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HOW TO AVOID THE ZERO-POWER

TRAP IN TESTING FOR

CORRELATION*

DAVID PREINERSTORFER

Université libre de Bruxelles

In testing for correlation of the errors in regression models, the power of tests can

be very low for strongly correlated errors. This counterintuitive phenomenon has

become known as the “zero-power trap.” Despite a considerable amount of literature

devoted to this problem, mainly focusing on its detection, a convincing solution has

not yet been found. In this article, we first discuss theoretical results concerning the

occurrence of the zero-power trap phenomenon. Then, we suggest and compare three

ways to avoid it. Given an initial test that suffers from the zero-power trap, themethod

we recommend for practice leads to a modified test whose power converges to 1 as

the correlation gets very strong. Furthermore, the modified test has approximately

the same power function as the initial test and thus approximately preserves all of its

optimality properties. We also provide some numerical illustrations in the context of

testing for network generated correlation.

1. INTRODUCTION

Testing whether the errors in a regression model are uncorrelated is a standard

problem in econometrics. For many forms of correlation under the alternative,

there are well-established tests available. Two prominent examples are the Durbin–

Watson test for serial autocorrelation and the Cliff–Ord test for spatial autocorre-

lation. Nevertheless, this type of testing problem is not completely solved, not

even in the Gaussian case. This is partly due to the fact that tests for correlation,

including the well-established tests mentioned before, do not always behave as

they ideally should in finite samples: Whereas the size of most tests can be easily

controlled, at least under suitable distributional assumptions, such as Gaussianity,

their power function can attain very small values in regions of the alternative where

the correlation is very strong. This, however, does not match with the intuition that

strong correlations should be easily detectable from the data, i.e., that the power of

a test for correlation should be close to 1 if the degree of correlation in the errors

is very strong.

*I thank the Editor, Co-Editor, and two referees for helpful comments. Financial support by the Program of Concerted

Research Actions (ARCs) of the Université libre de Bruxelles is gratefully acknowledged. Address correspondence

to David Preinerstorfer, European Center for Advanced Research in Economics and Statistics and Solvay Brussels

School of Economics andManagement, Université libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Bruxelles,

Belgium; e-mail: david.preinerstorfer@ulb.be.

© The Author(s), 2021. Published by Cambridge University Press. 1292

https://doi.org/10.1017/S0266466621000062 Published online by Cambridge University Press

https://www.doi.org/10.1017/S0266466621000062
https://doi.org/10.1017/S0266466621000062


HOWTOAVOID THEZERO-POWERTRAP INTESTINGFORCORRELATION 1293

Overlooking strong correlations in the errors can have severe practical conse-

quences. For example, Kelly (2019) discusses 27 prominent examples from the

economics literature, where strong spatial autocorrelation in the errors potentially

led to overly large t-statistics and spurious conclusions. Among others, the author

recommends supplementing the analysis by a test statistic for spatial autocor-

relation (note that the author uses the term Moran’s I statistic which we refer

to as the Cliff–Ord test statistic). This suggestion anticipates that such tests are

automatically sensitive to strong correlations, which, however, is not guaranteed.

That the power function of a test for correlation can drop to 0 as the correlation

increases was first formally established in Krämer (1985), who considered the

power function of the Durbin–Watson test in testing for serial autocorrelation. The

results in Krämer (1985) were extended in later work by Zeisel (1989), Krämer

and Zeisel (1990), and Löbus and Ritter (2000). Kleiber and Krämer (2005)

obtained similar results for the Durbin–Watson test when the disturbances are

fractionally integrated. Krämer (2005) proved related results for Cliff–Ord-type

tests in cases where the regression errors are spatially autocorrelated. A unifying

general theory that neither relies on the specific form of correlation nor on very

special structural properties of the tests was developed recently in Martellosio

(2010) and Preinerstorfer and Pötscher (2017). We refer the interested reader to

the latter articles for formal results and a thorough discussion of the literature.

The major practical value of the just mentioned articles is of a diagnostic nature:

They provide conditions which depend on observable quantities only and which

let a user detect whether a particular test is subject to the zero-power trap, i.e.,

whether its power function drops to 0 as the correlation increases. This is important

because if it turns out that an initial test is subject to this trap one may want to

use another test. However, one is then confronted with the problem of finding a

test that avoids the zero-power trap. One complication is as follows: Typically,

the initial test was chosen for a reason, i.e., for its “optimal” power properties in

certain regions of the parameter space (think of a locally best invariant test). In

such situations, one would not just like to use some other test that avoids the zero-

power trap. Much more likely, one would prefer to slightly modify the initial test in

such a way that its optimality properties are preserved, at least approximately, but

such that its modified version does not suffer from the zero-power trap. Compared

with the amount of literature that concentrates on deriving diagnostic tools for

detecting the zero-power trap, the attention that has been paid to the question

how one can construct tests which do not suffer from the zero-power trap is

much less. Furthermore, it is not clear how to obtain said “optimality-preserving”

modifications. The main contribution of the present article is to fill this gap. In the

following paragraphs, we provide an overview of the article’s structure together

with a more detailed summary of our contributions.

In Section 2, we introduce the framework: the model and the testing prob-

lem, some notational conventions, and an important class of tests. In Section

3, we formally define the zero-power trap phenomenon, obtain some sufficient

conditions for it from results in Preinerstorfer and Pötscher (2017), and then
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consider in our general framework the question how often, i.e., for “how many”

design matrices, the zero-power trap actually arises. We answer this question in

Propositions 3.4 and 3.6. The former proposition proves (and generalizes) an

observation already made in the discussion section of Krämer (1985). The latter

proposition is obtained by generalizing an argument in Martellosio (2012), who

considered the same question in a spatial autoregressive setting. Essentially, these

two propositions show (for the tests based on the specific family of test statistics

and the corresponding critical values considered), respectively, that (i) the zero-

power trap arises for generic design matrices (i.e., up to a Lebesgue null set of

exceptional matrices) for small enough critical values; and (ii) for any critical value

that leads to a size in (0,1), there exists an open set of design matrices for which

the zero-power trap arises.

In Section 4, we present three ways to avoid the zero-power trap: In

Section 4.1, we briefly discuss a test for which Preinerstorfer and Pötscher (2017)

have shown that it does not suffer from the zero-power trap. This test typically

does not have very favorable power properties, apart from the fact that it avoids the

zero-power trap.We shall mainly use it later as a building block in our construction

of “optimality-preserving” tests. In Section 4.2, we discuss tests that incorporate

artificial regressors to avoid the zero-power trap. The suggestion of adding artificial

regressors to the regression and to use “optimal” tests in this expanded model is

present already in Krämer (1985), who observed numerically that adding the

intercept to a regression without intercept helps to avoid the zero-power trap for

the Durbin–Watson test. Our theoretical results in Section 4.2 exploit results in

Preinerstorfer and Pötscher (2017) and are related to the methods in Preinerstorfer

and Pötscher (2016) and Preinerstorfer (2017), who considered the construction of

tests with good size and power properties for testing restrictions on the regression

coefficient vector. While the tests in Section 4.2 are “optimality-preserving” to

some extent (more specifically, they often have the same optimality property as

initial tests, but within a smaller class of tests), it turns out that this solution to the

zero-power trap is not ideal. For example, the power function of these tests does

not increase to 1, as the strength of the correlation increases (which is the case for

the approach outlined in Section 4.1).

In Section 4.3, we construct optimality-preserving modifications avoiding the

zero-power-trap out of an initial test that suffers from the zero-power trap. Our

approach overcomes the limitations of the approaches discussed in Sections 4.1

and 4.2. In particular, our method leads to tests that have approximately the same

power properties as the initial test. Furthermore, their power converges to 1 as the

strength of the correlation increases. The construction is inspired by the power

enhancement principle of Fan et al. (2015) in the formulation used in Section 3

of Kock and Preinerstorfer (2019). The basic idea of this principle is to improve

the asymptotic power of an initial test by using another test, a power enhancement

component, which has better asymptotic power properties than the initial test in

certain regions of the alternative. Since the theory in Fan et al. (2015) and Kock and

Preinerstorfer (2019) is asymptotic, and the present article is concerned exclusively
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with finite sample properties, their results do not apply here. Nevertheless, we can

adapt the underlying heuristic to our context: Given an initial test that suffers from

the zero-power trap, but has favorable power properties in other regions of the

alternative, we “combine” this initial test with the test from Section 4.1 to obtain

an “enhanced” test.

In Section 5, we compare the approaches for avoiding the zero-power trap

discussed in Section 4 numerically. We reconsider an example in Krämer (2005)

in which the Cliff–Ord test turns out to suffer from the zero-power trap. Section 6

concludes. All proofs are collected in Appendixes A–C.

2. FRAMEWORK

In the present section, we introduce the model, the testing problem, some notation,

and we discuss an important class of tests. Most of the notational conventions and

terminology we use are standard and coincide to a large extent with the ones in

Preinerstorfer and Pötscher (2017). We repeat them here for the convenience of

the reader.

2.1. Model and Testing Problem

We consider the linear model

y = Xβ+u, (1)

where X ∈ R
n×k is a nonstochastic matrix of rank k, with 0 < k < n, and where

β ∈ R
k is the regression coefficient vector. The disturbance vector u is assumed to

be Gaussian with mean 0 and covariance matrix σ 26(ρ). Here, 6(.) is a known

function from [0,a) to the set of symmetric and positive definite n× n matrices,

and a is a prespecified positive real number. Without loss of generality, we assume

throughout that 6(0) equals the identity matrix In. The parameters β ∈ R
k, σ ∈

(0,∞), and ρ ∈ [0,a) are unknown.

Remark 2.1. In the context of the zero-power trap, the upper endpoint a of the

parameter space of ρ will always be such that the covariance matrix6(ρ) is “close

to” being rank deficient for ρ close to a. This will be made precise in Assumption

1 below and the discussion preceding it. The parameter ρ being close to amay thus

be interpreted as u being strongly correlated. The concrete value of a depends on

the specific parameterization used and does not have any intrinsic meaning, as one

can in principle always enforce a= 1 by a suitable reparameterization. In a spatial

autoregressive model in the usual parameterization, for example, a corresponds to

the inverse of the eigenvalue with largest absolute value of the weights matrix (cf.

Section 5 for more details).

The Gaussianity assumption could be relaxed considerably. It is imposedmainly

to avoid technical conditions that do not deliver deeper insights into the problem.

For example, we could replace the Gaussianity assumption by the assumption that
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the distribution of the error vector u is elliptically symmetric without changing any

of our results. This and other generalizations are discussed in detail in Section 3

of Preinerstorfer and Pötscher (2017).

Denoting the Gaussian probability measure with mean Xβ and covariance

matrix σ 26(ρ) by Pβ,σ,ρ , we see that the model (1) induces the parametric family

of distributions
{

Pβ,σ,ρ : β ∈ R
k, σ ∈ (0,∞), ρ ∈ [0,a)

}

(2)

on the sample space R
n equipped with its Borel σ -algebra. The expectation

operator with respect to (w.r.t.) Pβ,σ,ρ will be denoted by Eβ,σ,ρ . Note that the set

of probability measures in the previous display is dominated by Lebesgue measure

µRn on the Borel sets of R
n, because6(ρ) is positive definite, for every ρ ∈ [0,a),

by assumption.

In the family of distributions (2), we are interested in the testing problem ρ = 0

against ρ > 0. More precisely, the testing problem is

H0 : ρ = 0, β ∈ R
k, 0< σ <∞ against H1 : ρ > 0, β ∈ R

k, 0< σ <∞,

(3)

with the implicit understanding that always ρ ∈ [0,a). In this testing problem, the

parameter ρ is the target of inference, and the regression coefficient vector β and

the parameter σ are nuisance parameters.

Two specific examples that received a considerable amount of attention in the

econometrics literature and which fit into the above framework are testing for

positive serial autocorrelation and testing for spatial autocorrelation, cf. Examples

2.1 and 2.2 in Preinerstorfer and Pötscher (2017) for details and a discussion of

related literature. See also Section 5 below for more information on testing for

spatial autocorrelation and related numerical results.

2.2. Notation, Invariance, and an Important Class of Tests

2.2.1. Notation. Allmatrices we shall consider are real matrices, the transpose

of a matrix A is denoted by A′, and the linear space spanned by the columns of A

is denoted by span(A). Given a linear subspace L of Rn, the symbol 5L denotes

the orthogonal projection onto L, and L⊥ denotes the orthogonal complement of

L. Given an n×m matrix Z of rank m with 0 ≤ m< n, we denote by CZ a matrix

in R
(n−m)×n such that CZC

′
Z = In−m and C′

ZCZ = 5span(Z)⊥ , where Ir denotes the

identity matrix of dimension r. We observe that every matrix whose rows form

an orthonormal basis of span(Z)⊥ satisfies these two conditions and vice versa.

Hence, any two choices for CZ are related by premultiplication by an orthogonal

matrix. Let l be a positive integer. If A is an l× lmatrix and λ ∈R is an eigenvalue

of A, we denote the corresponding eigenspace by Eig(A,λ). The eigenvalues of

a symmetric matrix B ∈ R
l×l ordered from smallest to largest and counted with

their multiplicities are denoted by λ1(B), . . . ,λl(B). We shall sometimes denote

λ1(B) by λmin(B), and λl(B) by λmax(B). Lebesgue measure on the Borel σ -algebra
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of R
n×l shall be denoted by µRn×l , and Pr is used as a generic symbol for a

probability measure. The Euclidean norm of a vector is denoted by ‖.‖, a symbol

that is also used to denote a matrix norm.

2.2.2. Invariance, an Important Class of Tests, and Size-Controlling Critical

Values. Given a matrix Z ∈ R
n×m with column rank m and where 1 ≤ m < n,

define the group of bijective transformations (the group action being composition

of functions)

GZ :=
{

gγ,θ : γ ∈ R\{0},θ ∈ R
m
}

,

where gγ,θ : R
n → R

n denotes the function y 7→ γ y+Zθ .

Under our distributional assumptions (and if additionally all parameters of the

model are identifiable), the testing problem in equation (3) is invariant w.r.t.

the group GX (cf. Section 6 in Lehmann and Romano (2005)). It thus appears

reasonable to consider tests that are GX-invariant, a property shared by most

commonly used tests. Recall that a function f defined on the sample space (e.g., a

test or a test statistic) is called invariant w.r.t. GX if and only if, for every y ∈ R
n

and every gγ,θ ∈GX , it holds that f (y)= f (gγ,θ (y)). A subset A ofRn will be called

invariant w.r.t. GX if the indicator function 1A is GX-invariant.

In addition to being GX-invariant, most tests for (3) used in practice are

nonrandomized, i.e., they are indicator functions of Borel sets (their corresponding

rejection regions). An important class of such tests is based on rejection regions of

the form

8B,c =8B,CX,c = {y ∈ R
n : TB (y) > c},

where c ∈ R is a critical value and the test statistic

TB (y)= TB,CX (y)=

{

y′C′
XBCXy/‖CXy‖

2 if y /∈ span(X)

λ1(B) if y ∈ span(X).
(4)

Here, B ∈ R
(n−k)×(n−k) is a symmetric matrix, which typically depends on

X and the function 6. Recall that the matrix CX satisfies CXC
′
X = In−k and

C′
XCX =5span(X)⊥ (cf. Section 2.2.1). Clearly, the test statistic TB is GX-invariant.

Note furthermore that in case λ1(B) = λn−k(B), the test statistic TB is constant

everywhere on R
n. Therefore, such a choice of B is uninteresting for practical

purposes. Note also that assigning the value λ1(B) (instead of any other value) to

the test statistic on span(X) has no effect on rejection probabilities, because Pβ,σ,ρ
is absolutely continuous w.r.t. µRn , for every β ∈ R

k, σ ∈ (0,∞), and ρ ∈ [0,a),

and because span(X) being of dimension k < n implies µRn(span(X))= 0.

The following remark discusses two particularly important choices of B.

Remark 2.2. Under regularity conditions and excluding degenerate cases,

point-optimal invariant (w.r.t. GX) tests and locally best invariant (w.r.t. GX) tests

for the testing problem (3) reject for large values of a test statistic TB as in

equation (4):
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(a) Point-optimal invariant tests against the alternative ρ̄ ∈ (0,a) are obtained for

B= −
(

CX6(ρ̄)C
′
X

)−1
.

(b) Locally best invariant tests are obtained for B = CX6̇(0)C
′
X , for 6̇(0) the

derivative of 6 at ρ = 0, ensured to exist under the aforementioned regularity

conditions, see, e.g., King and Hillier (1985).

Note that a test statistic TB based on any of the two matrices B in the preceding

enumeration does not depend on the specific choice of CX , as any two choices of

CX differ only by premultiplication of an orthogonal matrix. However, for matrices

B of a different form than (a) or (b), the test statistic TB may also depend on the

choice of CX , a dependence which is typically suppressed in our notation.

The main focus of the present article concerns power properties of tests based

on a test statistic as in (4) for the testing problem (3). Before investigating power

properties of a test, one needs to ensure that its size does not exceed a given value

of significance α. While this can be a nontrivial problem in general, achieving

size control through the choice of a proper critical value turns out to be an easy

task here. More specifically, the following lemma shows that exact size control

for tests based on a test statistic TB introduced in equation (4) is possible at all

levels of significance in the leading case λ1(B) < λn−k(B). The subsequent remark

discusses numerical aspects.

LEMMA2.3. Let B∈R
(n−k)×(n−k) be symmetric and such that λ1(B) < λn−k(B).

Then, there exists a (unique) function κ : [0,1] → [λ1(B),λn−k(B)], such that, for

every α ∈ [0,1],

Pβ,σ,0
(

8B,κ(α)

)

= α for every β ∈ R
k and every σ ∈ (0,∞).

Furthermore, κ is a strictly decreasing and continuous bijection.

Remark 2.4. The rejection probabilities of a GX-invariant test for (3) do not

depend on the parameters β and σ (cf. Remark 2.3 in Preinerstorfer and Pötscher

(2017)). As a consequence, the exact critical value κ(α) fromLemma 2.3 can easily

be obtained numerically: To this end, one can exploit the well-known fact that, for

every c ∈ R, the rejection probability Pβ,σ,0(8B,c)= P0,1,0(8B,c) can be rewritten

as the probability that the quadratic form

G′ [B− cIn−k]G> 0,

whereG is an (n−k)-variate Gaussian random vector with mean 0 and covariance

matrix In−k. This probability can be determined efficiently through an application

of standard algorithms, e.g., the algorithm by Davies (1980). The critical value

κ(α) can then be obtained numerically by simply using a root-finding algorithm

to determine the unique root κ(α) of c 7→ P0,1,0(8B,c)−α on [λ1(B),λn−k(B)].
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3. THE ZERO-POWER TRAP IN TESTING FOR CORRELATION

3.1. Definition and Sufficient Conditions

In the sequel, a test ϕ : Rn → [0,1] (measurable) for testing problem (3) is said

to be subject to (or suffer from) the zero-power trap, if there exist β ∈ R
k and

σ ∈ (0,∞) such that

liminf
ρ→a

Eβ,σ,ρ(ϕ)= 0; (5)

that is, if the power function of ϕ can get arbitrarily close to 0 as the strength of the

correlation in the data, measured in terms of ρ, increases. Recall from Remark 2.4

that if ϕ is GX-invariant, which is the case for most tests considered in this article,

then Eβ,σ,ρ(ϕ) does not depend on β and σ . In this case, if equation (5) holds for

some β ∈R
k and some σ ∈ (0,∞), it holds for every β ∈R

k and every 0<σ <∞.

Trivially, a test that vanishes µRn -almost everywhere suffers from the zero-

power trap regardless of the specific covariance structure 6(·). As already hinted

at in Remark 2.1, for the zero-power trap to occur for other tests, it is necessary

that 6(ρ) is “close to” being rank-deficient for ρ close to a. To see this, note

that if 6(ρ) converges to a positive definite matrix as ρ → a and if a test ϕ

suffers from the zero-power trap, then ϕ = 0 must hold µRn -almost everywhere

(as a consequence of Scheffé’s lemma). In case 6(ρ) does not converge to a

positive definite matrix as ρ → a, this is no longer true and the situation becomes

interesting, as also other tests can suffer from the zero-power trap.

A set of sufficient conditions that allows one to conclude whether a test

ϕ is subject to the zero-power trap was developed in Martellosio (2010) and

Preinerstorfer and Pötscher (2017). The underlying effect leading to (5) described

in the latter article is a concentration effect in the (rescaled) distribution Pβ,σ,ρ
for ρ close to a, due to 6(ρ) being close to a rank-one matrix when ρ is close

to a. More precisely, Preinerstorfer and Pötscher (2017) obtained their sufficient

conditions under the following property of the function 6 (cf. also Assumption 1

in Preinerstorfer and Pötscher (2017) and the discussion there showing that this

condition is weaker than the one previously used by Martellosio (2010)):

Assumption 1. λ−1
n (6(ρ))6(ρ)→ ee′ as ρ → a, for some e ∈ R

n.

For the convenience of the reader and for later use, we shall now formally

state two immediate consequences of results in Preinerstorfer and Pötscher (2017).

They provide sufficient conditions for the zero-power trap under Assumption 1.

Specializing Theorem 2.7 and Remark 2.8 in Preinerstorfer and Pötscher (2017),

one obtains the following “high-level” result.

THEOREM 3.1. Suppose Assumption 1 holds. Let ϕ be a GX-invariant test

that is continuous at e and satisfies ϕ(e) = 0, where e is the vector figuring in

Assumption 1. Then,

lim
ρ→a

Eβ,σ,ρ(ϕ)= 0 for every β ∈ R
k and every σ ∈ (0,∞). (6)
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In particular, if ϕ = 1W holds for some GX-invariant Borel set W ⊆ R
n, then (6)

holds if e is not in the closure of W.

For the test with rejection region 8B,κ(α) as discussed in Section 2.2.2, and

where κ(α) is defined through Lemma 2.3, one obtains the following result from

Corollary 2.21 of Preinerstorfer and Pötscher (2017).

THEOREM 3.2. Suppose Assumption 1 holds and e /∈ span(X), where e is the

vector figuring in Assumption 1. Let B ∈ R
(n−k)×(n−k) be symmetric and such that

λ1(B) < λn−k(B). Then, for every α ∈ (0,1) such that TB(e) < κ(α), we have

lim
ρ→a

Pβ,σ,ρ
(

8B,κ(α)

)

= 0 for every β ∈ R
k and every σ ∈ (0,∞). (7)

Note that the sufficient conditions for the zero-power trap phenomenon pointed

out in Theorems 3.1 and 3.2 depend on observable quantities only, and that they are

thus checkable by the user. Therefore, a researcher interested in testing problem

(3) can use these conditions to check whether or not a given test suffers from the

zero-power trap before actually using this test. In particular, one can decide not

to use a test that suffers from the zero-power trap. Before addressing the question

how to avoid the zero-power trap, which was raised already in the introduction,

we briefly pay some attention to the following question: “How often” does the

zero-power trap actually arise? More specifically, in the important class of tests

8B,c introduced in Section 2.2.2, and most notably the tests discussed in Remark

2.2, the following question arises: For “how many” design matrices X does the

zero-power trap arise? Answering this question is the content of the next section.

3.2. For “How Many” Design Matrices Does the Zero-Power Trap
Arise?

We shall focus on the class of tests with rejection regions 8B(X),c introduced in

Section 2.2.2. Since the question in the section title depends on the design matrix

X, which is otherwise held fixed in this article, we shall make the dependence of B

onX explicit bywritingB(X). Furthermore, we shall also writePXβ,σ,ρ to emphasize

its dependence on the design matrix X. Note that while X may vary in this section,

the function 6(·) and its domain [0,a) are fixed, i.e., do not vary with X.

In our first attempt to answer the question under consideration, we shall use the

following simple consequence of Lemma 2.3 and Theorem 3.2, which provides

conditions on X under which equation (7) holds for all “small” levels α.

LEMMA 3.3. Suppose Assumption 1 holds and let e denote the vector figuring

in that assumption. Let B be a function from the set of full column rank n× k

matrices to the set of symmetric (n−k)× (n−k)-dimensional matrices. If an n×k

matrix X satisfies

rank(X)= k and CXe /∈ Eig(B(X),λn−k(B(X))), (8)
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then λ1(B(X)) < λn−k(B(X)), P
X
0,1,0(8B(X),TB(X)(e)) > 0, and equation (7) holds for

every α ∈ (0,PX0,1,0(8B(X),TB(X)(e))).

For a class of functions X 7→ B(X) that includes the ones discussed in

Remark 2.2, we shall now show that condition (8) is generically satisfied, unless

the matrix B(X) has a very exceptional form. The result is established under a

restriction concerning the eigenspace corresponding to the largest eigenvalue of

B(X).

PROPOSITION 3.4. Suppose that k< n−1 and that Assumption 1 holds. Let B

be a function from the set of full column rank n×k matrices to the set of symmetric

(n− k)× (n− k)-dimensional matrices. Let M ∈ R
n×n be a symmetric matrix that

cannot be written as c1In+c2ee
′ for real numbers c1,c2 with c2 ≥ 0, where e is the

vector figuring in Assumption 1. Suppose further that, for every X ∈ R
n×k of full

column rank, a CX ∈ R
(n−k)×n satisfying CXC

′
X = In−k and C

′
XCX =5span(X)⊥ can

be chosen such that

Eig(B(X), λn−k(B(X)))= Eig
(

CXMC
′
X, λn−k(CXMC

′
X)

)

. (9)

Then, up to a subset of a µRn×k -null set of exceptional matrices, every X ∈ R
n×k

satisfies (8). An immediate consequence is as follows: Given α ∈ (0,1) denote by

X (α;B)⊆R
n×k the set of all X ∈R

n×k of rank k such that λ1(B(X)) < λn−k(B(X))

and such that

lim
ρ→a

PXβ,σ,ρ(8B(X),CX,κ(α))= 0 for every β ∈ R
k and every σ ∈ (0,∞).

Then, X (α2;B) ⊆ X (α1;B) holds for 0 < α1 ≤ α2 < 1, and for any sequence

αm in (0,1) converging to 0, the complement of
⋃

m∈NX (αm;B) is contained in a

µRn×k -null set.

Remark 3.5. Note that, for B(X)=CX6̇(0)C
′
X , Condition (9) in Proposition 3.4

is trivially satisfied withM = 6̇(0). For B(X)= −
(

CX6(ρ̄)C
′
X

)−1
and ρ̄ ∈ (0,a),

it is easy to see that Condition (9) is satisfied withM =6(ρ̄). Therefore, if for any

of these two specific choices the additional condition holds that the respective M

cannot be written as c1In + c2ee
′ for real numbers c1,c2 where c2 ≥ 0 is satisfied,

then Proposition 3.4 applies.

Proposition 3.4 shows that tests based on TB(X) suffer from the zero-power trap

for “most” designmatricesX, at least for small choices of α. The discussion section

of Krämer (1985) contains a corresponding statement (without proof) in a special

case.

Choosing α small is not completely uncommon in practice: Due to the fact that

testing for correlation is often just one part of the econometric analysis, the actual

level α employed in this test can be quite small. One example is specification

testing. Another example is the situation where tests for correlation are “inverted”

to build a confidence interval for ρ, which is then used for a Bonferroni-type
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construction of a data-dependent critical value of another test (cf. Leeb and

Pötscher (2017) for further information concerning such critical values).

Nevertheless, the question remains as to how “large” the setX (α;B) actually is

for a fixed α, such as the conventional α= .05 or α= .01. For example, Proposition

3.4 does not tell us whether or not the set of design matrices X (.01;B) is empty.

Similarly, one can ask if X (.01;B) contains an open set, or if it has positive

µRn×k measure. The latter questions have already been considered in detail in

the main results of Martellosio (2012) for point-optimal invariant and locally

best invariant tests in the important context of spatial autoregressive regression

models. Adopting his proof strategy, we establish the following proposition. The

argument requires a different assumption on B than the one used in Proposition

3.4. First, the condition used now concerns the eigenspace of B(X) corresponding

to its smallest eigenvalue (as opposed to the condition on the largest eigenvalue

used in Proposition 3.4). Second, continuity conditions are imposed, which are

required for limiting arguments in the proof. As discussed in Remark 3.7 below,

the assumptions are again satisfied in the leading choices for B discussed in

Remark 2.2.

PROPOSITION 3.6. Suppose that k< n−1 and that Assumption 1 holds. Let B

be a function from the set of full column rank n×k matrices to the set of symmetric

(n−k)× (n−k)-dimensional matrices. Suppose there exists a function F from the

set of (n−k)×(n−k)matrices to itself, such that, for every X ∈R
n×k of full column

rank, B(X) = F(CXMC
′
X) holds for a suitable choice of CX ∈ R

(n−k)×n satisfying

CXC
′
X = In−k and C

′
XCX = 5span(X)⊥ , and for M ∈ R

n×n a symmetric matrix that

cannot be written as c1In + c2ee
′ for real numbers c1,c2 where c2 ≥ 0. Here, e is

the vector figuring in Assumption 1. Suppose further that F is continuous at every

element A, say, of the closure of {CXMC
′
X : X ∈R

n×k, rank(X)= k} ⊆R
(n−k)×(n−k),

and that, for every such A, we have

Eig(F(A), λ1(F(A)))= Eig(A, λ1(A)) .

Define X (α;B)⊆ R
n×k as in Proposition 3.4. Then, the following holds:

1. X (α;B) 6= ∅ holds for every α ∈ (0,1);

2. suppose that, for every z ∈ R
n, the function X 7→ TB(X),CX (z) is continuous at

every X ∈ R
n×k of full column rank such that z /∈ span(X). Then, for every

α ∈ (0,1), the interior of X (α;B) is nonempty (and thus has positive µRn×k

measure).

Remark 3.7. Similar to Remark 3.5, we note that Proposition 3.6 can be

applied to B(X) = CX6̇(0)C
′
X (with M = 6̇(0) and F the identity function),

or to B(X) = −(CX6(ρ)C
′
X)

−1, where ρ ∈ (0,a), (with M = 6(ρ) and F the

function A 7→ −A−1, noting that this function satisfies the continuity requirement

as 6(ρ) is positive definite) provided that the corresponding M matrix is not of

the exceptional form c1In + c2ee
′, for c2 ≥ 0. It is not difficult to show that the

continuity requirement in Part 2 of the proposition is satisfied for these two choices
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of B. For B(X) = CX6̇(0)C
′
X , this is trivial. For B(X) = −(CX6(ρ)C

′
X)

−1, where

ρ ∈ (0,a), an argument is given in Appendix B. Hence, we can conclude that unless

6̇(0) or 6(ρ), respectively, is of the form c1In + c2ee
′ for some nonnegative c2,

the test8B(X),κ(α) suffers from the zero-power trap for every α ∈ (0,1) for every X

in a nonempty open set of design matrices.

Remark 3.8. We emphasize that Propositions 3.4 and 3.6 do not apply in the

special case where M = c1In + c2ee
′ holds for real numbers c1,c2 where c2 ≥ 0.

On the one hand, it is clear that in case c2 = 0 a test as in these two propositions

with M = c1In trivially breaks down, as the corresponding test statistics are then

constant. But on the other hand, as already observed (for the special case c1 = 0

and c2 = 1) in Preinerstorfer and Pötscher (2017) in the discussion preceding their

Remark 2.27, using tests based on M = c1In+ c2ee
′, for a c2 > 0, indeed presents

an opportunity to avoid the zero-power trap. This will be discussed more formally

in Section 4.1.

From the results in the present section, we learn that for tests that satisfy certain

structural properties, the zero-power trap arises for generic design matrices for α

small enough. Furthermore, for every α, there exists (under suitable assumptions)

a nonempty open set of design matrices, every element of which suffers from the

zero-power trap. We would like to emphasize, however, that these results do not

rule out the possibility that, for a given X, the actual level α needed such that the

zero-power trap arises can be low (far outside the commonly used range of levels),

or that given α the open set of designmatrices for which the zero-power trap occurs

is “small.” Numerical results that illustrate the “practical severity” of the zero-

power trap in spatial regressionmodels are provided in Section 3 of Krämer (2005),

in particular his Table 1 is very interesting in this context, and further discussion

and examples can be found in Martellosio (2010) and Martellosio (2012). These

results seem to suggest that the zero-power trap occurs frequently for commonly

used levels of significance in case n− k is “small,” i.e., in “high-dimensional”

scenarios, whereas if n− k is large, the zero-power trap does not appear that

frequently. However, this also depends on the dependence structure.

4. AVOIDING THE ZERO-POWER TRAP

Having provided some context and motivation, we now discuss three ways to

avoid the zero-power trap. In Section 4.1, we expand on the observation just

made in Remark 3.8. The strategy discussed in Section 4.2 is based on an idea

involving artificial regressors. The method we recommend, however, builds on

Section 4.1 and is introduced in Section 4.3. Our suggestion tries to overcome

suboptimality properties of the other methods. As discussed in the introduction,

the idea underlying our approach can be interpreted as a finite sample variant of

the power enhancement principle of Fan et al. (2015), cf. also Section 3 in Kock

and Preinerstorfer (2019).
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4.1. Tests Based on TB with B = CXee
′C ′

X

As discussed in Remark 3.8, tests based on the test statistic TB with B= CXee
′C′

X

do not satisfy the assumptions underlying Propositions 3.4 and 3.6. Hence, these

two propositions do not let us conclude anything concerning the question “how

often” the zero-power trap occurs for such tests. It turns out that these tests do not

suffer from the zero-power trap for any α ∈ (0,1) in case the additional condition

e /∈ span(X) holds (note that if e ∈ span(X) holds, the test statistic TB with B =

CXee
′C′

X is useless as it equals 0 for every y ∈ R
n). As pointed out in Remark

3.8, this was already noted in Preinerstorfer and Pötscher (2017). For later use in

Section 4.3, we state a corresponding result (which is an immediate consequence

of Part 1 of Proposition 2.26 in Preinerstorfer and Pötscher (2017) together with

GX-invariance of TB and our Lemma 2.3).

THEOREM 4.1. Suppose that k < n−1, that Assumption 1 holds, and that e /∈

span(X), where e is the vector figuring in Assumption 1. Then, for every α ∈ (0,1),

every β ∈ R
k, and every σ ∈ (0,∞),

lim
ρ→a

Pβ,σ,ρ(8CXee
′C′
X,κ(α)

)= 1.

From this result, we conclude that in case e /∈ span(X), and whenever a test ϕ

with size α is subject to the zero-power trap, one can alternatively use the test with

rejection region 8CXee
′C′
X,κ(α)

instead, which does not suffer from the zero-power

trap. Moreover, the power of the test 8CXee
′C′
X
,κ(α) even increases to 1 as ρ → a.

This is a desirable property, as it matches the intuition that strong correlations

should be easily detectable from the data.

While avoiding the zero-power trap problem, the test8CXee
′C′
X
,κ(α) suffers from

one major disadvantage: The power function of 8CXee
′C′
X,κ(α)

can be, and often

will be, quite low for values ρ ∈ (0,a) distant from a. If the initial test ϕ, which

was dismissed because it is subject to the zero-power trap, was chosen because

of its good power properties in this region of the alternative, the test 8CXee
′C′
X,κ(α)

will then not constitute a convincing alternative. This is illustrated in the example

discussed in Section 5. A method that tries to take optimality properties of the

initial test into account, at least for the classes of tests discussed in Remark 2.2, is

discussed next.

4.2. Tests Based on Artificial Regressors

The sufficient condition for the zero-power trap in Theorem 3.2 requires that the

vector e from Assumption 1 is not an element of span(X). While this of course

does not prove that the zero-power trap does not arise if e ∈ span(X), this indeed

turns out to be the case under an additional assumption (cf. Corollary 2.22 in

Preinerstorfer and Pötscher (2017)). In this section, we shall exploit this fact. The

method of avoiding the zero-power trap we discuss in this section “enforces” the

condition e ∈ span(X). More specifically, it is based on adding the vector e from
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Assumption 1 as an “artificial” regressor to the design matrix (if it is not already

an element of span(X)), and from there constructing tests as if this artificially

expanded design matrix was the true one. As discussed in the introduction, the idea

underlying the construction in the present section can be traced back to Krämer

(1985).

To formally describe the artificial regressor-based method in our general setting,

consider a situation where a researcher initially wants to use the test 8B,κ(α) as in

Section 2.2.2 with λ1(B) < λn−k(B), but discovers (e.g., by checking the sufficient

conditions in Theorem 3.2) that8B,κ(α) suffers from the zero-power trap. Suppose

further that the initial test 8B,κ(α) has certain optimality properties (cf. Remark

2.2). The researcher then may not want to completely sacrifice the optimality

properties of the initial test, which prevents the researcher from using the test just

discussed in Section 4.1. Assume further that e /∈ span(X).

The trick now is to work with the design matrix X̄ = (X,e) in the construction

of a test statistic, assuming that k+ 1 < n. More precisely, let B̄ be a symmetric

(n−k−1)×(n−k−1)matrix (cf. Remark 4.2 below) and define the adjusted test

statistic

T̄B̄ (y)= T̄B̄,CX̄
(y)=

{

y′C′

X̄
B̄CX̄y/‖CX̄y‖

2 if y /∈ span(X̄)

λ1(B̄) if y ∈ span(X̄).

Under the additional assumption that λ1(B̄) < λn−k−1(B̄), one obtains1 from

Lemma 2.3, for every α ∈ (0,1), the existence and uniqueness of a critical value

κ̄(α) ∈ (λ1(B̄),λn−k−1(B̄)), say, such that, for every β ∈ R
k and every σ ∈ (0,∞),

it holds that

Pβ,σ,0({y ∈ R
n : T̄B̄(y) > κ̄(α)})= α. (10)

Finally, define the rejection region

8̄B̄,κ̄(α) := {y ∈ R
n : T̄B̄(y) > κ̄(α)}. (11)

Remark 4.2. We think about B̄ as an “updated version” of B, i.e., as the

matrix, one would use if X̄ was the underlying design matrix. For example, if the

initial matrix B equals CX6̇(0)C
′
X , one could use B̄ = CX̄6̇(0)C

′

X̄
, or if the initial

matrix B= −(CX6(ρ̄)C
′
X)

−1, one could use B̄= −(CX̄6(ρ̄)C
′

X̄
)−1. Recall that the

rejection region (11) based on these two versions of B̄ corresponds to locally best

invariant tests and point-optimal invariant tests, respectively, in the model where

the true design matrix is X̄ (cf. Remark 2.2).

We shall now prove that the test with rejection region (11) does not suffer from

the zero-power trap. The following result requires an additional assumption on

1To obtain this statement, one needs to apply Lemma 2.3 to model (1), but with design matrix X̄ instead of X. Note

that this leads to an “enlarged” model that encompasses the true model as a submodel, and that the distributions

satisfying the null hypothesis in the true model also satisfy the null hypothesis in the enlarged model.
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6(.). This is Assumption 4 in Preinerstorfer and Pötscher (2017) to which we

refer the reader for equivalent formulations, examples, and further discussion.

Assumption 2. There exists a function c : [0,a)→ (0,∞), a normalized vector

e ∈ R
n, and a square root L∗(.) of 6(.) such that

3 := lim
ρ→a

c(ρ)5span(e)⊥L∗(ρ)

exists in R
n×n and such that the linear map 3 is injective when restricted to

span(e)⊥.

The main result concerning artificial regressor-based tests is as follows.

THEOREM4.3. Suppose Assumptions 1 and 2 are satisfied with the same vector

e, that e /∈ span(X), and that k < n− 1. Suppose further that B̄ is a symmetric

(n− k−1)× (n− k−1) matrix such that λ1(B̄) < λn−k−1(B̄). Then, for every α ∈

(0,1), every β ∈ R
k, and every σ ∈ (0,∞), it holds that

0< lim
ρ→a

Pβ,σ,ρ(8̄B̄,κ̄(α))= Pr
(

T̄B̄(3G) > κ̄(α)
)

< 1,

whereG denotes a Gaussian random vector with mean 0 and covariance matrix In.

Theorem 4.3 shows that 8̄B̄,κ̄(α) is not subject to the zero-power trap. However,

its “limiting power” limρ→aPβ,σ,ρ(8̄B̄,κ̄(α))= Pr(T̄B̄(3G)> κ̄(α)) can in principle

be low. In particular, it is always smaller than 1. This is different to the behavior

of the test discussed in Section 4.1, which has limiting power equal to 1. Another

limitation of Theorem 4.3 is its reliance on the additional Assumption 2.

Following up on the examples discussed in Remark 4.2, an advantage of passing

from 8B,κ(α) to 8B̄,κ̄(α), instead of passing from 8B,κ(α) to the test discussed in

Section 4.1, is that 8B̄,κ̄(α) “preserves” in some sense the optimality properties of

8B,κ(α), but with respect to the larger group GX̄ . Note, however, that this does not

imply that the power functions of 8B,κ(α) and 8̄B̄,κ̄(α) are “close.”

4.3. Optimality-Preserving Tests that Avoid the Zero-Power Trap

The starting point in this section is some (initial) family of tests ϕα : R
n → [0,1]

for the testing problem (3) indexed by α ∈ (0,1). Given α ∈ (0,1), we interpret ϕα
as the (initial) test one would like to use because of some “optimality property” of

its power function.2 That is, the power function of ϕα

(β,σ,ρ) 7→ Eβ,σ,ρ(ϕα)

2What is considered optimal in a given application typically depends on the context. To ensure that the results in this

section are applicable in many situations, we work with an abstract family of tests and do not restrict the “optimality

property” satisfied by this family to a specific one.
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is “large” for certain parameter values (β,σ,ρ) in a given subset pertaining to the

alternative hypothesis Rk × (0,∞)× (0,a).

We shall suppose that the initial test ϕα suffers from the zero-power trap, which

one would like to avoid. Ideally, a test should have limiting power equal to 1, a

property of the test in Section 4.1, but not of the test in Section 4.2. Furthermore,

we would like to keep, at least approximately, the optimal power properties of ϕα ,

which was the reason why ϕα was initially considered for use. This is a property

of the test in Section 4.2 (at least to some extent), but not of the test in Section 4.1.

We shall now present an approach that achieves these two goals.

In what follows, we assume that the family of tests {ϕα} under consideration

satisfies Property A, i.e., satisfies the following:

A.1: For every α ∈ (0,1), the test ϕα is GX-invariant.

A.2: For every α ∈ (0,1), the test ϕα has size α, i.e.,

sup
β∈Rk

sup
σ∈(0,∞)

Eβ,σ,0(ϕα)= α.

A.3: For every α ∈ (0,1) and every sequence αm ∈ [0,α] converging to α, we have

that ϕαm(y)→ ϕα(y) holds for µRn -almost every y ∈ R
n.

To illustrate the assumption, consider the following important example.

Example 4.1. Let TB be as in (4) with B an (n− k)× (n− k) symmetric matrix

such that λ1(B) < λn−k(B). For every α ∈ (0,1), let κ(α) be the critical value from

Lemma 2.3. Set ϕα equal to the nonrandomized test with rejection region 8B,κ(α),

i.e., ϕα := 18B,κ(α) . We already know that TB is GX-invariant and thus ϕα is GX-

invariant, for every α. Hence, A.1 is satisfied. Furthermore, from Lemma 2.3, we

see that ϕα satisfies A.2. That A.3 is satisfied is an immediate consequence of the

continuity of κ(.), which was established in Lemma 2.3, together with the fact that,

for every α ∈ (0,1), the set

{y ∈ R
n : TB(y)= κ(α)}

is a µRn -null set; the latter is a consequence of Lemma B.4 in Preinerstorfer and

Pötscher (2017), which shows that the cdf F, say, corresponding to P0,1,0 ◦TB is

continuous.

Remark 4.4. While not required in Property A, typical families {ϕα} will also

satisfy the condition that for any real numbers α1 ≤ α2 in (0,1), it holds, for µRn-

almost every y ∈ R
n, that ϕα1(y) ≤ ϕα2(y). For instance, this is the case for the

families of tests discussed in Example 4.1 (this follows from the monotonicity

property of κ(.) established in Lemma 2.3). One obvious consequence of this

condition is that if ϕα2 suffers from the zero-power trap, then ϕα1 suffers from

the zero-power trap as well. Therefore, for such families, if ϕα suffers from the

zero-power trap, there is no hope that one can easily avoid the zero-power trap by

using ϕα−ε, for some ε > 0 (which would at least be a test whose size does not

exceed α).
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Suppose in the following discussion that k < n− 1, that Assumption 1 holds,

and that e /∈ span(X). Recall from Theorem 4.1 that under these conditions, the

GX-invariant test8CXee
′C′
X
,κ(α) does not suffer from the zero-power trap, in fact has

limiting power 1, at all levels α ∈ (0,1). Using this property, we shall now define a

GX-invariant test that has approximately the same power properties of ϕα with the

advantage that it has limiting power 1 just as the test 8CXee
′C′
X
,κ(α).

The basic idea is as follows (precise statements are provided further below).

From Property A.3, one obtains that for ε ∈ (0,α) small, the power functions of ϕα
and ϕα−ε are similar. Furthermore, Theorem 4.1 tells us that the test with rejection

region 8CXee
′C′
X,κ(ε)

has limiting power (as ρ → a) equal to 1, and Lemma 2.3

shows that this test has size equal to ε. Hence, we could use the GX-invariant test

min(ϕα−ε +18
CXee

′C′
X
,κ(ε)
,1), (12)

whose power function is similar to ϕα (at least for ε small), but which actually has

limiting power equal to 1 (for every 0 < ε < α). Furthermore, the size of the test

in equation (12) is not greater than α. However, potentially, its size is smaller than

α, implying some unnecessary loss in power, which we can avoid by decreasing

κ(ε).

Instead of using the test in equation (12), we therefore suggest the GX-invariant

test

ϕ∗
α,ε := min

(

ϕα−ε +18
CXee

′C′
X
,c(α,ε)

, 1
)

= ϕα−ε + (1−ϕα−ε)18
CXee

′C′
X
,c(α,ε)

, (13)

where 0 < c(α,ε) ≤ κ(ε) is chosen as the smallest number such that ϕ∗
α,ε has

size equal to α. That such a choice of c(α,ε) is indeed possible is the content

of the following proposition. Note that ϕ∗
α,ε is nonrandomized if the test ϕα−ε is

nonrandomized.

PROPOSITION 4.5. Suppose that k< n−1, that e ∈ R
n satisfies e /∈ span(X),

and that the family of tests {ϕα} satisfies Properties A.1 and A.2. Then, for every

α ∈ (0,1) and every ε ∈ (0,α), there exists a c(α,ε) ∈ (0,κ(ε)] such that

sup
β∈Rk

sup
σ∈(0,∞)

Eβ,σ,0

[

min
(

ϕα−ε +18
CXee

′C′
X
,c(α,ε)

, 1
)]

= α, (14)

and such that replacing c(α,ε) by c′ ∈ (0,c(α,ε)) increases the supremum in

equation (14); here, κ(ε) ∈ (0,‖CXe‖
2) denotes the unique real number such that

8CXee
′C′
X
,κ(ε) has size equal to ε(cf. Lemma 2.3).

Note that the critical value c(α,ε) can be easily determined numerically by a

simple line search algorithm, cf. also Remark 2.4.

Having established that the test in equation (13) is actually well-defined, we

now prove that it does not suffer from the zero-power trap but has limiting power

1 for any choice of ε. Furthermore, we show that the power function of ϕ∗
α,ε

approximates (even uniformly over suitable subsets of the parameter space) the
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power function of ϕα as ε converges to 0. In this sense, choosing ε > 0 small, the

test ϕ∗
α,ε at least approximately preserves the “optimal” power properties (such as,

e.g., point-optimal invariance, or locally best invariance, cf. Example 4.1 above)

from ϕα . Furthermore, the degree of approximation can be tuned by the user via ε.

THEOREM 4.6. Suppose that k < n−1, that Assumption 1 holds, and that e /∈

span(X), where e is the vector figuring in Assumption 1. Assume that the family

{ϕα} satisfies Properties A.1 and A.2. Let α ∈ (0,1). Then, the following holds:

1. For every ε ∈ (0,α), every β ∈ R
k, and every σ ∈ (0,∞), we have

lim
ρ→a

Eβ,σ,ρ(ϕ
∗
α,ε)= 1;

in particular, ϕ∗
α,ε does not suffer from the zero-power trap.

2. Suppose that the family {ϕα} also satisfies Property A.3. Let A⊆ [0,a) be such

that the closure of the set

{6(ρ)/‖6(ρ)‖ : ρ ∈ A}

is contained in the set of positive definite symmetric matrices. Then,

lim
ε→0+

sup
β∈Rk

sup
σ∈(0,∞)

sup
ρ∈A

|Eβ,σ,ρ(ϕ
∗
α,ε)−Eβ,σ,ρ(ϕα)| = 0.

Remark 4.7. In the leading case, 6(.) is a continuous function. In this case,

one can choose the set A in the second part of Theorem 4.6 equal to [0,c], for any

0< c< a [recall that6(ρ) is positive definite for every ρ ∈ [0,a) by assumption].

Note further that since we are primarily interested in situations where the initial

test ϕα suffers from the zero-power trap, while the adjusted tests ϕ∗
α,ε have limiting

power 1, it is not restrictive to confine ourselves to intervals [0,c] as above, as we

do not want the power of the adjusted test to be close to the power of the initial test

in a neighborhood of a. Furthermore, the optimality properties of point-optimal

invariant tests (against an alternative ρ̄ ∈ (0,a)) or of locally best invariant tests

(which are characterized by favorable power properties in the neighborhood of 0)

concern only the power function over [0,c] for a suitably chosen c< a.

Remark 4.8. The tuning parameter ε needs to be chosen by the user in each

particular application. In principle, the user can plot the power functions for various

values of ε and can then decide upon inspection, which value of ε provides the best

solution. For a specific example, we refer to Section 5 below.

Remark 4.9. Finally, we point out that the construction of ϕ∗
α,ε in equation (13)

and the conditions in Proposition 4.5 and Theorem 4.6 do not require the initial

test ϕα to suffer from the zero-power trap. While this is clearly our main focus,

this observation shows that our method can also be applied in case the limiting-

power of ϕα is greater than 0 but smaller than 1. In such a situation, using ϕ∗
α,ε

instead of ϕα can be advantageous as well.
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5. NUMERICAL RESULTS

In order to illustrate and compare the power properties of the tests introduced in

Section 4, we now consider a simple example from spatial econometrics, in which

the zero-power trap occurs for a popular test (cf. also the discussion of Kelly (2019)

in the introduction). We focus on a situation where the correlation between the

observations is a consequence of their proximity, which might be spatial, but could

also be, e.g., social, and which is encoded in the adjacency (“weights”) matrix of

a graph.

One important model in this case is the spatial (autoregressive) error model,

which leads to

6(ρ)= [(I−ρW ′)(I−ρW)]−1,

for W a fixed weights matrix, which is assumed to be (elementwise) nonnegative

and irreducible with zeros on the main diagonal. By the Perron–Frobenius theorem

(e.g., Horn and Johnson (1985), Theorem 8.4.4), the matrixW then has a positive

(real) eigenvalue λmax(W), say, with algebraicmultiplicity (and thus also geometric

multiplicity) equal to 1, such that any other real or complex zero of the character-

istic polynomial of W is in absolute value not larger than λmax(W). We assume

that the parameter ρ ∈ [0,λ−1
max(W)), i.e., a = λ−1

max(W). For fmax a normalized

eigenvector of W w.r.t. λmax(W), it is not too difficult to see that Assumption 1

is satisfied (with e= fmax), and that Assumption 2 is satisfied. For details, we refer

to Section 4.1 in Preinerstorfer and Pötscher (2017).

The model depends, besides the design matrix X, on the specific form of the

weights matrix W, which encodes the dependence relation of the observations.

Subsequently, we reconsider a simple example considered in Section 3 of Krämer

(2005), who has observed (cf. his Figure 1) that for a weights matrix derived by the

Queen criterion from a 4×4 regular lattice, and for X= (1, . . . ,1)′ ∈R
16, the Cliff–

Ord test suffers from the zero-power trap for α = 5%. We recall that the Cliff–Ord

test is based on a test statistic as in equation (4) and with B= CX(W+W ′)C′
X .

The power function of the Cliff–Ord test and the power functions of the tests

described in Section 4 were obtained numerically (cf. also Remark 2.4), and are

shown in Figure 1. The figure also shows the power envelope in the class of GX-

invariant tests. That is, for each alternative ρ̄ ∈ (0,λmax(W)
−1), Figure 1 shows the

power of the point-optimalGX-invariant level α= 5% test against the alternative ρ̄.

Recall from Remark 2.2 that the point-optimal invariant test against alternative ρ̄

is based on a test statistic as in (4) and with B= −[CX6(ρ̄)C
′
X]

−1. In this example,

the power envelope is not attained by anyGX-invariant test, but it serves the purpose

of providing an upper bound for comparison.

While Figure 1 illustrates that the approaches discussed in Sections 4.1 and 4.2

avoid the zero-power trap, it reveals at the same time that the power functions

of these tests are not completely satisfying. On the one hand, even though the test

introduced in Section 4.1 does not suffer from the zero-power trap, it has low power

in a large portion of the alternative. On the other hand, the test from Section 4.2

https://doi.org/10.1017/S0266466621000062 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000062


HOWTOAVOID THEZERO-POWERTRAP INTESTINGFORCORRELATION 1311

0.00 0.05 0.10 0.15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ρ

R
e
je

c
ti
o
n
 p

ro
b
a

b
ili

ty

Env.
CO test
Sol. 1
CO Sol. 2
eps = .01
eps = .006
eps = .002

Figure 1. Comparison of power functions. The horizontal line corresponds to α = .05. “Env.”

corresponds to the power envelope; “CO test” to the power function of the Cliff–Ord test; “Sol.

1” corresponds to the power function of the test from Section 4.1; “CO Sol. 2” corresponds to the

power function of the artificial regressor-based Cliff–Ord test as discussed in Section 4.2; “eps = .01”

corresponds to the test in Section 4.3 with ϕα the size α Cliff–Ord test and ε = .01; the remaining

“eps= .006” and “eps= .002” correspond likewise to the tests in Section 4.3, but for the corresponding

values of ε.

based on the Cliff–Ord test (i.e., as in equation (11) with B̄=C(X,e)(W+W ′)C′
(X,e))

with artificial regressor e= fmax avoids the zero-power trap as well, and has a power

function that practically coincides with the power envelope for small values of ρ.

But its limiting power is smaller than 1 (in fact is only 0.619).

Figure 1 also contains the power function of some tests corresponding to the

procedure outlined in Section 4.3 applied to the family ϕα of level-α Cliff–

Ord tests (cf. Example 4.1). It shows the power functions corresponding to ε ∈

{.002,.006,.01}. These three tests have very good power properties. For small

values of ρ, their power functions are practically identical to the power function

of the Cliff–Ord test, and hence to the power envelope. But for larger values of

ρ, their power functions are much closer to the power envelope than that of the

Cliff–Ord test. In particular, by construction, their power converges to 1 as ρ gets

close to a. One can also observe that smaller values of ε lead to power functions

that are closer to the power function of the Cliff–Ord test for ρ close to 0, whereas

larger values of ε lead to power functions that are closer to the power envelope for

ρ close to a.
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6. CONCLUSION

In the present article, we have reconsidered the zero-power trap phenomenon

in testing for correlation in a general framework. Most importantly, we have

suggested a way to construct “approximately optimal tests” that avoid the trap.

For practical purposes, if an initial test, such as the Cliff–Ord test in the example

discussed in Section 5, turns out to suffer from the zero-power trap, we suggest

to use the method introduced in Section 4.3 to obtain a modified test with the

following properties: (i) it has a similar power function as the initial test, (ii) it

does not suffer from the zero-power trap, and (iii) its limiting power equals 1. The

tuning parameter ε involved in the construction of the modified test can be chosen

by graphically comparing the power functions of modified tests corresponding to

different values of the tuning parameter with the power envelope and the power

function of the initial test. The heuristic underlying our construction can be inter-

preted as a finite sample variant of the power enhancement principle of Fan et al.

(2015); more specifically, our construction is based on the formulation of the power

enhancement principle developed in Section 3 of Kock and Preinerstorfer (2019).

The approach, which is not restricted to the testing problem under consideration,

might be of some interest in its own right.

APPENDICES

A. Proofs for Results in Section 1

Proof of Lemma 2.3. Lemma B.4 in Preinerstorfer and Pötscher (2017) shows

that the cdf F, say, corresponding to P0,1,0 ◦ TB is continuous, that F(λ1(B)) = 0,

F(λn−k(B))= 1, and that F is strictly increasing on [λ1(B),λn−k(B)]. Hence, the function

f : [λ1(B),λn−k(B)] → [0,1] defined via

c 7→ P0,1,0(8B,c)= 1−F(c)

is continuous, strictly decreasing, and satisfies f (λ1(B))= 1 and f (λn−k(B))= 0. Set κ =

f−1, i.e., the inverse of f, which is continuous, strictly decreasing, and obviously satisfies

κ(0)= λn−k(B) and κ(1)= λ1(B). Then P0,1,0
(

8B,κ(α)
)

= α, for every α ∈ [0,1]. Finally,

recall that TB is GX-invariant, from which it follows (cf. Remark 2.3 in Preinerstorfer

and Pötscher (2017)) that, for every c ∈ R, every β ∈ R
k, and every σ ∈ (0,∞), we have

Pβ,σ,0(8B,c)= P0,1,0(8B,c). Hence, Pβ,σ,0
(

8B,κ(α)
)

= α holds for every β ∈R
k, every

σ ∈ (0,∞), and every α ∈ [0,1]. The uniqueness part is obvious. �

B. Proofs for Results in Section 3

Proof of Theorem 3.1. We apply Theorem 2.7 in Preinerstorfer and Pötscher (2017).

Their Assumption 1 coincides with ours and is thus satisfied. Furthermore, by our Gaus-

sianity assumption, their Assumption 3 is satisfied in our framework (with z a nor-

mally distributed random vector with mean 0 and covariance matrix In), and we can

use Part 1 of their Proposition 2.6 to conclude that their Assumption 2 is satisfied.

The statement now follows from Theorem 2.7 in Preinerstorfer and Pötscher (2017) for
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the special case ϕ(e) = 0. The last statement follows from Remark 2.8(i) in the same

reference. �

Proof of Theorem 3.2. We use Corollary 2.21 in Preinerstorfer and Pötscher (2017).

That their Assumptions 1 and 2 are satisfied follows as in the proof of Theorem 3.1 above.

Recall from Lemma 2.3 that κ is a strictly decreasing and continuous bijection from [0,1] to

[λ1(B),λn−k(B)], implying that, for α ∈ (0,1), we have κ(α) ∈ (λ1(B),λn−k(B)). We can

hence apply Corollary 2.21 in Preinerstorfer and Pötscher (2017) to conclude that (under

our assumptions), for α ∈ (0,1) such that TB(e) < κ(α), we have (7). �

Proof of Lemma 3.3. Noting that both e /∈ span(X) and λ1(B(X)) < λn−k(B(X))

follow from CXe /∈ Eig(B(X),λn−k(B(X))), Condition (8) together with the definition

of TB(X) in equation (4) can be used to verify λ1(B(X)) ≤ TB(X)(e) < λn−k(B(X)).

Thus, Lemma 2.3 gives PX0,1,0(8B(X),TB(X)(e)) ∈ (0,1] and TB(X)(e) < κ(α) for every

α ∈ (0,PX0,1,0(8B(X),TB(X)(e))). We can now apply Theorem 3.2 to conclude. �

LEMMAB.1. Let M ∈R
n×n be symmetric, let v ∈R

n be such that ‖v‖ = 1, and suppose

that 1 ≤ d < n−1. Then,

D(n,d) := {L ∈ R
n×d : rank(L)= d,

5span(L)⊥v is an eigenvector of 5span(L)⊥M5span(L)⊥}

can be written as

{L ∈ R
n×d : det(L′L) 6= 0, ‖5span(L)⊥v‖ 6= 0}∩ {L ∈ R

n×d : pM(L)= 0}, (B.1)

for pM : Rn×d → R a multivariate polynomial, which is given in the proof. Furthermore,

pM ≡ 0 if and only if M = c1In+ c2vv
′ holds for real numbers c1 and c2.

Proof. We first establish that D(n,d) equals the set in equation (B.1). To this end,

let L ∈ R
n×d satisfy rank(L) = d, or equivalently det(L′L) 6= 0. If 5span(L)⊥v = 0, the

vector 5span(L)⊥v cannot be an eigenvector of 5span(L)⊥M5span(L)⊥ . If 5span(L)⊥v 6= 0,

5span(L)⊥v is an eigenvector of the symmetric matrix5span(L)⊥M5span(L)⊥ if and only if

rank
(

(5span(L)⊥v,5span(L)⊥M5span(L)⊥v)
)

< 2. (B.2)

We can write this rank condition equivalently as

0 = det
[

(5span(L)⊥v,5span(L)⊥M5span(L)⊥v)
′(5span(L)⊥v,5span(L)⊥M5span(L)⊥v)

]

.

(B.3)

Writing 5span(L)⊥ = In − det(L′L)−1Ladj(L′L)L′ (throughout we use the convention that

the adjoint of a 1×1 matrix equals 1), and premultiplying (B.3) by det(L′L)8 6= 0, one sees

that (B.3) is equivalent to

0 = det
[

(det(L′L)Q(L)v,Q(L)MQ(L)v)′(det(L′L)Q(L)v,Q(L)MQ(L)v)
]

=: pM(L),

where Q(L) := det(L′L)In − Ladj(L′L)L′. Note that L 7→ p(L) defines a multivariate

polynomial on Rn×d . It follows that D(n,d) has the claimed form.
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We now prove that pM ≡ 0 if and only ifM = c1In+c2vv
′ holds for real numbers c1 and

c2. To this end, note that if M is of the specific form c1In+ c2vv
′ for real numbers c1 and

c2, one has, for every L ∈ R
n×d , that

5span(L)⊥M5span(L)⊥v= (c1 + c2v
′5span(L)⊥v)5span(L)⊥v. (B.4)

For L such that det(L′L) 6= 0, the statement pM(L)= 0 is equivalent to (B.2), which follows

from (B.4). If L satisfies det(L′L)= 0, we obviously have pM(L)= 0. Thus, pM ≡ 0, for all

M of this specific form.

Now assume that M cannot be written as c1In + c2vv
′ for real numbers c1 and c2. To

show that pM 6≡ 0, it suffices to construct a single L such that pM(L) 6= 0. We consider two

cases (a) and (b):

(a) We first show that one can find an L such that pM(L) 6= 0 in the special case where v

is not an eigenvector ofM. Let u1, . . . ,un be an orthonormal basis of eigenvectors ofM with

corresponding eigenvalues λ1(M), . . . ,λn(M). Note that there then exist two indices j 6= l,

say, such that λj(M) 6= λl(M) and such that v
′uj 6= 0 and v′ul 6= 0 (otherwise, v would be an

eigenvector of M; recall that v 6= 0).

Now, define the matrix L⊥ = (uj,ul,z1, . . . ,zn−d−2) for z1, . . . ,zn−d−2 linearly indepen-

dent elements of span(uj,ul,v)
⊥ (with the convention that L⊥ = (uj,ul) if n− d = 2; note

that n− d ≥ 2 holds by assumption). Such a choice of z1, . . . ,zn−d−2 is possible as d ≥ 1

by assumption. Note that rank(L⊥)= n−d.

Next, let L be an n × d matrix with span(L) = span(L⊥)
⊥. Then, L is of full

column rank, and 5span(L)⊥v 6= 0. From the discussion preceding the definition of

pM , we see that it thus remains to verify that 5span(L)⊥v is not an eigenvector of

5span(L)⊥M5span(L)⊥ . But 5span(L)⊥v = 5span((uj,ul))v = u′jvuj + u′lvul, implying

5span(L)⊥M5span(L)⊥v = λj(M)u
′
jvuj + λl(M)u

′
lvul. Hence, if 5span(L)⊥v was an

eigenvector of 5span(L)⊥M5span(L)⊥ , we would have

λj(M)u
′
jvuj+λl(M)u

′
lvul = c(u′jvuj+u′lvul),

for some c ∈ R, which gives the contradiction λj(M)= λl(M)= c.

(b) Next, we consider the casewhere v is an eigenvector ofM to the eigenvalue λi(M), say.

Let u1, . . . ,un be an orthonormal basis of eigenvectors ofM corresponding to its eigenvalues

λ1(M), . . . ,λn(M), andwhere ui = v holds. By assumption,M is not of the form c1In+c2vv
′.

Together with v being an eigenvector of M, this implies (via a diagonalization argument)

existence of two indices j and l, say, such that i,j,l are pairwise distinct and such that λj(M) 6=

λl(M).

Now, define L⊥ = (x,y,z1, . . . ,zn−d−2), where x = v+ uj and y = v+ ul, and where

z1, . . . ,zn−d−2 are linearly independent elements of span(uj,ul,v)
⊥ (with the convention

that L⊥ = (x,y) if n−d= 2; recall that n−d≥ 2 holds by assumption). Such a construction

is possible as d ≥ 1 by assumption. Note that rank(L⊥)= n−d.

Define L as an n×d matrix with span(L)= span(L⊥)
⊥. Then, L is of full column rank,

and 5span(L)⊥v 6= 0. Arguing as in (a), it now remains to verify that 5span(L)⊥v is not an

eigenvector of 5span(L)⊥M5span(L)⊥ : It is easy to see that

5span(L)⊥v=5span((x,y))v= 3−1(x+ y),
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and that, using the expression in the previous display and a simple computation,

5span(L)⊥M5span(L)⊥v

= 9−1
[

(2λi(M)+2λj(M)−λl(M))x+ (2λi(M)−λj(M)+2λl(M))y
]

.

Hence, for this choice of L, the vector 5span(L)⊥v is an eigenvector of

5span(L)⊥M5span(L)⊥ if and only if

3−1(x+ y)= c 9−1
[

(2λi(M)+2λj(M)−λl(M))x+ (2λi(M)+2λl(M)−λj(M))y
]

,

(B.5)

for some c ∈ R. The number c must then necessarily be nonzero. But this implies

(premultiply both sides of (B.5) by u′j, then by u
′
l, and compare the two equations obtained)

that λj(M)= λl(M), a contradiction. �

Proof of Proposition 3.4. We start with the claim that up to a subset of a µ
Rn×k

-null set

of exceptional matrices, everyX ∈R
n×k satisfies (8). From k< n, it follows thatµ

Rn×k
({X ∈

R
n×k : rank(X) < k})= 0. Hence, it suffices to show that

{X ∈ R
n×k : rank(X)= k and CXe ∈ Eig(B(X),λn−k(B(X)))} (B.6)

is contained in a µ
Rn×k

-null set. To show this, we separately consider two cases (a) and (b):

(a) Suppose first that M = c1In+ c2ee
′ for real numbers c1,c2 where c2 < 0. Then, we

shall show that the set in equation (B.6) simplifies to

{X ∈ R
n×k : rank(X)= k and e ∈ span(X)}. (B.7)

To see this, note that in this case and for X ∈ R
n×k so that rank(X)= k, we have

Eig
(

B(X), λn−k(B(X))
)

= Eig
(

CXMC
′
X, λn−k(CXMC

′
X)

)

= span(CXe)
⊥,

where we used the assumption in (9) to obtain the first equality, and the specific structure

of M and c2 < 0 to obtain the second equality. Thus, CXe ∈ Eig
(

B(X), λn−k(B(X))
)

is

possible only if CXe= 0, which is equivalent to e ∈ span(X). Therefore, (B.6) simplifies to

(B.7). But, by assumption, 1≤ k< n holds, from which it is easy to see, noting that ‖e‖ = 1,

that µ
Rn×k

({X ∈R
n×k : e ∈ span(X)})= 0. Therefore, the set in (B.7), and equivalently the

set in (B.6), is a µ
Rn×k

-null set in this case.

(b) Consider now the case where M is not a linear combination of In and ee′. Using

equation (9), we can write the set defined in (B.6) equivalently as

{X ∈ R
n×k : rank(X)= k and CXe ∈ Eig

(

CXMC
′
X, λn−k(CXMC

′
X)

)

}. (B.8)

For X ∈ R
n×k of full column rank, the property C′

XCX = 5span(X)⊥ = 52
span(X)⊥

can be

used to verify that

CXe ∈ Eig(CXMC
′
X,λn−k(CXMC

′
X))

implies

5span(X)⊥e ∈ Eig(5span(X)⊥M5span(X)⊥,λn−k(CXMC
′
X)).

Thus, if e /∈ span(X), then5span(X)⊥e 6= 0, andCXe∈Eig(CXMC
′
X,λn−k(CXMC

′
X)) implies

that5span(X)⊥e is an eigenvector of5span(X)⊥M5span(X)⊥ . Thus, the set in equation (B.8)
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is contained in the union of the µ
Rn×k

-null set {X ∈ R
n×k : e ∈ span(X)} and the set

{X ∈ R
n×k : rank(X)= k, 5span(X)⊥e is an eigenvector of 5span(X)⊥M5span(X)⊥}.

(B.9)

It thus suffices to verify that the set in (B.9) is a µ
Rn×k

-null set. Lemma B.1 (applied

with k = d and v = e) shows that (B.9) is the subset of an algebraic set. Note that the

assumptions in Lemma B.1 are satisfied as 1 ≤ k < n− 1 is assumed. The lemma also

provides the information that a multivariate polynomial defining this algebraic set does not

vanish everywhere. Hence, it follows that the set in (B.9) is contained in a µ
Rn×k

-null set.

This finishes Case (b).

We now prove the two remaining claims concerning X (α;B). For the monotonicity

claim: IfX (α2;B) is empty, there is nothing to prove. Consider the case whereX (α2;B) 6=

∅. Let X ∈ X (α2;B). By definition of X (α2;B), the matrix X has full column rank and

λ1(B(X)) < λn−k(B(X)). From 0 < α1 ≤ α2 < 1, it thus follows from Lemma 2.3 that

κ(α2) ≤ κ(α1). Hence, 8B(X),CX,κ(α1) ⊆ 8B(X),CX,κ(α2) and one obtains X ∈ X (α1;B).

Finally, note that Lemma 3.3 shows that if X satisfies (8), then X ∈
⋃

m∈NX (αm;B). The

first (already established) part of the current proposition hence proves the last claim. �

LEMMAB.2. Let M ∈R
n×n be symmetric, let v ∈R

n be such that ‖v‖ = 1, and suppose

that M cannot be written as c1In+c2vv
′ for real numbers c1,c2 where c2 ≥ 0. Let d ∈N be

such that d < n−1. Then:

1. There exist a sequence Lm ∈ R
n×d , such that L′

mLm = Id and Lm → L∗ as m→ ∞, a

vector u∈R
n with ‖u‖ = 1, and a real number c>λmin(M), such that:5span(Lm)⊥

v 6=

0 and 5span(Lm)⊥
u 6= 0 holds, for every m ∈ N, such that

lim
m→∞

v′5span(Lm)⊥
M5span(Lm)⊥

v/v′5span(Lm)⊥
v= λmin(M), (B.10)

and such that, for every m ∈ N, we have

u′5span(Lm)⊥
M5span(Lm)⊥

u/u′5span(Lm)⊥
u= c. (B.11)

2. Let B be a function from the set of full column rank n× d matrices to the set of

symmetric (n− d)× (n− d)-dimensional matrices. Suppose there exists a function

F from the set of (n− d)× (n− d) matrices to itself, such that, for every L ∈ R
n×d

of full column rank, B(L)= F(CLMC
′
L) holds for a suitable choice of CL ∈ R

(n−d)×n

satisfying CLC
′
L = In−d and C

′
LCL =5span(L)⊥ . Suppose further that F is continuous

at every element A, say, of the closure of {CLMC
′
L : L ∈ R

n×d, rank(L) = d} ⊆

R
(n−d)×(n−d), and that, for every such A, we have

Eig(F(A), λ1(F(A)))= Eig(A, λ1(A)) . (B.12)

Then, the sequence Lm obtained in Part 1 satisfies CLmv 6= 0, for every m ∈ N,

lim
m→∞

[

v′C′
Lm
B(Lm)CLmv/‖CLmv‖

2 −λ1(B(Lm))
]

= 0, (B.13)

and

liminf
m→∞

[

λn−k(B(Lm))−λ1(B(Lm))
]

= δ, (B.14)

for some positive real number δ.
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Proof. Before we prove Part 1, we note that it suffices to verify the existence claim

without the requirement that Lm converges: Convergence of Lm can then be achieved by

passing to a subsequence. The proof of Part 1 is divided in the two cases (1.a) and (1.b).

(1.a) Consider first the case where v ∈ Eig(M,λmin(M)): Let u ∈ Eig(M,λmax(M))

such that ‖u‖ = 1, and set Lm,⊥ := (u,v,w1, . . . ,wn−d−2) for w1, . . . ,wn−d−2 linearly

independent elements of span((u,v))⊥ (with the implicit understanding that Lm,⊥ = (u,v)

in case d = n− 2). By assumption M is not a multiple of In, thus λmin(M) < λmax(M),

from which it also follows that Lm,⊥ has full column rank n− d ≥ 2, for every m ∈ N.

For every m ∈ N, set Lm equal to an n× d matrix such that L′
mLm = Id and span(Lm)

⊥ =

span(Lm,⊥). Then, equations (B.10) and (B.11) (with c = λmax(M)) follow immediately

from 5span(Lm)⊥
v= v and 5span(Lm)⊥

u= u.

(1.b) Next, we consider the case where v /∈ Eig(M,λmin(M)): We first claim that there

must exist an x ∈ Eig(M,λmin(M)) such that ‖x‖ = 1 and a vector u ∈ span(v,x)⊥ such

that ‖u‖ = 1 and such that u′Mu> λmin(M). We argue by contradiction: First of all, if the

claim was false, then dim(Eig(M,λmin(M))) = n−1 would follow. We could then choose

v1, . . . ,vn−1 an orthonormal basis of Eig(M,λmin(M)). Under the assumption that the above

claim was wrong, it would further follow that span(v,vi)
⊥ ⊆ Eig(M,λmin(M)), for every

i = 1, . . . ,n− 1, implying span(v,vi)
⊥ ⊆ span(v1, . . . ,vi−1,vi+1, . . . ,vn−1), for every i =

1, . . . ,n−1, which, by a dimension argument using v /∈ Eig(M,λmin(M)), is equivalent to

span(v,vi)
⊥ = span(v1, . . . ,vi−1,vi+1, . . . ,vn−1) for i= 1, . . . ,n−1;

or equivalently

span(v,vi)= span(v1, . . . ,vi−1,vi+1, . . . ,vn−1)
⊥ for i= 1, . . . ,n−1.

Since n ≥ 3, setting i= 1 and i= 2 in the previous display then shows that v is orthogonal

to v1, . . . ,vn−1, and hence span(v) = Eig(M,λmax(M)) would follow. But then, we could

conclude that M = λmin(M)In + (λmax(M)− λmin(M))vv
′, a contradiction. Now, let x ∈

Eig(M,λmin(M)) be such that ‖x‖ = 1, and choose a corresponding u ∈ span(v,x)⊥ such

that ‖u‖ = 1 and such that u′Mu > λmin(M). Let bm 6= 0 be a sequence that converges to

0 and such that bm 6= −v′x holds, for every m ∈ N. Then, we define vm := x+ bmv ⊥ u

and set Lm,⊥ := (u,vm,w1, . . . ,wn−d−2) (with Lm,⊥ = (u,vm) in case d = n− 2), for

w1, . . . ,wn−d−2 linearly independent elements of span(u,v,x)⊥ (which is possible as d≥ 1).

As vm 6= 0 follows from bm 6= −v′x, the matrix Lm,⊥ has full column rank n− d ≥ 2, for

every m ∈ N. Now, for every m ∈ N, set Lm equal to an n×d matrix such that L′
mLm = Id

and span(Lm)
⊥ = span(Lm,⊥). Then,

5span(Lm)⊥
v=5span(Lm,⊥)v=5span((u,vm))v=5span((vm))v= amvm,

where am = (v′x + bm)/(v
′
mvm) 6= 0 holds, for all m. From vm 6= 0, we thus obtain

5span(Lm)⊥
v 6= 0, for every m ∈ N. But vm → x (as m→ ∞) hence shows that

a−2
m v′5span(Lm)⊥

M5span(Lm)⊥
v→ λmin(M) and a−2

m v′5span(Lm)⊥
v→ 1,

which implies (B.10). Equation (B.11) now follows (with c = u′Mu), because u ∈

span(Lm)
⊥ gives 5span(Lm)⊥

u = u, and since u was chosen such that ‖u‖ = 1 and

u′Mu> λmin(M).

This establishes Part 1. We now prove Part 2.
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(2) Obviously, CLmv 6= 0 follows from5span(Lm)⊥
v 6= 0. Consider first equation (B.13).

Letm′ be an arbitrary subsequence ofm. Define vm :=CLmv/‖CLmv‖ andAm :=CLmMC
′
Lm

.

Clearly, ‖vm‖ = 1, andAm is a norm-bounded sequence, becauseCLmC
′
Lm

= In−d . The latter

also implies

λ1(M)≤ λ1(Am)≤ λn−d(Am)≤ λn(M) for every m ∈ N. (B.15)

Hence, we can choose a subsequence m′′ of m′, say, along which vm and Am converge to v∗
and A, say, respectively. Note that ‖v∗‖ = 1. Next, we use C′

Lm
CLm =5span(Lm)⊥

to rewrite

v′5span(Lm)⊥
M5span(Lm)⊥

v/v′5span(Lm)⊥
v= v′mCLmMC

′
Lm
vm = v′mAmvm,

and use equation (B.10) to conclude that along m′′ we have v′mAmvm → v′∗Av∗ = λmin(M).

From equation (B.15), we obtain λmin(M)= λmin(A), hence

v∗ ∈ Eig(A,λ1(A))= Eig(F(A),λ1(F(A))),

where the equality is obtained from (B.12). Finally, we observe that alongm′′ we have (using

continuity of F) that B(Lm)= F(Am)→ F(A), from which

v′C′
Lm
B(Lm)CLmv/‖CLmv‖

2 = v′mF(Am)vm → v′∗F(A)v∗ = λ1(F(A)),

and λ1(B(Lm))→ λ1(F(A)) follows (along m
′′). Hence, we have shown that the statement

in equation (B.13) holds along the subsequence m′′ of m′. But m′ was arbitrary. Therefore,

we are done.

For (B.14), we argue by contradiction. Note first that the limit inferior in (B.14) cannot

be infinite, because B(Lm) = F(CLmMC
′
Lm
), and because of the continuity property of

F together with boundedness of CLmMC
′
Lm

. Now, assuming (B.14) were false, we could

choose a subsequence m′ of m such that λn−k(B(Lm′))− λ1(B(Lm′)) → 0. Choose a

subsequence m′′ of m′ along which vm just defined above, um := CLmu/‖CLmu‖ (note

that CLmu 6= 0 follows from 5span(Lm)⊥
u 6= 0), and Am := CLmMC

′
Lm

converge to v∗,

u∗, and A, respectively (where v∗ and A might differ from the limits in the preceding

paragraph where we established equation (B.13)). Note also that ‖v∗‖ = ‖u∗‖ = 1. Recall

that B(Lm)= F(Am), and note that

λn−k(F(Am))≥ u′C′
Lm
F(Am)CLmu/‖CLmu‖

2 = u′mF(Am)um ≥ λ1(F(Am)),

and that, using λn−k(F(Am′))− λ1(F(Am′)) → 0 together with continuity of F at A, the

upper and lower bounds in the previous display converge along m′′ to λ1(F(A)). It follows

that u′∗F(A)u
′
∗ = λ1(F(A)), and hence u∗ ∈ Eig(F(A),λ1(F(A))) = Eig(A,λ1(A)), the

equality following from equation (B.12). But from equation (B.11), we conclude that

λmin(M) < c= u′mAmum = u′∗Au∗ = λ1(A).

To arrive at a contradiction, it suffices to show that λmin(M) = λmin(A). But (similar as

argued above in the proof of (B.13)), this follows from equation (B.10), showing that

v′mAmvm → v′∗Av∗ = λmin(M) along m
′′, together with equation (B.15). �

Proof of Proposition 3.6. We start with (1.): Let α ∈ (0,1). Let Xm be a sequence of

n× k-dimensional orthonormal matrices converging to some Z ∈ R
n×k orthonormal, such

that e /∈ span(Xm) holds, for every m ∈ N, such that

TB(Xm),CXm (e)−λ1(B(Xm))= e′C′
Xm
B(Xm)CXme/‖CXme‖

2 −λ1(B(Xm))→ 0, (B.16)
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and such that liminfm→∞ λn−k(B(Xm))−λ1(B(Xm)) = δ > 0, where δ is a real number.

Such a sequence exists as a consequence of Part 2 of Lemma B.2 (applied with d = k and

v = e). Without loss of generality, passing to a subsequence if necessary, we assume that

λn−k(B(Xm))− λ1(B(Xm)) > 0 holds, for every m ∈ N. Denote by κm the critical value

κ(α) corresponding to 8B(Xm),CXm,κ(α), cf. Lemma 2.3, and recall from that lemma that

λ1(B(Xm)) < κm < λn−k(B(Xm)) then holds as α ∈ (0,1). Passing to a subsequence if

necessary, we can assume that CXm converges to DZ , say, an (n−k)×nmatrix, the rows of

which form an orthonormal basis of span(Z)⊥. Recall the continuity property of F and that

B(Xm) = F(CXmMC
′
Xm
). It follows that B(Xm), λ1(B(Xm)), and λn−k(B(Xm)) converge

to H := F(DZMD
′
Z), b := λ1(H), and c := λn−k(H), respectively, with c− b ≥ δ > 0.

Passing to another subsequence, if necessary, we can additionally achieve that κm → κ∗,

say. Obviously, b ≤ κ∗ ≤ c holds. We now argue that b < κ∗ must hold: By the definition

of κm,

α = P
Xm
0,1,0

(

8B(Xm),CXm,κ(α)

)

= P
Xm
0,1,0

(

8B(Xm),CXm,κm

)

= P
Xm
0,1,0

({

y ∈ R
n : TB(Xm)(y) > κm

})

.

Denoting by Gm the cdf of the image measure P
Xm
0,1,0 ◦TB(Xm),CXm , this implies 1−α =

Gm(κm). From Lemma B.4 of Preinerstorfer and Pötscher (2017), we obtain that the support

of P
Xm
0,1,0 ◦TB(Xm),CXm coincides with [λ1(B(Xm)),λn−k(B(Xm))], that Gm is a continuous

function, and that Gm is strictly increasing on [λ1(B(Xm)),λn−k(B(Xm))]. Hence, from

1−α ∈ (0,1), it follows that G−1
m (1−α) = κm, where G

−1
m denotes the quantile function

corresponding to Gm. It is easy to see that Gm converges in distribution to the cdf G, say, of

PZ0,1,0 ◦TH,DZ , where the function TH,DZ : Rn → R is defined as

TH,DZ (y)=

{

y′D′
ZHDZy/‖DZy‖

2 if y /∈ span(Z),

λ1(H) else.

Again, Lemma B.4 of Preinerstorfer and Pötscher (2017) (with “B = H and CX = DZ”)

shows that the support ofG is [b,c], thatG is continuous (recall that c−b≥ δ > 0), and that

G is strictly increasing on [b,c]. This implies that the quantile function G−1 corresponding

to G is continuous on (0,1), and that G−1(1−α) > b. Using that Gm →G (in distribution),

we conclude that the quantiles κm =G−1
m (1−α)→G−1(1−α)= κ∗ > b. Using equation

(B.16), we can now conclude that there exists an m∗ ∈ N such that Xm∗ =: X∗ is of full

column rank, such that e /∈ span(X∗), such that λ1(B(X∗)) < λn−k(B(X∗)), and such that

TB(X∗),CX∗
(e) < κm∗ (with κm∗ the critical value κ(α) corresponding to 8B(X∗),CXm,κ(α)

and α ∈ (0,1)). Theorem 3.2 establishes X∗ ∈ X (α;B).

We now prove (2.): Recall that X∗ has full column rank and e /∈ span(X∗). We conclude

that both statements (i) X is of full column rank and (ii) e /∈ span(X) hold for every X in an

open set N , say, containing X∗. We now claim that

TB(X),CX (e) < κ(X); with κ(X) ∈ (λ1(B(X)),λn−k(B(X))) s.t.

P0,1,0(8B(X),CX,κ(X))= α,

holds for every X in an open set O ⊆ N containing X∗ (that X∗ satisfies the display was

just established in the proof of (1.)). Arguing as in the proof of Part (1.), this claim and

Theorem 3.2 (together with Lemma 2.3) would imply O ⊆ X (α;B), and we were done. To

prove the claim, it suffices to verify that TB(X),CX (e) and κ(X) as in the previous display are
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(well-defined) continuous functions of X on a neighborhood of X∗. First, in order to ensure

via Lemma 2.3 that a κ(X) as in the previous display uniquely exists on a neighborhood

of X∗, we show that λ1(B(X)) < λn−k(B(X)) holds on an open subset of N containing

X∗. Recalling that λ1(B(X∗)) < λn−k(B(X∗)), and noting that the map y 7→ CX∗
y is a

surjection of Rn\ span(X∗) to R
n−k\{0}, we conclude that there exist two vectors y1 and

y2 in R
n\ span(X∗), and such that

λ1(B(X∗))= TB(X∗),CX∗
(y1) < TB(X∗),CX∗

(y2)= λn−k(B(X∗))

holds. From the additional continuity property in (2.), it follows that y1,y2 /∈ span(X) and

TB(X),CX (y1) < TB(X),CX (y2) hold on an open set O1 ∋ X∗, say, such that O1 ⊆ N , from

which it follows that, for every X ∈ O1, we have λ1(B(X)) < λn−k(B(X)). From O1 ⊆ N ,

we conclude from Lemma 2.3 that a κ(X) satisfying the property to the right in penultimate

display uniquely exists, for everyX ∈ O1. SinceX 7→ TB(X),CX (e) is continuous onO1 ⊆ N

by assumption, it remains to verify that X 7→ κ(X) is continuous on O1. Lemma B.4 of

Preinerstorfer and Pötscher (2017) and the definition of κ(X) show that, for X ∈ O1, we

have κ(X)= F−1
X (1−α), where FX denotes the cdf of the image measure P0,1,0 ◦TB(X),CX .

It is easy to see (using the additional continuity condition in (2.)) that the map X 7→ FX is

continuous on O1 (equipping the codomain with the topology of weak convergence). Fur-

thermore, for every X ∈ O1, it holds (via Lemma B.4 in Preinerstorfer and Pötscher (2017))

that P0,1,0 ◦TB(X),CX has support [λ1(B(X)),λn−k(B(X))] (which is nondegenerate), that

the cdf FX is continuous, and strictly increasing on [λ1(B(X)),λn−k(B(X))]. Hence, for

every X ∈ O1, the quantile function F−1
X is continuous at 1− α ∈ (0,1). Continuity of

X 7→ κ(X)= F−1
X (1−α) on O1 follows. �

Proof for the claimmade inRemark 3.7. Weverify that, forB(X)= −(CX6(ρ)C
′
X)

−1,

ρ ∈ (0,a), and every z ∈R
n, the function X 7→ TB(X),CX (z) is continuous at every X ∈R

n×k

of full column rank such that z /∈ span(X). Fix z ∈ R
n. Let X be of full column rank such

that z /∈ span(X), and let Xm be a sequence converging to X. Eventually, Xm is of full

column rank and satisfies z /∈ span(Xm), hence we may assume that this is the case for the

whole sequence. We need to show that as m→ ∞ we have TB(Xm),CXm (z)→ TB(X),CX (z),

or equivalently that

z′C′
Xm
(CXm6(ρ)C

′
Xm
)−1CXmz

z′5span(Xm)⊥
z

→
z′C′

X(CX6(ρ)C
′
X)

−1CXz

z′5span(X)⊥z
.

Since X is of full column rank, z′5span(Xm)⊥
z → z′5span(X)⊥z 6= 0 obviously holds. For

the numerators, let m′ be an arbitrary subsequence of m, and choose m′′ a subsequence of

m′ such that along m′′ the sequence CXm converges to D, say. Note that D is necessarily

orthonormal and span(D) = span(X)⊥. Hence, along m′′, noting that 6(ρ) is positive

definite by assumption, we have

z′C′
Xm
(CXm6(ρ)C

′
Xm
)−1CXmz→ z′D′(D6(ρ)D′)−1Dz.

Since D= UCX holds for an (n− k)× (n− k) orthonormal matrix U, say, it follows that

z′D′(D6(ρ)D′)−1Dz= z′C′
XU

′(UCX6(ρ)C
′
XU

′)−1UCXz

= z′C′
X(CX6(ρ)C

′
X)

−1CXz.

Since the subsequence m′ was arbitrary, we are done. �
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C. Proofs for Results in Section 4

Proof of Theorem 4.3. Denote by P̄(β,γ ),σ,ρ the distribution induced by (1), but

where X is replaced by X̄ = (X,e) (a matrix with column rank k+ 1 < n), and where

γ is the regression coefficient corresponding to e. Note also that, for every β ∈ R
k,

every σ ∈ (0,∞), and every ρ ∈ [0,a), the measure P̄(β,0),σ,ρ coincides with Pβ,σ,ρ .

An application of Corollary 2.22 in Preinerstorfer and Pötscher (2017) (recall that κ̄(α) ∈

(λ1(B̄) < λn−k−1(B̄)) from the discussion preceding equation (10), and acting as if X̄ was

the underlying design matrix), one then immediately obtains that, for every β ∈ R
k, every

σ ∈ (0,∞), and every γ ∈ R, it holds that

0< lim
ρ→a

P̄(β,γ ),σ,ρ(8̄B̄,κ̄(α))= Pr(T̄B̄(3G) > κ̄(α)) < 1.

Setting γ = 0 then delivers the claim. �

Proof of Proposition 4.5. We proceed in three steps: The first step reduces the problem

to an equivalent but simpler one by an invariance argument. The second step establishes a

continuity property, and the last step establishes the equivalent formulation of the problem

derived in the first step.

(1) By a simple GX-invariance argument (recall A.1 and that TCXee′C′
X
is GX-invariant),

it suffices to verify that, for every α ∈ (0,1) and every ε ∈ (0,α), there exists a c(α,ε) ∈

(0,κ(ε)] such that

E0,1,0

[

min

(

ϕα−ε+18CXee
′C′
X
,c(α,ε)

, 1

)]

= α, (C.1)

and such that, for every c′ ∈ (0,c(α,ε)), it holds that the supremum in (C.1) is greater than

α.

(2) We claim that the nonincreasing function g : R → R defined via

c 7→ E0,1,0

[

min

(

ϕα−ε+18CXee
′C′
X
,c
, 1

)]

is continuous. To verify this claim, let c ∈ R, and let cm → c be a real sequence. By the

Dominated Convergence Theorem, to show that g(cm)→ g(c) holds, it is enough to verify

lim
m→∞

[

min

(

ϕα−ε(y)+18CXee
′C′
X
,cm
(y), 1

)]

=

[

min

(

ϕα−ε(y)+18CXee
′C′
X
,c
(y), 1

)]

,

for P0,1,0-almost every y ∈ R
n. To this end, it suffices to verify that

lim
m→∞

18CXee
′C′
X
,cm
(y)= 18CXee

′C′
X
,c
(y)

holds, for P0,1,0-almost every y ∈R
n. The statement in the previous display holds for every

y such that TCXee′C′
X
(y) 6= c. The claim now follows from P0,1,0({y ∈ R

n : TCXee′C′
X
(y) =

c}) = 0, which can be obtained from Part 1 of Lemma B.4 in Preinerstorfer and Pötscher

(2017) upon noting that λ1(CXee
′C′
X) = 0 (recall that k < n− 1) and that 0 < ‖CXe‖

2 =

λn−k(CXee
′C′
X) (the inequality following from e /∈ span(X)).

(3) We now verify the statement around equation (C.1). Note that α − ε ≤ g ≤ 1

(using A.1 and A.2 for the lower bound). Observe that g(0) = 1 follows from 1 ≥

g(0) ≥ P0,1,0(8CXee′C′
X,0
) = 1, the last equality following from Part 1 of Lemma B.4 in
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Preinerstorfer and Pötscher (2017). Observe also that g(‖CXe‖
2)= α− ε follows from

α− ε ≤ g(‖CXe‖
2)≤ α− ε+P0,1,0(8CXee′C′

X,‖CXe‖
2)= α− ε,

the last equality following again from Part 1 of Lemma B.4 in Preinerstorfer and Pötscher

(2017). From these two observations, monotonicity of g and the continuity of g, it follows

that {c ∈ R : g(c) = α} is a closed interval contained in (0,‖CXe‖
2). Define c(α,ε) as

the lower endpoint of this closed interval. Equation (C.1) and thus equation (14) follow.

Furthermore, since c(α,ε) was defined as the lower endpoint, monotonicity of g implies

that every c′ ∈ (0,c(α,ε)) must satisfy g(c′) > g(c(α,ε)) = α. It remains to show that

c(α,ε) ≤ κ(ε). To this end, from what has already been established, it suffices to verify

g(κ(ε))≤ α, which follows from

g(κ(ε))= E0,1,0

[

min

(

ϕα−ε+18CXee
′C′
X
,κ(ε)

, 1

)]

≤ E0,1,0(ϕα−ε)+P0,1,0(8CXee′C′
X,κ(ε)

)= α.

�

Proof of Theorem 4.6. We start with the first claim in the theorem.

(1.) Let ε ∈ (0,α). Obviously

ϕ∗
α,ε ≥ 18CXee

′C′
X
,c(α,ε)

,

which shows that, for every β ∈ R
k, every σ ∈ (0,∞), and every ρ ∈ [0,a), we have

Eβ,σ,ρ(ϕ
∗
α,ε)≥ Pβ,σ,ρ(8CXee′C′

X,c(α,ε)
).

From the proof of Proposition 4.5, we know that

0 = λ1(CXee
′C′
X) < c(α,ε) < λn−k(CXee

′C′
X)= ‖CXe‖

2.

We can therefore use Lemma 2.3 (with B = CXee
′C′
X) to conclude that c(α,ε) = κ(α∗),

for some α∗ ∈ (0,1), and apply Theorem 4.1 to conclude that, for every β ∈ R
k and every

σ ∈ (0,∞), we have limρ→aPβ,σ,ρ(8CXee′C′
X,c(α,ε)

)= 1, which together with the lower

bound in the previous display proves the first claim. We move on to the second claim in the

theorem.

(2.) UsingGX-invariance of ϕ
∗
α,ε (for every ε ∈ (0,α)) and of ϕα , together with ‖6(ρ)‖>

0, for every ρ ∈ [0,a), it suffices to verify that

lim
ε→0+

sup
ρ∈A

|E0,‖6(ρ)‖−1/2,ρ(ϕ
∗
α,ε)−E0,‖6(ρ)‖−1/2,ρ(ϕα)| = 0.

Let εm → 0 be a sequence in (0,α) and let ρm be a sequence in A. For convenience, set

σm := ‖6(ρm)‖
−1/2. We verify that

|E0,σm,ρm(ϕ
∗
α,εm

)−E0,σm,ρm(ϕα)| = |E0,σm,ρm(ϕ
∗
α,εm

−ϕα)| → 0. (C.2)

Letm′ be an arbitrary subsequence ofm. By compactness of the unit sphere inRn×n, we can

choose a subsequence m′′ of m′ along which ‖6(ρm)‖
−16(ρm) converges to a symmetric

matrix Ŵ, say, which due to the additional assumption on the set A is positive definite.

It follows from Scheffé’s lemma that along m′′ the sequence P0,σm,ρm (i.e., the Gaussian

probability measure with mean 0 and covariance matrix ‖6(ρm)‖
−16(ρm)) converges in
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total variation distance to Q, a Gaussian probability measure with mean 0 and covariance

matrix Ŵ. Clearly
∣

∣E0,σm,ρm(ϕ
∗
α,εm

−ϕα)
∣

∣ ≤ E0,σm,ρm(|ϕ
∗
α,εm

−ϕα |).

By, e.g., Lemma 2.3 in Strasser (1985) and since |ϕ∗
α,εm

− ϕα | is a sequence of tests, it

follows from the total variation convergence of the sequence P0,σm,ρm to Q along m′′, that

along m′′ we have
∣

∣E0,σm,ρm(|ϕ
∗
α,εm

−ϕα |)−EQ(|ϕ
∗
α,εm

−ϕα |)
∣

∣ → 0,

where EQ denotes expectation w.r.t. Q. We now claim that

EQ(|ϕ
∗
α,εm

−ϕα |)→ 0. (C.3)

This claim, if true, then implies equation (C.2) as the subsequence m′ we started with was

arbitrary.

Instead of (C.3), we first show that E0,1,0(|ϕ
∗
α,εm

−ϕα |)→ 0. To this end, write

ϕ∗
α,εm

−ϕα = [ϕα−εm −ϕα]+ (1−ϕα−εm (y))18CXee
′C′
X
,c(α,εm)

. (C.4)

FromA.3 and the Dominated Convergence Theorem, we obtainE0,1,0[|ϕα−εm −ϕα |]→ 0.

It remains to show that E0,1,0(ψm)→ 0, for

ψm := (1−ϕα−εm(y))18CXee
′C′
X
,c(α,εm)

≥ 0.

By construction and A.2, we have E0,1,0(ϕ
∗
α,εm

) = α = E0,1,0(ϕα). Therefore, (C.4)

shows that −E0,1,0[ϕα−εm − ϕα] = E0,1,0(ψm). Hence, E0,1,0(ψm) → 0 follows from

E0,1,0[ϕα−εm −ϕα] → 0. This shows that E0,1,0(|ϕ
∗
α,εm

−ϕα |)→ 0.

To show (C.3), let m⋆ be a subsequence of m. Since E0,1,0(|ϕ
∗
α,εm⋆

−ϕα |) → 0, there

exists a subsequence m⋆⋆ of m⋆, and a set N such that P0,1,0(N) = 0, and such that, for

every y ∈ R
n\N, it holds that |ϕ∗

α,εm⋆⋆
(y)−ϕα(y)| → 0 (cf., e.g., Theorem 3.12 in Rudin

(1987)). From positive definiteness of Ŵ, it follows that Q(N)= 0, and (by the Dominated

Convergence Theorem) that limm⋆⋆→∞EQ(|ϕ
∗
α,εm⋆⋆

−ϕα |)= 0. �
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