–H structured
mesh of 193 points (for Blade 3) or 185 points (for other four blades) in the streamwise direction and
84 points in the orthogonal direction, with the first node near the blade satisfying d+|wall < 1. The length
of the inlet region is half of the axial chord length, while the outlet region has one axial chord length.
Figure 9 shows the mesh about Blade 2. Mesh independency has been accordingly verified to guaranty
the rationality of simulation. The k − ω SST model and two ML-RANS models are applied in the open-
source code OpenFOAM. In practice, we set uniform values of total pressure, total temperature and
flow angle at the inlet, a static pressure at the outlet, and no-slip condition at the wall with low Reynolds
number corrections.

The comparison on near-wall effects between ML-RANS models and the classic k − ω SST model
is shown in Figs. 10 and 11. In front of bars and blades, the endwall of the turbine cascade resembles a
channel. The near-wall results observed here are not influenced by the wake. The mean velocity profile
in Fig. 10(a) by using ML-RANS TR-NE-EQ model (i.e., U+ = 2.46ln(d+) + 5.92) is the closest to the
logarithmic law of the wall (see Equation 6), by comparing to the other two curves. In addition, the eddy
viscosity shown in Fig. 10(b) also differs. At locations on the blade surface away from the endwalls, two
measurement points were selected near the leading edge and trailing edge, respectively, to compare
the mean velocity profiles along the blade surface normal direction from different models. Given that
molecular viscosity dominates the flow within the viscous sublayer, the RANS equations necessarily
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Figure 8. Sketch of cascade design of LPT: near-wall behaviours in simulations are observed both at
the blue star (endwall, measurement along the x axis) and at red arrows (blade).

Figure 9. Mesh of the channel with Blade 2 used in numerical simulations.
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(a) (b)

Figure 10. Comparison on results near endwall among the k − ω SST model and the two ML-RANS
approaches, at the location marked as the blue star in Fig. 8: (a) Mean velocity, (b) Eddy viscosity.

(a) (b)

Figure 11. Comparison on mean velocities near blade among the k − ω SST model and the two
ML-RANS approaches, at the locations marked as the arrows with different distances from the leading
edge in Fig. 8: (a) 0.2lax, (b) 0.7lax.

simplify to the linear relation, as calculated by all three models. In the logarithmic region, however,
there were slight differences in performance among the three models near both the leading and trailing
edges of the blade. Similar to Fig. 10, the k − ω SST model and the ML-RANS EQ model provided
distinct logarithmic laws that deviated from the von Kármán’s formula. In contrast, the ML-RANS TR-
NE-EQ model approximated the standard logarithmic law closely near the leading edge but showed a
obvious difference only in the constant term C of the Equation (6) near the trailing edge.

A-posteriori results in Fig. 12 show that both the two ML-RANS approaches show good predictions
for the static pressure coefficient (Equation 8) around the blade. In the previous study [35], we pointed
out that the blade downstream without separation is almost EQ according to Fang et al. [7] and that the
bar wake with obvious separation is mostly NE/TR according to Tao and Zhou [72]. We take the case of
Blade 2 and zero angle-of-attack as an example. We comment that this choice does not mean that Blade
2 is the best case. The global performance of all cases will be shown later. The Mach number calculated
by the ML-RANS TR-NE-EQ model in Fig. 13 is the smallest among three simulations both in the bar
wake and the blade downstream, indicating that its bar wake is the longest and that its blade downstream
is the most obvious, while the ML-RANS EQ model yields the similar effect to those of the k − ω SST
model. Eddy viscosity is crucial for solving the Reynolds equation in the eddy viscosity model. When
comparing the scalar in the bar wake, it can be observed that the ML-RANS TR-NE-EQ model exports
far less eddy viscosity than the ML-RANS EQ model and their baseline model (see Fig. 14).

Furthermore, the ML-RANS EQ and the baseline model both depend on equilibrium turbulence
and two ML-RANS models were born in the same data-driven turbulence modeling framework [29],
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Figure 12. Comparison on a-posteriori results on static pressure coefficient around the blade.
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Figure 13. Mach number (Ma) calculated by (a) ML-RANS TR-NE-EQ model, (b) k − ω SST model
and (c) ML-RANS EQ model at mid-span section: 0.3 at cyan contour and 0.7 at yellow contour.

where the machine learning regression mapping partially replaces the physics-informed equation of νt.
Thus, analysing discrepancies in turbulence viscosity outputs from two ML-RANS models can help us
understand influence of non-equilibrium flows on turbulence modeling. One practical strategy involves
indicating the TR, NE and EQ regimes, especially the TR/NE zones. Nevertheless, based on prior
research [7, 35, 48, 60], the quantitative criterion needs further determination to accurately identify non-
equilibrium flow state Inspired by the successful partition of three regions, the (q1, q2) diagram is utilised
to identify the discrepancy of two ML-RANS models in the bar wake satisfying νt > 0.0015m2/s. Two
ML-RANS models in Fig. 15 predicate that the closer the position is to the bar, the greater the couple
(q1, q2), which denotes that the bar wake is located in TR/NE regimes according to Fig. 1. Reviewing
Fig. 6, due to diversity of training data, the ML-RANS TR-NE-EQ model predicts more changeful tar-
get variable than ML-RANS EQ model in TR/NE regions, which indicates that the new model can deal
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(a) (b) (c)

Figure 14. Eddy viscosity (νt) calculated by (a) ML-RANS TR-NE-EQ model, (b) k − ω SST model and
(c) ML-RANS EQ model at at mid-span section.

ML-RANS EQ model ML-RANS TR-NE-EQ model

(a) (b)

Figure 15. Mapping from (q1, q2) to ν0
t of two ML-RANS models in the bar wake (νt > 0.0015m2/s).

with different flow phases without requiring manual adjustments. As a result, the ML-RANS TR-NE-
EQ model offers lower turbulence viscosity than two other models in the bar wake. Note that these
results are predicted by extrapolation instead of interpolation. Usually the extrapolation of ML is poor,
but it is unavoidable when we employ ML-RANS models to real engineering applications, in particu-
lar for those research and development projects considering off-design conditions, which has attracted
gradually more attentions in previous years. Thus we believe that the present attempt by using
extrapolation is important and necessary for real engineering applications.

Cpstatic = p

pinlet
total

, (8)

In order to evaluate the ML-RANS TR-NE-EQ model, we compare the simulation results of var-
ious turbulence models with the corresponding experimental results in the blade downstream. Figure
16 illustrates the difference in the total pressure loss coefficients (Equation 9). In the five simulation
results, the first peak (i.e., y ≈ 0.2t) in the y axis direction in the figure corresponds to the wake of
the bar, whereas the second peak (i.e., y ≈ 0.5t) corresponds to the wake of the blade. Because of
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Figure 16. Total pressure loss coefficient at measurement plane on the blade mid-span section.

Figure 17. Mach number at measurement plane on the blade mid-span section.

the substantial interaction between the bar wake and the blade pressure side boundary layer, the first
peak (i.e., y ≈ 0.35t) in the experiment is closer to the second peak and is less noticeable. Such a phe-
nomenon is captured by neither the conventional nor the ML-RANS model. However, the ML-RANS
TR-NE-EQ model predictes rather accurately the total pressure loss in the blade wake, while the ML-
RANS EQ model offers a modest improvement. The aforementioned phenomena are also observed in
the prediction for the Mach number (see Fig. 17) as long as we pay attention to the valley instead of the
peak. For each of the 15 cases, we continue to observe the discrepancy between the experimental result
and the simulation results from various turbulence models on the measure plane behind the cascade.
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Figure 18. Deviation of the second peak about the total pressure loss coefficient and the Mach number.
The solid and larger symbols represent the result in the selected case (Blade 2 with zero angle-of-attack).

Equation (10) is utilised to calculate the deviation of the second peak (i.e., the blade wake) about the
total pressure loss coefficient and the second valley (i.e., the blade wake) about the Mach number. The
ML-RANS TR-NE-EQ model performs better than others, in particular captures well the valley of Mach
number in the blade wake (see Fig. 18). The solid and larger symbols represent the result in the selected
case, i.e., Blade 2 with zero angle-of-attack, but for other cases the trend is exactly similar: the ML-
RANS TR-NE-EQ model performs better than other models, in the sense of a global consideration on
both Mach number and pressure loss coefficient.

Closs
ptotal

= pinlet
total − ptotal

ptotal − p
, (9)

Deviation = |Simulation result − Experimental result|
|Simulation result| + |Experimental result| . (10)

In consequence, the ML-RANS TR-NE-EQ model cannot only identify the TR/NE in the bar wake
with (q1, q2) like the ML-RANS EQ model but also transform them to the significantly different eddy
viscosity from one calculated by the equilibrium model. The discrepancy is then transferred to the blade
wake on account of the interaction between the bar wake and the boundary layer in the blade pressure
side. The model improvement is in particular obvious in the region of blade wake by comparing to
experiment.

5.0 Conclusions
In previous studies, the ML-RANS framework has presented better prediction for flow statistics such
as the total pressure loss coefficient downstream of the blade [29, 35]. However, results were still quite
different comparing to experiments, which might stem from the fact that these ML-RANS models were
trained by using equilibrium turbulent flow dataset (i.e., ML-RANS EQ model). Considering the non-
negligible non-equilibriurm effect of energy transfer in real turbomachinery [7], in the present paper we
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then aim at improving the ML-RANS models by involving non-equilibrium training dataset (i.e., ML-
RANS TR-NE-EQ model). Comparing with ML-RANS EQ model and the baseline RANS model (i.e.,
k − ω SST model), we show that ML-RANS TR-NE-EQ model with non-equilibrium features predicts
better statistics, and shows good agreement with experiments.
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