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Abstract There is an unfortunate error in Theorem 4.1 of our paper. However, the statement of the
theorem remains true with a correct construction of adding a tail to enlarge the dynamical system.
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This error was pointed out by Elias Katsoulis, who, with Kakariadis, has found a correct
version in the more general context of C∗-correspondences. The problem is that the
procedure of adding a tail has to be more complicated. As Kakariadis and Katsoulis
point out [3, Example 4.4], the problem arises in showing that the completely isometric
embedding of C∗

e (A(X, σ)) into C∗
e (A(XT , σT )) is a corner. We claimed that

C∗
e (A(X, σ)) = χXC∗

e (A(XT , σT ))χX .

But in order to prove this, one must show that terms of the form χX tuχT f t∗vχX lie in
the span of terms of the form χX tuχXf t∗vχX . This is false for the tail that we proposed.

A correct construction of such a tail is modelled on the infinite tail extensions of the
left regular representation of the free semigroup F

+
n to a Cuntz representation from [1].

Kakariadis and Katsoulis [3] carry this out in greater generality, but we will briefly
describe one way it can be done in our context.

Recall that X is a locally compact Hausdorff space and σi are proper maps of X into
itself for 1 � i � n, where n � 2. Set U = X \

⋃
1�i�n σi(X). Let F = F

+
n \ F

+
n 1 be the

words in F
+
n ending in 2, . . . , n together with the empty word ∅. Let G = Z− × F and
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define the tail to be T = G × U . Define proper maps σT
i on XT = X ∪ T by σT

i |X = σi

and

σT
1 ((k, w, u)) =

⎧⎪⎨
⎪⎩

u if k = −1, w = ∅,

(k + 1, ∅, u) if k < −1, w = ∅,

(k, 1w, u) if |w| � 1

and σT
i ((k, w, u)) = (k, iw, u) for 2 � i � n.

Now follow through our proof of Theorem 4.1 with this new tail. Everything proceeds
in the same way, except that when we claim that

C∗
e (A(X, σ)) = χXC∗

e (A(XT , σT ))χX ,

this will be correct for the new tail. The reason is that the elements ti|T are all isometries
which carry each copy of U onto another copy because of the fact that the maps σT

i |T have
disjoint ranges, and take each copy of U homeomorphically onto another. Thus, the terms
in the corner which are not evidently in C∗

e (A(X, σ)) have the form χX tuχ(−k,w,U)f t∗vχX ,
where f ∈ C0(XT ) and k > 0. A bit of reflection shows that this is 0 except when u = u′1k

and v = v′1k for some k > 0, and the term is

χX tu′1kχ(−k,∅,U)f t
∗
v′1kχX = tu′(χX t1kχ(−k,∅,U)f t

∗
1kχX)t∗v′ .

But χX t1kχ(−k,∅,U)f t∗1kχX is just the restriction of f to (−k, ∅, U) transferred to U , and
hence lies in C0(U). Thus, all of these terms belong to C∗

e (A(X, σ)), and the rest follows.
We do not give details because a full discussion can be found in [3].
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