
A DISTORTION THEOREM FOR ANALYTIC MAPS 
OF ANNULI 
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1. Introduction. Every abstract open Riemann surface can be made 
''concrete" (in the terminology of (1)) by considering it as a covering surface 
(in general branched) of the complex plane SB by means of a suitable projection 
map p. Since this covering map is not unique, it seems natural to single out 
some such maps by an extremal property. The use of Riemannian metrics 
compatible with the conformai structure on the given surface $K for the study 
of $1 is well known ; from the point of view of differential geometry it suggests 
an investigation of the distortion caused by p between such a metric ds^ and 
the Euclidean metric of 28. A definition of integral or average distortion 
involving the square of the logarithm of the local distortion (already intro­
duced by Nevanlinna in (6) for a proof of the Picard-Landau theorem) is 
used. It has the disadvantage of depending on the system of co-ordinates 
used on 9Î; the corresponding invariant integral involving the area-element of 
dsgi, however, does not exist in general—not even for the natural metrics of 
constant curvature. 

We deduce sharp inequalities for this distortion for doubly connected 
surfaces, and the minimizing maps are determined. (In this case there exist 
unbranched (smooth) covering maps into SB.) The simply connected case has 
been treated in (5). The new result is applied in particular to the natural 
locally hyperbolic metric. It is noteworthy that some of the minimizing 
projections are not one-to-one maps. 

Applications to the Bergmann and Lindelôf metrics as well as to analytic 
maps of the pseudosphere and generalizations to surfaces of higher connectivity 
will be considered elsewhere. 

2. Definitions. Let 9Î be a doubly connected Riemann surface—that is, 
the fundamental group of 9î is infinite cyclic. Let SB denote the (finite) complex 
w-plane, and let 

S = {s |0<|s |< °° } = the punctured Euclidean plane, 

§ = {siO<|s|<l} = the punctured hyperbolic plane, 

», = IM < \z\ < 1/Vq], 0 <q< 1. 

di is conformally equivalent to one and only one of the above standard 
surfaces (7). Denote this surface by 21, and let j be a one-one conformai map 
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of 9Î onto 21. For any smooth covering map p: 9? —> SB, the function f(z) = 
p o j - 1 ^ ) is holomorphic in 2Ï and satisfies/'(2) ^ 0. Since all the surfaces §1 
are "schlichtartig," §1 thus furnishes a global system of isothermic co-ordinates 
for 9Î, whereby we may define an "integral distortion" for any such map p, 

Dz[p]= jj^[\nô(z)]2dxdy, 

where 

d(z) = local distortion at z = \dw\/ds$t = \f(z)\y(z), 

7(2) = \dz\/dsyi > 0 in 2Ï, and z = x + iy, 

with integration in the Lebesgue sense. Obviously D2[p] = 0 entails ô(z) = 1 
almost everywhere, i.e. absence of distortion. 

In order to make a later statement (§3.5) independent of the co-ordinate 
system, we define, for an arbitrary real constant C, 

DB\P, C] = (j [In 5(2) - Cfdxdy. 

In the following we restrict ourselves to the cases 21 = §I? and 21 = § . 
The preceding definition yields infinite values for Dz[p] in the case of g. 

We offer the following suggestion for an invariant definition of distortion 
which is patterned after a somewhat similar situation in (2). (By distinguishing 
between 3Î and 2Ï we take into account that in differential geometry a surface 
with a metric is generally not given by its simplest conformally equivalent 
representation; cf. (3).) If k is any other one-one conformai map of 9i onto 21, 
then there exists a unique conformai automorphism h of 31 such that the 
diagram 

is commutative. Accordingly, relative to the new system of co-ordinates 
h(z) = J = £ + irj, we have 

DdP]= f f [In 5(f)]2 dt&n. 
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The local distortion being invariant, we find that 

DdPl= J" J* [In «(*)]' dxdy. 

To make the measure of distortion independent of the co-ordinate system 
we may define 

D[p] = ini DhU)[Pi 
h 

where h ranges over all conformai automorphisms of §1. 
The group of conformai automorphisms of 21 ff consists of the transformations 

f (z) = eiTz and f (z) = eiTz~l, r real; hence 

D[p] = minj J f \nb(z)dxdy, j J \nh(z)\z\-*dxdy\. 

Even with this simplification one can hardly compute D[p] for a general 
metric ds%; hence we restrict ourselves to the consideration of distortion 
relative to one system of co-ordinates in the annuli %q. The situation is simpler 
for § , since all the conformai automorphisms of this surface are of the form 
f (z) = eiTz. Hence 

Di\P] = Dz\p] = D[p], 

3. Distortion theorems. 

1. Let 9? = §Iff, and let <j>(z) — In y(z) have in %q the Fourier expansion 

+00 

—oo 

with z = reie and 
1 r2v 

(1) ak(r) = ~ ${z)e~Mde for ft = 0, ± 1 , ± 2 

We shall assume later that <£ is at least piecewise smooth in 6, so that it may be 
represented by its Fourier series. Define for all integers k the following quan­
tities depending on the given metric of %Q: 

\ak{r)\*rdr, Mk = ak(rV+1dr, 
'VQ ** s/Q. 

J *l/VQ /»1/V'2 

ak(r)r-*+1dr, a, = 

J tl/VQ nl/y/Q 

In r-rdr, y = I InVrdr, 
VQ **VQ 

* P1A/(Z / \ i j A j ^ a - f c - a o 2 ., fe ^ 0, 
5 - a0(f) In r-rdr, A* = ) 2

 lf z, n 
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Clearly, ak > 0 and Ak > 0, for all k, by the Schwarz inequality. Finally, we 
need the following combinations: 

(3) At-"'"'-****, k*0, 
A* 

/3Afo — « o 5 ti . . . M r 1 

x = — _ characteristic exponent ol the givin metric, 

Ao = a nearest integer to x> 

iV0 + j8i40 Bo= -

C* = 

«0 

Lo + "T {2/3ôM0 - aoô2 - T^o2}, fe = 0. 

With these notations we prove 

THEOREM 1. (a) If <f> is piecewise smooth in 6 and square-integrable over 2tff, 
then for any smooth covering map p: 2tff —> SS the following inequality holds: 

(4) D,\fi] > 2x{-° \A0 - xl2 + E Ct 

(b) If in addition d2cj>/dd2 exists, is piecewise continuous and bounded in 31̂ , 
then 

\ —OO 

(5) g(z) = exp(J50 + i*o)-zAo-exp\ 

is an analytic (and one-valued) function in 3ÏÇ, with ^0 an arbitrary real constant 
and YJ denoting summation over k ^ 0. 

(c) Under the conditions (b), the inequality (4) is sharp if and only if 

f\z\=ig(z)dz = 0, 

with equality holding then if and only if p = Jg(z)dz o j , ^0 and a complex constant 
of integration being arbitrary. 

Proof of (a). Given p = f oj: 2I? —> SB, set 

*(*) = In 1/(2)1 = R e l o g / ' ( s ) . 

Under the projection j = e oj: 31 ̂  —•» SB, where e(z) = 2, we have $(z) = 0 
and so Z>2[j] < oo, since In 5 = <j> is square-integrable over tytQ. Consequently 
we shall establish inequality (4) among smooth projection maps with finite 
distortion, i.e. we shall assume that In ô = <ï> + <j> is square-integrable over 
2lç. §(z) being harmonic in §I?, $ -f <j> is piecewise smooth in 0; let 

E W{r)em 
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be its Fourier representation. By the Lebesgue-Fubini theorem and the com­
pleteness relation we obtain 

(6) 

Let 

rdr • I (* + 4>Y 
VQ «JO 

J
il/Vq 4-oo 

£ Mr)\*rdr. 
•JQ -co 

dd 

Kir) = X) \bk(r)\\ and lim An(r) = h(r). 
—n n-ïco 

From hn(r) < &(r) and (6), we find that 

hn(r)dr < I h(r)dr < oo . 

(A»(r))n=o,i,2,... is therefore an increasing sequence of integrable real-valued 
functions; applying the Monotone Convergence theorem (9), we may write 
(6) as 

h(r)dr = 27rlim J hn(r)dr 

+n /*l/Vq 

= 2xlim£ \h(r)\\dr 
w->co — n *J Vq 

+oo /» 1 /<Sq 

= 2 T £ |6*(r)|Vdr. 
(7) 

The function 

* = Z [6«(r) - a»(r)]e t t ' 
—oo 

is harmonic. Integrating V2<ï> = 0, we find that 

(8) ° * W l £ o l n f + /?o + op(r) * = 0, 

where Ek, Fk are complex constants depending on /(z). From (7) and (8) we 
obtain now 

(9) DJp] = 2r\^ 
U*0 

\Eo - xl + - \0Eo + «oFo + N0\ 
«0 

+oo 

+ C0 + £ ' 
—oo 

"A 
-a-* 

_ aoNk — a-
Ek - — k

Mk 

+• a-fc ^ + iV,|2 + C* }• 
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Since 3> and <£ + 4> are real-valued and bk = &_*, we have dk = a_k. Hence 
from (8) 

(10) Èk = F_kl k^O; È0= Eo, F0 = F0. 

Calculating the harmonic conjugate of 

*(*) = Eo In r + Fo + £ ' (£* r* + i v ^ K * 0 

— C O 

and using (10), we find that/ ' (2) is of the form 

(11) /'(*) = exp(F„ + i^0)2Eo-exp(2 £ ' Ek z
k) , 

with ^0 a real constant. Since /(s) was one-valued analytic, we conclude that 
£0 must be an integer, (a) now follows from (9). 

Proof of (b). Writing 

+ 0 0 00 00 

£ ' Akz«= £ 4 t * * + £ A_kw
k 

- 0 0 1 1 

with w — 1/z, we first establish the uniform convergence of 

1 

in \z\ < \/y/q\ the second term may be treated in a similar way. Let 

\d2<t>/dd2\ < Z? < 00 in Sl„ 

with D independent of r and 6. Twice repeated integration by parts of (1) 
yields 

\ak(r)\ < Dk~\ k>l. 

I t is then easy to see that 

\Mk\, \Nk\ < Dk-Zq-(ik+1) 

for large k. Also, for k large enough, we have 

a0 < a-*, a* > \k~lg-{k+l\ Ak > iaka_k. 

Hence we conclude, for k sufficiently large, say k > k0(q), 

\Ak\ = — \a0Nk - a-kMk\ &k 

2 
< \a0Nk - a-kMk\ 

0Lka-k 

<~[\Nk\ + \Mk\] 
Oik 

< 20Dk~*qik. 
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Therefore for |z| < l/\/<Z and k > ko, 

\Akz
k\ <20Dk~\ 

and the uniform convergence follows. 

Proof of (c). The vanishing of the period J? \z\=i g(z)dz is necessary and 
sufficient for 

f l(t)dt 

to be one-valued and analytic in tytq. The rest is clear from (9), where the 
variables Ek, Fk appear within squares multiplied by positive coefficients. 

2. COROLLARY. Suppose that y{z) = y(r). Then inequality (4) holds with 
Ck = 0, k r6- 0; it is sharp if and only if Ao 9e — 1 , with equality holding then if 
and only if 

[exp(.Bo + ifo) A0+1 , , 1 • 

with \f/Q and \f/i arbitrary constants, real and complex respectively. 

Proof. From ak(r) = 0, k 9^ 0, we conclude that 

Mk = Nk = Lk = Ck = 0, k je 0. 

Hence g(z) = exp(Z?0 + i\l/o)-zAo, and jg(t)dt is one-valued analytic in §I2 if 
and only if A0 9e — 1 . 

3. If 7(2;) = y(r) and 4 0 = — 1, then the inequality (4) cannot be sharp— 
that is, in this case there exists no map with minimal distortion. The right-
hand side of (4) may yet be, however, the greatest lower bound for the dis­
tortions of the projection maps. Knowing that for any such p = / o j , f is an 
analytic map such that (11) holds with E0 an integer, we see that this question 
is equivalent to the following: With E0 = Ao = — 1, is it possible to choose 
the complex constants Ek, k 9e 0, in such a way that 

Z ' ^ \Ek\
2 

is arbitrarily small and j> \z\=\f (z)dz = 0? This problem remains open. 

4. Suppose now that 9Î = § and y{z) = y(r). Defining for § the quantities 
ao, P, Mo, etc. as before (except for the appropriate limits in the integrals) 
we can state 

THEOREM 2. If <j>{r) is square-integrable over &, then for any smooth p: § —» SB, 
we have 

D[p]>2r{^\Ao- x | 2 + C 0 \oto 

This inequality is sharp if and only if Ao 9e — 1 . 
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Proof. We obtain 

J»i T +00 ~] 

l&oCOl* + £ ' \Ekr
k+F)!r

k\2\rdr 
0 L -oo J 

> 2?r I |6o(0|2^> 
Jo 

and the proof carries on as before. 

5. Under the same assumptions as before, one can deduce similarly as for 
Dz[p] an inequality Dz[p, C] > M for arbitrary real constant C, with M 
denoting a non-negative finite lower bound independent of C and p. Letting 
N = exp(ikf/| 2Ï|)* (where |2l| denotes the Euclidean area of 31) we obtain 
from the mean-value theorem the following invariant inequality for the local 
distortion : For every real constant C and every covering map p there exists a 
point Po G 9Î such that either 

6p(Po) >Nec or 6P(P0) <^ec. 

Eliminating C we deduce the following: Let a be any positive real number. 
Then no open interval (a, aN2) contains all local distortions bp of any covering 
map p. 

4. Applications. 

1. Every Riemann surface dt has a universal covering surface ïït which is 
either the Riemann sphere ©, the Euclidean plane (5, or the hyperbolic plane 
§ (Uniformization Theorem, 7). Correspondingly, 9î is said to be of elliptic, 
parabolic, or hyperbolic type. Any projection map p: $1 —> $1 induces on 9Î a 
natural Riemannian metric of constant curvature (locally spherical, locally 
Euclidean, or locally hyperbolic metric. 

§ is of hyperbolic type. If § is represented by the upper half f-plane with 
line-element ds$ = |df| /Im(f), then a covering map of § onto § is given by 
z = e**, and the induced locally hyperbolic metric on @ becomes 

(12) dsi ^ 
|*|in(i/Mr 

Each %q is also of hyperbolic type. With the same representation for § , the 
following is a projection § —> %q\ 

-Viexp(!sfS>l„f). z 

with induced metric on %q\ 

ir\dz\ 
(13) ds*q ln(l/q)\z\ cos(7r ln|s|/ln q) ' 
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Since these expressions are invariant with respect to the group of conformai 
automorphisms of § and îlQ1 they represent essentially the only complete 
Riemannian metrics of constant curvature possible on these surfaces. In both 
cases 7(2) = y(r)\ from the calculations that follow it will become evident 
that <t>(r) is square-integrable so that we are justified in applying the preceding 
distortion theorems. We shall demonstrate the existence of minimizing con-
formal representations for the surfaces § and Sï? with metrics (12) and (13) 
respectively by estimating A 0 in each case. 

2. THEOREM 3. For § with metric (12), any smooth covering map p: § —» SB 
satisfies D[p] > w(%w2 — 1), with equality holding only for 

p(z) = exp(£ + 1 + i\l/0)'Z
2 + fa, 

where £ denotes Eider's constant, and \f/o and ypi are arbitrary constants, real and 
complex respectively. 

Proof. Substituting <j>(r) = In r + In In (1/r), we obtain for the ''charac­
teristic exponent" (3), x = 1> and thus AQ = 1. (For some of the non-
elementary integrals appearing in (2) see Appendix.) 

3. THEOREM 4. For an annulus with metric (13), any p: 21̂  —> S35 satisfies the 
following inequality which is best possible: 

(14) D.\p] > 2 x { ^ \A0(s) - x ( s ) | 2 + Co(s)} , 

where the symbols occurring have the following meaning: 

s = (I/7J-) In (1/g), aQ = sinh(7rs), 

Ao = i[sinh2M - M2], *(*) = r'(*)/r(*), 

(16) Co(s) = - sinh(7Ts){^ + I Re[*'(is)] + | s~ 2 

1 sinh2(7T5)-/ T 2 r i , , . N 1 

+ • u 2 / — \ 7 — T 2 I m Lr (W)J 
sinh (TT5) — (71-s) 

5 > o-, 
for o- > s > 0, 

5 = a; 

Re = real part of, Im = imaginary part of. 

The number a is the (single) solution of the transcendental equation x(s) = h ̂ n 

s > 0 and satisfies 0.33 < a < 0.34. 
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Hence for large conformai modulus (i.e. q near 1: narrow annuli) the 
minimizing maps are similarities, but wide annuli (q small) are mapped on 
double-sheeted rings. Thus, surprisingly, the minimal coverings are either 
"schlicht" or double-sheeted, and no higher numbers of sheets occur. There is 
one single annulus corresponding to s = a where both simple and double 
covering lead to the same minimal distortion. 

Proof of Theorem 4. The following proof makes use of some lemmas whose 
treatment is postponed to §4.4-6. Taking into account some non-elementary 
integrals occurring in (2) and (3) which are evaluated in §5, we obtain (15) 
and (16). In order to prove (17) we show first that - 1 / 2 < xOO < 3/2 for all 
5 > 0, whence A0 is either 0 or 1. Using the expansion in partial fractions 

*« = - £ + S(*TT- ÏT î ) ' 
we rewrite (15) in the form 

c(s) =x(*) + l =4J(*)2(s ) , 

with 

t / N sinh2(7T<>) w , _ ^ n 

sinh (ITS) — (TS) ~x (n + s ) 

We now estimate 2 (k) for a positive integer k by its Euler-MacLaurin expan­
sion, truncating after the third term, within the following error (see §4.5): 

(18) S(*) = 2 F + ¥ + 12 (1 + k2)2 + 3 (1 + k2)3 d= 9 P * 

If / = [s', s"] is any finite closed subinterval of [0, » ) , since b(s) is strictly 
increasing (see §4.4) and 2(s) is decreasing, we have 

mm c(s) > 4 [min &(*)!•[ minZfc)] = 46(5r)2(5"), 
sel L sel J L S€l J 

maxc(s) < 4f" max 6(5)"]-[max S (5)"] = 4b(s")2(s'). 
se I L sel J L sel J 

We shall show that c(s) > § by partitioning [0, oo) into appropriate sub-
intervals [s',s"] and checking that 4b(s') 2 (s") > | for each such interval. 
This is easily done for each of the intervals [0, J], [J, 1], [1, 3/2], and [3/2, 2]. 
Thus c(s) > \ for 0 < s < 2. b(0) is needed for the first of these calculations; 
we define 

6(0) = lim&($) = —2. 

Suppose now that 5 G [n, n + 1], n an integer > 2 . Then 
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c(s) > 46(»)Z(n + 1) > 4^2S(n + 1) 

2n 20 1 

> ^-+^-+"2 " T V fr°m (18) 

> \ for w > 2. 

Thus c(s) > | for 5 > 0. 
The proof of c(s) < 5/2 is similar. A partition of [0, 10] into intervals of 

length 1/10 proves sufficiently fine to check that max c(s) < 5/2 for 0 < s < 10. 
If 5 G [n, n + 1], n an integer > 10, then using b(n) ~ n2, since sinh(7T5) > 107, 
we obtain 

c(s) < 4:b(n + 1 ) 2 0 ) =* 4 0 + 1 ) 2 20) 

/ 0 1 12w + 5 , 10w + 4 , Sn 
3(1 + nÀ) ' 3(1 + n y ' 3(1 + w2) 

n* 9 
, O + l ) 2 2 0 , 

+ 3 77 (from (18)) 

< 2.43 for n > 10. 

Therefore c(s) < 5/2 for s > 0. From the above calculations and (16) we 
remark that Co(s) varies approximately as sinh(7rs); from 

Ap _ sinh (ws) — (TS) 
a0 4sinh(7rs) 

we see that the right-hand side of (14) also varies roughly as sinh(7rs). 
A partition process, similar to those used above, with mesh diameter 1/1000, 

was programmed for an IBM 1650 electronic computer and yielded the 
following results: 

c(s) < 3/2 for 5 € [0,0.33], 
c(s) > 3/2 for 5 Ç [0.35,3]. 

In §4.6 c'(s) is shown to be positive in the intervals [0.33,0.35] and [3, <»). 
Also, c(0.34) > 3/2 by direct calculation. Combining these results with the 
previous remarks, we conclude that there exists a value c, 0.33 < <x < 0.34, 
such that c(a) = 3/2 and 

1/2 < c(s) < 3/2 for 0 < s < <r, 3/2 < c(s) < 5/2 for a < s. 

Knowing c'(s) > 0 in [0.33, 0.34], the critical value of the conformai modulus 
qc = e~™ can be computed as accurately as desired. 

4. LEMMA. b'(s) > 0 for s > 0. 

Proof. Because 

•LU \ o 3r2/ J / x-3 COsh(7T5) 

4 (*)-2r& (*)|_(«) - ^ h V ^ J ' 
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it is sufficient to show that 

h(t) = 
sinh t 
cosh t 

f > 0 for / > 0. 

This follows from 

and 

MO) = A(0) = A(0) = 0, 

h(t) = ^ T T (4 cosh2/ + 3) > 0. 
cosh / 

5. Proof of (18). Letting/(x) = x/(x2 + 52)2, we obtain 

12x(x2 - / ) ( < 0 
r{x) ~ (x2 + sy ) > o 

which permits us to use Euler's formula twice: 

for 
X ^ S j 

X ^ o , 

k 1 
(19) Ë ZXT-T2T2 = Ê /(») = f /«)<& - i/(0 

w=i (n -f- ft ) n=i Ji 

CO /*CO -1 

(20) g (g, ^ fe2)2 = J /(*)* + if(*) - y2f(k) + Et(k), 

+ E1(k), 

and estimate 

|£i(*)| < 2 ~[f'"(k)-f"(l)) 

\Et(k)\ < 2 !*/'"(*) • 

We find that 
/ " ' (*) = 3^~6/2 and / ' " ( l ) < 12 X 1 6 » ~ 6 , 

whence 
|£i(A) +E2(k)\ < 5k~«/9. 

Adding (19) and (20) we obtain (18). 

6. LEMMA. C'(S) > for s £ I0 = [0.33, 0.35] and s > 3. 

Proof. We consider the function p(s) defined by 

Ss sinh(7rs) 
(21) c'(s) - [ s i n h 2 ( ; r 5 ) _ ( 7 r5 )2 ]2 

85 sinh(7T5) 

/>(*) 

[sinh2(7T5) - (TTS)2]2 

X [sinh3(7T5) - cosh(Trs)(irs)Z]Z;(s) 

2 • v / \ r • 1 2/ 25 sinh(7ns)[sinh (71-s) — (ITS) ] ]>^ 
^ 1 (w + 5 ) 
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Calculations yield p (0.35) > p (0.33) > 0.0135. We approximate p(s) in I0 

by the linear interpolating polynomial 

P(s) = 0.0135 + (, - 0.0135) ^ - f l e t l ^ . 

with an accuracy 

\P(s) - P(s)\ < | (0.35-0.33)2 |p"(s0)|, *o G /0 ; 

see (8). Computations show that \p"(s)\ < 4 in I0, whence 

\P(s) ~p(s)\<2X 10-4. 

Since P(s) > 0.0135 in J0, we obtain £(s) > 0.0135 > 0 in IQ. 
For s > 3, c'(s) is very nearly equal to 

, , v 85 sinh (TS) <A n(n — s ) 
HS) " sinh2(7T5) - (xs)2 h in + s2)3 ' 

This can be seen from (21) using sinh(7rs) = coshes) and [irsY ~ (ns)2 in 
comparison to sinh3(7rs). The Euler expansion of the series term enables us to 
find a constant r such that 

d(s) > r > 0 and \c'(s) - d(s)\ < r for 5 > 3. 

5. Appendix. In the proofs of Theorems 3 and 4 the following non-
elementary integrals are needed: 

(i) f 2 (In cos t)neatdt, 

where n is a positive integer and a an arbitrary real number. (We are grateful 
to Dr. M. Wyman of Edmonton for help in evaluating this integral). 

Consider 

(cos t)x cosh (at)dt 
0 

(cos t)x cos (iat)dt 
0 

7r r (x+ 1) 
2 * r ( i + i ( * + **))• r ( i + * ( * - * * ) ) ' 

see (4, Vol. 1, p. 12). Differentiating n times with respect to x and then setting 
x = 0, we obtain 
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dn I p^ r 

—n I(x) I = 2 I (In cos t)n cosh(at)dt 
ax I X=ZQ J o 

(In cos t)n eat it - X 
J±\L 

\dx/ hx 

TCT(X + 1) 

r(i + §(* + «a))r(i + |(x - ia)))I=0" 

J»oo 

In 
0 

Defining 

2 - 2 M 7 

u e du. 

we find that 

K(t) = ^ ul e~2u du^^j™ (j)e-v dv 

= 2~* _ 1 r ( /+ 1) for Ret > - 1 , 

i t00 = dK/dt = K(t)[f(t + 1) - In 2], 

and notice that 

J»oo 

In ue~2udu = X(0)[iKl) - In 2] = - | (£ + In 2). 
o 

Differentiating once more, we have 

K{t) = K(t)[+(f + 1) - In 2] + K{t)î,{t + 1), 

and 

K(0) = r In ue~2udu 
Jo 

= K(0)[^(1) - ln2Y + K(0)HI) 

= H? + ln2)2 + ^ 
(£ = Euler's constant). 
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