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Statistical analysis of nutritional studies
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Statistical analysis of data collected in experimental or observational studies is an important part
of nutritional research. If it is not done appropriately, there is a risk that information in the data is
lost, or that conclusions are misleading. The present article does not attempt a full review of the
subject of statistics, but attempts to list aspects where care is needed.

Statistics: Data analysis: Randomisation: Experimental power

Nutritional studies draw on many scientific disciplines, and
one that must be prominent in any list is statistics, the
science of variability. The consideration of variation is
something which is inescapable in any nutritional research
undertaking, whether it be experimental or observational, on
human subjects or animals, or based on laboratory cultures.
There is always a need to describe variation, and to draw
conclusions in the presence of variation.

Many scientists find an understanding of statistics
doesn’t come easily, however great the need. Some of this
lack of understanding is due to statistics having too often
been presented as a branch of mathematics, which it is not
(mathematics is one of its tools). Some of it is also due to
the abstraction of the subject’s central ideas, such as the
need to consider not only the variation in experimental
material, but also the uncertainty in sample summaries
and in conclusions drawn.

I do not intend to give a review of, or introduction to,
the subject as a whole. There are many textbooks suitable
for this purpose (and, regrettably, many which are not!).
Instead, I will draw attention to ten issues in the statistical
treatment of nutritional studies which are often misunder-
stood or confused. I expect that most statisticians working
in nutrition would devise a fairly similar list. A
considerable influence on the selection presented is the
reviewing of many papers submitted for publication in the
British Journal of Nutrition.

The order of the list is not necessarily intended to reflect
importance. The first six points are general, the next three
relate specifically to experimental studies, and the tenth
relates to observational or survey studies, where much less
control, or none, of the effects and mechanisms being
investigated is possible.

It may not help to categorise

It seems to be a human instinct to lump information into
groups. This solution is not always helpful when done with
measurements which show continuous variability. It is
common, for example, with different levels of intake of
nutrients or exposure to hazards to group individuals into
(typically) between two and five ranges of intake or
exposure, and then to base statistical analyses on differences
between groups. This approach appears to be adopted
mainly for ease of presentation. It means that one can quote
differences between groups, which are easy to understand.
We can, for example, talk about individuals being lean or
obese as if these were distinct groups with different
characteristics, even though the truth is that very many
individuals are close to the cut-off BMI of 25 kg/m2. The
drawback of categorising is that we throw away
information. How much will depend on the distribution,
but will typically be about 36 % for two groups, 21 % for
three groups, 14 % for four groups and 11 % for five groups
(based on a normal distribution and linearity of effects).

A lesson may be that if we must group, then we should
have five or more groups. One use of such grouping is to
detect non-linearity of response to the grouping variable.

Standard deviations and standard errors are not
interchangeable

The standard deviation, standard error and standard error of
difference are all widely used indicators of variability,
although sometimes rather indiscriminately. They are all
useful, but they provide information about different aspects
of variability.
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The standard deviation indicates how variable measure-
ments are. It should be quoted if this aspect of variability is
of interest; for example, if we wish to compare variability in
two populations.

The standard error indicates how precise an estimate is. It
can be obtained for any quantity estimated from a sample,
such as a mean, a proportion or a regression slope. It should
usually accompany any estimated quantity quoted in a
paper, where these estimates are of interest in themselves,
rather than compared with some other estimate. An example
might be the proportion in a population suffering some
medical condition, or a regression coefficient relating a
response and explanatory variable.

The standard error of difference is the standard error of
the difference between two estimated quantities, usually two
means. It is quoted when interest is in such a difference; for
example, as an estimate of a treatment effect. The standard
error of difference is more often required than the standard
error, reflecting the greater usefulness and interpretability of
comparisons than simple estimates, in nutritional studies.

A 95 % CI is a range of values consistent with the
quantity being estimated. If calculated correctly, and based
on valid assumptions, 95 % of such intervals will contain the
true but unknown value of the quantity being estimated.

Any of these indicators could be used to draw error bars
on a chart, but it should be stated explicitly which is being
used. The current convention seems to be to use the standard
error. If comparisons are the main interest, then the standard
error of difference or CI are more appropriate.

Don’t revere the 5 % significance level

A P value is a measure of evidence. The smaller the value,
the greater the evidence against a simpler model (e.g. no
effect, no association) than the one of potential interest (an
effect or an association). The use of P¼0:05 as a cut-off is a
convention which has an historic basis rather than a
scientific, mathematical or philosophical basis. Papers have
been submitted to the British Journal of Nutrition with P
values such as 0:045 and 0:055 used to draw opposite
conclusions for the comparisons to which they referred. This
is nonsense; the P values are almost the same. While few
individuals would quarrel that P values .0:1 indicate
negligible evidence, and those ,0:01 indicate considerable
evidence, anything between these values should be
discussed with caution rather than confidence.

It may be confusing that, being measures of evidence
rather than providers of infallible conclusions, results based
on P values do not necessarily follow the rules of logic. We
may have three treatments (A, B and C) and conclude that A
and B do not differ significantly, nor do B and C, but that A
and C do. This conclusion is logically impossible, if
interpreted rigidly. A more appropriate conclusion is that A
and C appear to differ, but that the data do not allow us
reliably to discriminate among the possibilities that B is
similar to A, that it is similar to C, or that it is somewhere in
between.

Does the power of the experiment justify the claims?

It is often quoted that ‘absence of evidence is not the same

as evidence of absence’, but it seems frequently to be
forgotten in the writing up of experimental work. A P value
.0:05 is often used to justify a conclusion that no effect or
association exists. The most formally correct way to address
this issue is in terms of power calculations; the probability
that the experiment would detect as significant an effect of a
specified size, if it existed. Put simply, how likely are we to
detect an effect if it exists? This likelihood might be rather
lower than the experimenter imagines.

Another way to consider the extent of evidence against
the existence of an effect is to examine a CI (95 % or 99 %)
for the size of an effect. If this value is, for example, ‘mean
10 (CI 22, +22)’ (in whatever units are appropriate), then
the data are quite consistent with the effect being zero.
However, they are equally consistent with it being 20. If one
chooses to dwell on the former in discussing the result, then
this preference is based on knowledge or experience rather
than the data. There may be some merit in replacing a bland
‘no significant effect’ conclusion with something like ‘it is
unlikely that the effect exceeds 22’.

Non-parametric tests lack power

Many researchers appear not to realise that non-parametric
tests (such as the Mann–Whitney, Kruskal–Wallis,
Wilcoxon etc.) are less likely to detect effects and
associations than more standard distribution-based
approaches (such as t tests, ANOVA etc.). This is largely
because the tests discard some of the information in the data.
Most tests are based on rank orderings only, rather than the
absolute values of the measurements. They have the
disadvantages that they are unrelated to the data summaries
(means and standard deviations) which will also necessarily
be reported, and versions for even moderately complex
experimental structures are hard to find.

Authors often opt for non-parametric tests because of
concerns about normality, or because their use is thought to
show greater caution. Normality concerns are often
unjustified. Some experimenters have unrealistically high
expectations of how close the histogram of a small data set
should resemble a perfect Gaussian curve. Where
distributions are clearly skewed, then a transform, such as
the logarithm, should first be considered. Non-parametric
tests should be used only as a last resort, usually with data
which have many zeros (e.g. numbers of cigarettes smoked
per d), or only take a small number of distinct values (such
as number of lambs born to a ewe, or observations based on
a five-point subjective scoring system).

Multiple comparison tests are usually best avoided

The idea behind multiple comparison tests is appealing. If
we are testing several factors at once, such as comparing
two or more treatment regimens with a control, or
comparing each of the treatments with each other, then
the overall risk of a statistical test giving a false positive is
greater than the P value at which each test is done. Multiple
comparison tests are a way of adjusting for this factor, and
getting bigger P values as a result. They have the one
advantage of dampening excitement about just-significant P
values. However, on the whole they more often hinder
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rather than help interpretation. There are many different
tests (Tukey, Duncan’s, Student–Newman–Keuls, Bonfer-
roni, Dunnett’s, Hsu’s and many more), all taking different
views of the comparisons to be made. Few scientists or
statisticians will be able to recall what each test is aiming to
do. All tests have somewhere the idea of a set of
comparisons of equal interest, which is rarely true in
practice. It is usually best just to present simple P values and
remind the reader that type I error rates (false positives)
apply to each test, not to them all taken together. This point
is more important when the comparisons being tested were
suggested by examination of the data rather than having
been specified in advance as part of the experimental
protocol. If one is determined to use a multiple comparison
test, then a brief explanation of what it does, and a reference
to the literature, should be provided.

Blocking is not just for horticulturalists

It is perhaps unfortunate that one of the most powerful
devices in experimental design, blocking, is a term which
derives from its historical development in crop research. It
refers to the arrangement of experimental material (animals,
human subjects, or whatever units experimental measure-
ments are taken on) into groups such that variation within
groups is less than for the material as a whole. If treatments
are applied within groups, then the random variation against
which treatment effects are assessed will be less than if the
grouping had not been done. Managing the experiment in
groups can simplify planning, and ensure that any
extraneous sources of variation (differences over time,
between individual experimenters etc.) end up as differ-
ences between groups, where they will not affect the
precision of assessments of treatment effects. Often there is
very little extra cost and effort in such grouping, and much
to be gained. Any measurement which can be taken before
the experiment starts, and which is likely to be correlated
with the experimental measurements of interest, can be a
base for grouping (blocking). It can also be based on the
time sequence in which laboratory measurements are made
(i.e. all one block first, then all the next block etc.), or the
physical layout of media which have to be left to develop for
a time in a controlled environment (such as an incubator).
The only situation where grouping may be not a good idea is
where group differences and sample sizes are small.

Not all comparisons are made on the same level

A common situation in experiments is illustrated by the
following example: animals are assigned to different
treatment groups in which they remain for the duration of
the experiment. Let us use breed as an example (there being
no doubt that an animal must remain of the same breed!). In
addition, some other factor varies on different occasions for
each animal. This factor may be simply the passage of time
itself, or it may be something which is done to the animal,
such as before and after some treatment, or an alternation of
a treatment factor. Let us use diet as an example. The
experimenter will be interested in effects of diet, of breed,
and whether there is an interaction between them. It may
seem natural to examine a standard two-way ANOVA. For

the example given earlier, with (for example) two breeds,
three diets and six animals of each breed, the ANOVA of the
thirty-six observations, three each on twelve animals, would
look like:

Source df
Breed 1
Diet 2
Breed� diet 2
Residual 30
Total 35

where only the columns for the source of variation and df
are shown. This ANOVA is wrong. It is mixing a between-
animal comparison (breed) and within-animal comparisons
(diet and breed� diet). There may be quite different
amounts of random variation at these two levels. A correct
ANOVA is hierarchical, often termed split-plot (another
hangover from the early horticultural days of statistics). For
the example given earlier it will look like:

Source df
Between animal

Breed 1
Residual 10

Within animal
Diet 2
Breed� diet 2
Residual 20

Total 35

The between-animal part of the ANOVA shows the sources
of variation between animals, including the residual random
variation, and the within-animal part shows the sources of
variation in measurements at different times on the same
animal, again including a residual random part, which will
usually be quite different from the between-animal random
variation.

Many elementary statistical software programs will not
perform ANOVA such as the example given earlier, but for
experiments with variation at more than one level it is
essential, and programs such as Statistical Analysis System
(SAS Institute Inc., Cary, NC, USA), Genstat (NAG Ltd,
Oxford, UK), BMDP (Statistical Solutions, Saugus, MA,
USA), SPSS (SPSS Inc., Chicago, IL, USA) or any other
which will do a correct analysis must be used.

A common source of within- and between- subject or
animal observations is repeated measures studies, where the
development of a measurement over time is of interest. This
approach adds the further complexity of likely non-
independence of observations at nearby time points. There
are many sophisticated ways of dealing with this factor (for
more detail, Diggle et al. 1994). A very simple and elegant
approach, which avoids most difficulties, is to calculate
summaries for each subject (means, contrasts, rates of
change) of the sequence of observations and compare these
summaries between subjects in different groups. Matthews
et al. (1990) provides a clear explanation.

Compare whatever received the treatments

Randomisation is essential for ANOVA and t tests, which
base their calculations on random distributions. Where this
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factor is sometimes overlooked is in experiments where
measurements are made on different units from those which
were randomly allocated to treatments. If an experiment
allocates treatments to, for example, sows or female rats,
and then takes measurements on the piglets or rat pups, then
the analysis should be done at the level of the sow or rat
mother, since she received the treatment. The piglets or pups
within a litter do not provide independent observations of
the treatment effect. They share some genetic relatedness
and a common uterine environment. The correct approach is
to take averages (or possibly some other summary) over
litters, and compare the litter averages.

Nutritional surveys aren’t easy

Here we consider a few points relevant specifically to
nutritional surveys. The methods of analysis of data
collected in such studies tend to be straightforward, i.e.
summaries, correlations and tests of differences between
subgroups. If there is a problem, it is usually that authors
show insufficient awareness of the inherent difficulties in
nutritional surveys, which need to be acknowledged when
attempting to draw conclusions from results. Any of the
standard methods of assessing dietary intake (food diaries,
recalls, food-frequency questionnaires) are of doubtful
precision or accuracy. Individuals are forgetful and
untruthful about what they eat. Studies which have
compared different intake measurement methods, some-
times also recording blood chemistry markers, have shown
alarmingly low correlations, an indication of substantial
measurement error. These problems cannot be avoided, but
their effects must be discussed.

Another issue which needs comment in any survey report
is how representative those surveyed are of any population.
Nutritional differences are known to exist between group-
ings of individuals based on age, gender, education, socio-
economic status, geographical region and many other
factors. Those individuals who cooperate with or volunteer
for a study may differ from those who don’t. Authors must
at least speculate on how these aspects might bias their
results.

And finally...

Do what you say and say what you do

This eleventh point (breaking my promise to stop at ten!) is
to say that it is not enough that proper statistics be done, but
also that they must be seen to be done. The statistical
methods section of many papers is often very inadequate,
making it impossible for the reader to decide whether the
authors have treated their data fairly or not. For example, it
is not enough to say something like ‘data were analysed by
ANOVA’. The authors may think it obvious what the details
of the analysis must have been, but this may not be so clear

to the reader. Full details should be supplied. In the case of
ANOVA the outcome measure, the structure used and the
factors included should be listed.

Conclusions

The eleven issues discussed are just a series of points which
may be useful for anyone planning, analysing or reporting
on research in nutritional science. They do not in any way
constitute a guide to statistical methods; that would require a
textbook, perhaps several. Many textbooks are available,
and a bibliography is not attempted here. I am not aware of
any textbooks which cover specifically the statistical aspects
of nutritional experimentation. Epidemiology is a little
better catered for, with books by Frank (1996) and Margetts
& Nelson (1997). For experimental studies, many of the
standard textbooks, such as Mead (1990) and Cox (1992),
while not specifically dealing with nutritional research, are a
valuable source of ideas.

I will draw attention to one useful source of statistical
understanding, which is the articles published frequently in
the British Medical Journal by JM Bland and DG Altman.
These articles address one topic per article, and explain the
ideas with clarity, using examples relevant in medical
research. Articles appearing since 1994 are freely accessible
at http://www.bmj.org. Their textbooks (Bland, 2000; Bland
& Peacock, 2000; Altman, 2001) are also valuable.
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