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1. Introduction

Throughout the paper, Twill be a Markov operator on C(X) (A'compact T2),
i.e. a continuous positive operator such that Te = e (e the unit function).
P will be the set of Borel probability measures on X, which we shall often think
of as linear functionals on C(X), and PT = {meP: T'm = m}, where 7" is
the adjoint of T. Let

F = closureu{carrier (m): mePT}.
Our main result, Theorem 3.1, is the following. Suppose S is a Markov
projection on C(X) such that TJ~-*0 iff Sf = 0, where Tn = (l/n)(r+... + rn).
Then T and S induce operators To and So on C(F) such that (.To)nf-*Sof for

Our results may be motivated as follows. If T is a continuous operator on a
topological vector space and S is a projection, it is an easy exercise to prove that
for Tnx->Sx (all x) to occur, it is necessary and sufficient that

(i) 7>->0 iff Sx = 0, and
(ii) ST = TS = S.

Now (i) easily implies ST = S. (We must show that if (i) holds, then
0 = S(T-l), orTx-xe kernel (S) for all x. But 7"n(7jc-x)->0, so

S(Tx-x) = 0,
by condition (i).) Thus (ii) may be replaced by (ii)' TS = S. What our main
result shows is that in the special case of Markov operators on C(X), (ii) may
be discarded altogether, and positive convergence results still obtained.

Section 4 will show how condition (i) arises naturally in the theory of regular
matrices.

We shall assume throughout the paper that 5 and T are Markov operators
such that

(I) 7;/->0iffS/=0 ( /

2. Preliminaries

This section is devoted to lemmas needed for the main result in Section 3.
The following notation will be used. If x e X, let tx be the element of P repre-
senting the functional f-^Tf(x)(Je C(X)). Thus, Tf(x) = \fdtx. Likewise,
Sf(x) = Sfdsx: ' Recall that PT = {meP: T'm = m}.
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We shall assume throughout this section that S and T are operators satis-
fying condition (I) of the Introduction.

Remark 2.1. We proved in the Introduction that condition (I) implies that
ST = S, so that for each x e X and fe C(X) we have $fdsx = [Tfdsx. Thus,
S'5X = sxePT (where 5X is the point mass at x), and hence S'PczPT.

Our first result shows that if S2 = S, then S'P = PT. The condition
S2 = S is the hypothesis for all results after the first, although it may be of
interest to note that the results are valid under the weaker assumption that
S'P = PT.

Lemma 2.2. (a) S2 = S iffPT = Ps.
(b) Hence ifS2 = S, then S'P = PT.

Proof, (a) First we note that in any case, PS<=PT. To show this, recall that
ST = S (Remark 2.1). If m e Ps, then T'm = T'S'm = S'm = m, i.e. m e PT.

Assume S2 = 5. If fe C(X), then Sf-fe kernel (S), so by condition (I)
we have Tn(Sf-f)-+0. If mePT, then m(Sf-f) = m(Tn(Sf-f))^0, so
m(Sf) = m(f), i.e. m e /V Thus, iV = Ps.

Assume PT = Ps. Let x e l Since S r = S, we have J7y&, = $fdsx

for all / e C(X), and hence sxePT = Ps, whence S'sx = JX. This implies
S2 = S\

(b) Assume S2 = S. We know that S'P<=PT. If m ePT, then by (a), S'm = m,
some S'P. Thus S'P = -Pr.

Lemma 2.3. Assume S2 = S. Then (a) all extreme points of PT have the
form sx for some xe X, and (b)

where (PjY is the set of extreme points of PT.

Proof, (a) If me(PT)e, then since S'P = PT (by Lemma 2.2 (b)), the set
(S")"1^) = {peP: 5"p = m} is a non-empty face of/*, and hence contains an
extreme point (by, e.g., Theorem 9 on page 9 of (3)). Since all extreme points of
P have the form dx(x e X), there exists xe X with m = S'8X = sx.

(b) Let Fo be the set in question. Clearly, F0<=F. Suppose y e F\F0.
Then there exists a non-negative fe C(X) wi th /= 0 on jpo and/(y)>0. Then
m(f) > 0 for some m e PT, while (a) implies p(f) = 0 for each p e (PTY- But
this is impossible, by the Krein-Milman theorem. Hence Fo = F.

Lemma 2.4. Assume S2 = S. Let FT(F) = {fe C(X) :Tf\F = f\F}.
Then S(C(X))<=FT(F).

Proof. Since S2 = S, it follows that sx ePs for each xe X. Furthermore,
Lemma 2.2 implies PT = Ps, and Lemma 2.3 (a) implies that each extreme point
of Ps has the form sx for some xe X. Let sx be a fixed extreme point of Ps. By
Theorem 1.11 of (4), car (sx) is contained in an " S-ergodic set", i.e. a set of
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constancy for any g e C(X) such that Sg = g. Since S2 = S, it follows that Sf
is constant (say 0 on car (sx) for any fe C{X). If y e car (sx), then since
sx<sPT we have car (/,,)<= car (sx) (4, Theorem 1.3), and hence

nsf)(y) = t = s/0>).
Lemma 2.3 (6) implies 7\S/) | F = Sf \ F. Hence Sfe FT(F) for each/e C(X).

Remark 2.5. The preceding proof suggests the following: let 5 be a Markov
projection on C(X). If Sf = 0, then S(fSg) = 0 for all g e C(X).

Proof. Let sx be an extreme point of Ps = S'P. Then for each g e C(X),
Sg is constant (say /) on car (sx), and hence

S(fSg)(x) = jf(w)Sg(w)dsx(w) = , \f(w)dsx(W) = 0.

By Krein-Milman, S(fSg)(y) = J f(w)Sg(w)dsy(w) = 0 for all y e X, since each
sy<=Ps.

Lemma 2.6. Assume S2 = S. Iff=0 on F, then Tf = 0 on F, and Sf = 0
everywhere.

Proof. To show Tf = 0 on F we note that since sx e PT for each JC, car (sx)
is T-self-supporting (4, Theorem 1.3), and hence, by (4, Theorem 1.1), if g = 0
on car (sx), then Tg = 0 on car (sx). Thus, since/ = 0 on F we have 7 / = 0 on
each car (sx), and hence Tf = 0 on F, by Lemma 2.3 (b).

To show S/(x) = 0 for all x, it is enough to show car (sx) cz F for each x e X.
By Remark 2.1, sx e PT for each xe X, and hence car ( J , ) C F by the definition
ofF.

3. Mean convergence theorem

In this section we assume condition (I), and also that S2 = S. By Lemma
2.6, / | F = 0 implies 7/1 F = 0 and 5 / | F = 0. We define To on C(F) by
ro/(;t) = Tj(x) for each / e C(F) and xeF, where / e C(X) is any extension of
/ . Likewise, Sof = S/.

Since / 1 F = 0 implies 7/1 /" = Sf | F = 0, the set F is both T-self-
supporting and S-self-supporting, i.e. xe F implies car (tx)cF and car
(4, Theorem 1.1). Hence for/e C(F) and xeFwe have

and S o /

Theorem 3.1. /tew/we (I) S /= 0 iff TJ-+0, and (II) S2 = S. Then
(To) J^Sof for each feC(F).

Proof. We first prove the following:
(i) TQ&O = OQ,

(ii) So
2 = So, and

(iii) Sof= 0 implies (To)J-+0.
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For (i), if feC(F), then by Lemma 2.4, SfeFT(F), and hence for each
y e F, T(Sf)(y) = Sf(y), or To(Sof)(y) = Sof(y).

For (ii), if/€ C(F), S0
2f =S2J\F=SJ\F= Sof.

For (iii), let xe X. Then since Sj = 0 on car (sx) (<=F), we have

Sj(x) = S2J(x) = J Sfdsx = 0.

By condition (I), (T0)J = Tj | F->0.
We now show that i f / e C(F), then (T0)J-+Sof. Since So

2 = So, we have
Sof—fe kernel (So), and hence (iii) implies (T0)n(S0f—f)->0. Using (i), we
have (T0)J-SQf= (To\(f-Sof)^0.

Theorem 3.2. Suppose the conditions of Theorem 3.1 are satisfied, and that T
also satisfies the condition

car (tx)<=Ffor all xeX.

Then TJ~-*TSffor allfe C(X) (and hence TS is a projection).

Proof. By Theorem 3.1 we have TJ\F-*Sf\F for each fe C(X). Let
Rn = (1 /«)(/+ T+...+T"-1), so Tn = TRn. Clearly, RJ\F->Sf\F for each

J/"= T(RJ)(x)
Jf

-+jsfdtx =

by dominated convergence. By Theorem 1.1 of (2), Tnf-*T(Sf) uniformly.

4. Final remarks

We conclude with a remark on how condition (I) arises naturally in matrix
summability. Let T = (tmn) be a regular matrix, considered as a linear operator
on C*(N), and mT the set of T-invariant means on C*(N), as defined in (1)-
fe C*(N) is T-almost convergent if p^(f) = p2(f) for all pu p2 e mr. Let FT

be the space of T-almost convergent functions. By a well-known result of
G. G. Lorentz, if Tis the shift matrix (Tf(n) = /(«+1)), then VT is not equal to
the bounded convergence field Cs of any regular matrix S. It is natural to ask
under what circumstances the equation VT = Cs is possible. (This question has
been asked by J. P. Duran. To the author's knowledge it remains open.)

As in (1), let Tx and £t be the operators induced on C(fiN\N) by the matrices
T and S. Then it can be shown that the condition VT = Cs is equivalent to (I)
(TJnf-tO iff Sif = 0 (fe C(PN\N)). (Necessity is easy, and sufficiency follows
from an easy generalisation of the Mazur-Orlicz consistency theorem.)
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