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Abstract

Early nicotine exposure compromises offspring’s phenotype at long-term in both sexes. We
hypothesize that offspring exposed to nicotine during breastfeeding show deregulated central
and peripheral endocannabinoid system (ECS), compromising several aspects of their metabo-
lism. Lactating rats received nicotine (NIC, 6 mg/Kg/day) or saline from postnatal day (PND) 2
to 16 through implanted osmotic minipumps. Offspring were analyzed at PND180. We evalu-
ated protein expression of N-acylphosphatidylethanolamide-phospholipase D (NAPE-PLD),
fatty acid amide hydrolase (FAAH), diacylglycerol lipase (DAGL), monoacylglycerol lipase
(MAGL) and cannabinoid receptors (CB1 and/or CB2) in lateral hypothalamus, paraventric-
ular nucleus of the hypothalamus, liver, visceral adipose tissue (VAT), adrenal and thyroid. NIC
offspring from both sexes did not show differences in hypothalamic ECS markers. Peripheral
ECS markers showed no alterations in NIC males. In contrast, NIC females had lower liver
DAGL and CB1, higher VAT DAGL, higher adrenal NAPE-PLD and higher thyroid FAAH.
Endocannabinoids biosynthesis was affected by nicotine exposure during breastfeeding only
in females; alterations in peripheral tissues suggest lower action in liver and higher action in
VAT, adrenal and thyroid. Effects of nicotine exposure during lactation on ECS markers are
sex- and tissue-dependent. This characterization helps understanding the phenotype of the
adult offspring in this model and may contribute to the development of new pharmacological
targets for the treatment of several metabolic diseases that originate during development.

Introduction

Mammals are particularly vulnerable to environmental changes during the lactation period that
could induce neuroendocrine adaptations and compromise health at adulthood. The
“Development Origins of Health andDiseases” (DOHaD) hypothesis aims to explain the impact
of environmental changes during early life stages.1 Chemicals and drugs exposures are impor-
tant factors that are capable of programming the progeny to a deregulated metabolism in later
life.2 As an example, nicotine, the major addictive compound present in cigarette smoke, has
already been described as a chemical disruptor that changes milk supply and composition,3,4

affecting the baby’s health at short and long term.5,6 Nicotine is an important emerging pollutant
that can be found on surfaces,7 water,8 soil, air9 and even in pregnant woman’s hair.10 We have
previously demonstrated that maternal nicotine exposure during lactation compromises rat off-
spring’s phenotype at long-term in a sex-dependent manner: male offspring showed, at adult-
hood, obesity, normophagia, despite hypothalamic leptin resistance, hyperleptinemia,
hypercorticosteronemia and hypothyroidism, while female offspring had normal body mass,
despite hyperphagia, unchanged leptinemia and corticosteronemia, but hyperthyroidism.11-13

Several different mechanisms have been associated with endocrine dysfunctions, some of
which have been linked to obesity onset. Studies have already described an interaction of a dis-
turbed endocannabinoid system (ECS) with endocrine system changes and obesity.14-16 The ECS
acts in many physiological processes, both in the central nervous system (CNS)17 and in periph-
eral tissues,18 via signaling pathways that depend on enzymatic machinery. The endogenous
cannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are
derived from membrane phospholipids and are synthesized by the enzymes N-acylphosphati-
dylethanolamine-phospholipase D (NAPE-PLD) and diacylglycerol lipase (DAGL), respec-
tively.19 The endocannabinoids act via two G protein-coupled receptors: the cannabinoid
receptor type-1 (CB1) and the cannabinoid receptor type-2 (CB2).20 Once utilized by the cells,
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AEA is degraded by the fatty acid amide hydrolase (FAAH) and the
2-AG is degraded by themonoacylglycerol lipase (MAGL).21 In the
CNS, endocannabinoids activity was shown to affect levels of anxi-
ety and depression, neurogenesis, reward, cognition, learning,
memory and food intake.22,23 In the lateral hypothalamus (LH),
ECS activation increases food intake24 and reduces energy expendi-
ture.25 In the paraventricular nucleus (PVN), besides modulating
energy expenditure,26 endocannabinoids also seem to be involved
in neuroendocrine processes, such as the inhibitory effect on the
negative feedback of glucocorticoids on corticotropin-releasing
hormone (CRH) secretion.27 In the liver, endocannabinoids
increase lipid accumulation and reactive oxygen species.28 In the
white adipose tissue, they are involved in increasing production
and storage of triglycerides, reduction of adiponectin synthesis,
and mitochondrial biogenesis.29 In the adrenal gland, ECS
influences adrenocortical steroidogenesis30 and suppresses adrena-
lin release from adrenal medullary cells,31 while, in the thyroid
gland, it inhibits thyroid hormone release.32

Some studies have shown that the ECS modulates the addictive
and rewarding properties of nicotine.33-35 However, to our knowl-
edge, the literature does not report data regarding the effects of nic-
otine exposure during the lactation period on the ECS of
experimental models of metabolic programming. Due to the fact
that the ECS modulates energy homeostasis and many endocrine
functions, we hypothesize that the dysfunctions previously charac-
terized in the offspring of our experimental model of metabolic
programming by maternal nicotine exposure during breastfeeding
is associated with a disrupted ECS in the CNS and in of peripheral
tissues, such as liver, adipose tissue, adrenal and thyroid glands.

Material and Methods

Ethics approval

The Ethical Committee for Use of Laboratory Animals of the
Biology Institute, Rio de Janeiro State University (CEUA/033/
2017) has approved all experimental procedures. All animals were
housed under controlled conditions in a 12-h light-dark cycle
(lights on from 7 a.m. to 7 p.m.) and at a temperature of 21 ± 2°C
throughout the experiment. Water and standard rodent chow
diet (Nuvilab®, São Paulo, Brazil) were offered ad libitum.
We performed the experiments in accordance to the American
Physiological Society’s guiding principles.

Animals and nicotine exposure

Female and male Wistar rats were mated at 3 months old. After
detection of pregnancy, pregnant rats were housed in individual
cages. At birth, all litters were normalized to six pups per litter.
At postnatal day (PND) 2, 14 lactating rat dams were randomly
assigned to one of the following groups:

I) Nicotine (NIC, n= 7): dams were anesthetized with thiopen-
tal, a 3 × 6 cm area on the back was shaved and an incision was
made to insert an osmotic minipump (OMP, Alzet, 2ML2, Los
Angeles, CA, USA) subcutaneously. OMPs were prepared with
nicotine free-base (Sigma, St Louis, MO, USA) diluted in NaCl
0.9% to release a dose of 6 mg/kg of nicotine/day from the
PND2 to PND16, as previously described37;

II) Control (n= 7): dams were implanted with OMPs contain-
ing NaCl 0.9%.

The nicotine exposure via s.c. OMP avoids the adverse effects of
nicotine peaks. In this rat model, the regimen of maternal nicotine
exposure results in a total exposure of 84mg/kg in 14 days per dam,

which approximates cotinine levels of heavy human smokers.38

The period of 14 days of exposure during lactation corresponds
to approximately 3–4 months of maternal smoking during breast-
feeding in humans. Offspring were exposed to nicotine exclusively
via milk and, at weaning, the pup’s blood cotinine was 20 ng/mL.39

Offspring, at PND180, from both sexes, were weighed and anes-
thetized with thiopental (i.p. 150 mg/kg of body mass) and euthan-
ized by cardiac puncture. Brain, liver, VAT, adrenal and thyroid
glands were collected, immediately frozen in liquid nitrogen and
stored at −80°C for analyses.

Punch technique

Coronal brain sections were cut using a cryostat (Hyrax C25, Zeiss,
Germany) and punches of the lateral hypothalamus (LH, bregma
2.04 to 3.60 mm) and the paraventricular nucleus of hypothalamus
(PVN, bregma 0.6 to −2.1 mm) were extracted according to
Paxinos and Watson stereotaxic coordinate atlas.40 The cut thick-
ness was approximately 1500 μm for both nuclei (variations in this
parameter occurred as a function of sex, age, and size of the
animals).

Western blotting

Frozen tissues were macerated in a specific extract buffer contain-
ing a protease inhibitor cocktail (S8830, SIGMAFAST™, Sigma-
Aldrich, St Louis, MO,USA). The LH and PVNpunches were soni-
cated twice in an ultrasonic processor for 10 s (15 s interval, 40%
amplitude). Liver, VAT, adrenal and thyroid tissues were centri-
fuged at 17,004 × g for 15 min, 12,851 × g for 30 min, 10,621 × g
for 5 min and 15,294 × g for 20 min at 4°C (Eppendorf 5417R,
Hampton, USA), respectively. Total protein content was deter-
mined using a BCA™ Protein Assay Kit (Thermo Scientific®,
Rockford, IL, USA). All samples were treated with Laemmli sample
buffer (w/v: glycerol 30%; β-mercaptoethanol 20%; sodium
dodecyl sulfate (SDS) 8%, 0.25 M Tris at pH 6.8 and bromophenol
blue). Total protein extracts (15~20 μg) were separated by 10%
SDS-PAGE at 200 V for approximately 50 min. The proteins were
then transferred from the gel to a polyvinylidene difluoride
(PVDF) membranes using the Trans-Blot® turbo system (Bio-
Rad® Laboratories, Hercules, CA, USA) and blocked with 5%
BSA in Tween-Tris-buffered saline (TTBS; Tris-HCl, 1 mol/L;
NaCl, 5 mol/L; and Tween 20, 0.05%, v/v) for 90 min under con-
tinuous shaking. Membranes were incubated overnight with the
primary antibodies described in Table 1. PVDF filters were washed
3 times with Tween–TBS (0.1%), followed by 1 h incubation with
appropriate biotin-conjugated secondary antibody (Table 1).
Then, membranes were incubated with streptavidin-conjugated
HRP (RPN1231V; Sigma-Aldrich, St Louis, MO, USA).
Immunoreactive proteins were visualized with an ECL kit using
an Image Quant LAS (Bio-Rad® Laboratories, Hercules, CA,
USA). Bands were quantified by densitometry using Image J 1.4
software (Wayne Rasband, National Institutes of Health,
Bethesda, MA, USA). Protein contents of glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) in the LH and PVN, as well as
cyclophilin B in the liver, VAT, adrenal and thyroid, were used
as loading controls.

Statistical analyses

Data are expressed as mean ± standard error of the mean and were
analyzed with the statistical program GraphPad Prism 6.0 (San
Diego, CA, USA). Each variable was analyzed using two-way
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ANOVA with group and sex as between-subject factors (Table 2).
Considering that, for the Western blotting analyses, males and
females were assessed in different gels, the results in the graphs
were analyzed separated by sex using Student’s t-tests (Control
vs. NIC) for each protein. Differences were considered significant
when p< 0.05. Effect size data is provided as Eta-squared (η2:
small> 0.1, medium > 0.3, large > 0.5).

Results

NIC males showed a significant increase in body mass (595 ± 15 g)
when compared to control males (520 ± 10 g), while NIC females
showed no difference (NIC: 300 ± 8 vs. CON: 295 ± 10 g) when
compared to control females. This finding agrees with findings
of our previous studies.11-13

ECS markers in the lateral hypothalamus (LH) and
paraventricular nucleus (PVN)

As shown in Fig. 1, the protein levels of the ECS markers in the LH
were not affected by nicotine exposure in both male (Fig. 1a and
1b) and female offspring (Fig. 1c and 1d).

We did not observe significant differences between groups in
the parameters of the ECS in the PVN in both male (Fig. 2a
and 2b) and female offspring (Fig. 2c and 2d). In both nuclei,
the ANOVAs failed to identify interactions between early nicotine
exposure and sex (Table 2).

ECS markers in the liver

No significant differences were observed between groups in the
ECS biomarkers of the male offspring (Fig. 3a and 3b). In contrast,
NIC females had significantly lower DAGL (−44%, p= 0.012,
η2= 0.450) and CB1 protein levels (−40%, p= 0.028, η2= 0.396)
in the liver (Fig. 3c and 3d) in comparison with controls. No inter-
actions between early nicotine exposure and sex were observed
(Table 2).

ECS markers in the visceral adipose tissue (VAT)

NICmales did not show any alteration in ECSmarkers (Fig. 4a and
4b) in the VAT when compared to control males. Conversely, NIC
females showed a significant increase in DAGL protein level (2.6-
fold, p= 0.002, η2 = 0.611) (Fig. 4c and 4d) in this tissue, in line
with the observation of a significant interaction between Sex
and Group for this marker (Table 2).

Table 1. Antibodies used in western blotting

Primary Antibodies Secondary antibodies

Antibody Catalogue number/ Distributed by Dilution Distributed by Dilution Specificity

CB1 ab23703 / Abcam, UK 1:200 Sigma-Aldrich, USA 1:7000 Anti-rabbit

CB2 ab3561 / Abcam, UK 1:1000 Sigma-Aldrich, USA 1:10000 Anti-rabbit

Cyclophilin B PA1-027A / Thermo Fisher Scientific, USA 1:1000 Sigma-Aldrich, USA 1:10000 Anti-rabbit

DAGL-α ab81984 / Abcam, UK 1:500 Sigma-Aldrich, USA 1:20000 Anti-goat

FAAH ab54615 / Abcam, UK 1:400 Sigma-Aldrich, USA 1:10000 Anti-mouse

GAPDH 14C10 #2118 / Cell Signaling Technology, USA 1:1000 Sigma-Aldrich, USA 1:10000 Anti-rabbit

MAGL sc-134789 / Santa Cruz Biotechnology, USA 1:400 Sigma-Aldrich, USA 1:7000 Anti-rabbit

NAPE-PLD ab95397 / Abcam, UK 1:1000 Sigma-Aldrich, USA 1:10000 Anti-rabbit

CB1: cannabinoid type-1 receptor; CB2: cannabinoid type-2 receptor; DAGL-α: diacylglycerol lipase alpha; FAAH: fatty acid amide hydrolase; GAPDH: glyceraldehyde-3-phosphate 5
dehydrogenase; MAGL: monoacylglycerol lipase; NAPE-PLD: N-acylphosphatidylethanolamine-phospholipase D.

Table 2. ANOVA results regarding nicotine exposure during lactation on endocannabinoid system of the adult offspring

ANOVA – Group × Sex interactions

NAPE-PLD FAAH DAGL MAGL CB1 CB2

Lateral
hypothalamus

F (1, 23)= 0.1,
p> 0.10

F (1, 24)= 0.7,
p> 0.10

F (1, 24)= 2.5,
p> 0.10

F (1, 24)= 0.3,
p> 0.10

F (1, 24)< 0.1,
p> 0.10

Paraventricular
nucleus

F (1, 22)= 1.4,
p> 0.10

F (1, 23)= 0.5,
p> 0.10

F (1, 23)= 1.0,
p> 0.10

F (1, 22)< 0.1,
p> 0.10

F (1, 22)< 0.1,
p> 0.10

Liver F (1, 19)= 0.3,
p> 0.10

F (1, 23)< 0.1,
p> 0.10

F (1, 23)= 2.1,
p> 0.10

F (1, 23)= 0.2,
p> 0.10

F (1, 22)= 1.0,
p> 0.10

F (1, 21)= 0.4,
p> 0.10

Visceral adipose
tissue

F (1, 21)< 0.1,
p> 0.10

F (1, 20)= 0.8,
p> 0.10

F (1, 19)= 7.7,
p= 0.012

F (1, 23)< 0.1,
p> 0.10

F (1, 23)= 0.5,
p> 0.10

F (1, 20)= 1.4,
p> 0.10

Adrenal gland F (1, 21)= 3.3,
p= 0.083

F (1, 24)< 0.1,
p> 0.10

F (1, 23)< 0.1,
p> 0.10

F (1, 23)= 1.1,
p> 0.10

F (1, 23)= 0.2,
p> 0.10

Thyroid gland F (1, 22)= 0.1,
p> 0.10

F (1, 21)= 9.7,
p= 0.005

F (1, 24)= 1.2,
p> 0.10

F (1, 22)= 0.3,
p> 0.10

F (1, 23)< 0.1,
p> 0.10

CB1: cannabinoid type-1 receptor; CB2: cannabinoid type-2 receptor; DAGL-α: diacylglycerol lipase alpha; FAAH: fatty acid amide hydrolase; MAGL: monoacylglycerol lipase; NAPE-PLD:
N-acylphosphatidylethanolamine-phospholipase D.
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ECS markers in the adrenal glands

Nicotine exposure during breastfeeding did not program the
ECS markers in adrenal glands of male offspring (Fig 5a and
5b). Conversely, NIC females had a significant increase in

NAPE-PLD protein level (2.5-fold, p = 0.026, η2 = 0.438) in
the adrenal glands (Fig. 5c and 5d), a result compatible with
the significant Sex × Group interaction for this marker
(Table 2).

Fig. 1. Effects of nicotine exposure during breast-
feeding on the endocannabinoid system in the lateral
hypothalamus (LH) of male (a) and female (c) offspring
at PND180. Representative western blot bands for each
protein are shown (b; d). GAPDHwas used as housekeep-
ing gene. Data are expressed as mean ± S.E.M, n= 7 ani-
mals from different litters/group. CB1: cannabinoid type-
1 receptor; DAGL: diacylglycerol lipase; FAAH: fatty acid
amide hydrolase; GAPDH: glyceraldehyde-3-phosphate 5
dehydrogenase; MAGL: monoacylglycerol lipase; NAPE-
PLD: N-acylphosphatidylethanolamine-phospholipase D.

Fig. 2. Effects of nicotine exposure during breast-
feeding on the endocannabinoid system in the paraven-
tricular nucleus (PVN) of male (a) and female (c) offspring
at PND180. Representative western blot bands for each
protein are shown (b; d). GAPDH was used as housekeep-
ing gene. Data are expressed as mean ± S.E.M, n= 7
animals from different litters/group. CB1: cannabinoid
type-1 receptor; DAGL: diacylglycerol lipase; FAAH: fatty
acid amide hydrolase; GAPDH: glyceraldehyde-3-
phosphate 5 dehydrogenase; MAGL: monoacylglycerol
lipase; NAPE-PLD: N-acylphosphatidylethanolamine-
phospholipase D.
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Fig. 3. Effects of nicotine exposure during breast-
feeding on the endocannabinoid system in the liver of
male (a) and female (c) offspring at PND180.
Representative western blot bands for each protein
are shown (b; d). Cyclophilin was used as housekeeping
gene. Data are expressed asmean ± S.E.M, n= 7 animals
from different litters/group, except for NAPE-PLD from
males, n= 5 animals from different litters/group.
Differences are represented by *, considering p< 0.05,
(Student’s t-test); *p= 0.012 (DAGL) and *p= 0.028
(CB1). CB1: cannabinoid type-1 receptor; CB2: cannabi-
noid type-2 receptor; Cyclo: Cyclophilin; DAGL: diacyl-
glycerol lipase; FAAH: fatty acid amide hydrolase;
MAGL: monoacylglycerol lipase; NAPE-PLD: N-acylphos-
phatidylethanolamine-phospholipase D.

Fig. 4. Effects of nicotine exposure during breast-
feeding on the endocannabinoid system in the visceral
adipose tissue (VAT) of male (a) and female (c) offspring
at PND180-day-old. Representative western blot bands
for each protein are shown (b; d). Cyclophilin was used
as housekeeping gene. Data are expressed as mean ±
S.E.M, n= 7 animals from different litters/group.
Differences are represented by **, considering p< 0.01
(Student’s t-test); p = 0.002. CB1: cannabinoid type-1
receptor; CB2: cannabinoid type-2 receptor; Cyclo:
Cyclophilin; DAGL: diacylglycerol lipase; FAAH: fatty acid
amide hydrolase; MAGL: monoacylglycerol lipase; NAPE-
PLD: N-acylphosphatidylethanolamine-phospholipase D.
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ECS markers in the thyroid gland

NIC males showed no changes in ECS markers when compared to
control males (Fig 6a and 6b). Only NIC females showed an
increased FAAH protein level (2.3-fold, p= 0.006, η2= 0.586) in
the thyroid gland (Fig. 6c and 6d), corroborating the Sex ×
Group interaction that was observed for this marker (Table 2).

Discussion

In this study, for the first time, we characterized the ECS in differ-
ent tissues in a programming model of nicotine exposure during
breastfeeding. The ECS has a relevant role in the modulation of
energy expenditure and inmany physiological processes. Ourmain
findings demonstrate that the major ECS markers were not
affected in the LH and PNV nuclei of both male and female
NIC offspring. Conversely, ECS markers of NIC females seem to
be more affected in the peripheral tissues, since we characterized
significantly lower protein expression of the biomarkers of ECS
synthesis and action in the liver, higher DAGL expression (marker
for 2-AG production) in the VAT, higher NAPE-PLD expression
(marker for AEA synthesismarker) in the adrenal gland and higher
FAAH expression (a marker of AEA degradation) in the thy-
roid gland.

Endocannabinoids are directly related to obesity onset. Several
studies have demonstrated that the permanent overstimulation of
the ECS, mainly in the CNS, contributes to the obese status.16,41,42

In our experimental model, NIC male offspring were imprinted to
an obese phenotype at adulthood. It is therefore conceivable that
the nicotine exposure during breastfeeding has modulated the off-
spring ECS. Indeed, the ECS was impaired in the CNS, specifically
in dorsolateral striatum region, of adult Wistar rats that were

exposed to nicotine, even after a long period of nicotine with-
drawal.43 Although this study did not evaluate the metabolic pro-
gramming model or the same tissues that were assessed here, we
suggest that an early nicotine exposure, during a phase of great
CNS vulnerability, is capable of affecting the ECS at adulthood
by imprinting a disruption of its activity. Interestingly, the imprint-
ing process seems to be sex-dependent since only females showed
marked effects.

Regarding the specific regions in the CNS in which the ECS
plays important roles, such as the regulation of food intake, control
of energy expenditure and neuroendocrine processes,24,26,27 both
the LH and the PVN must be highlighted. In the current study,
we did not observe changes in ECS markers in the LH of both male
and female offspring. This result is compatible with NIC males
normophagia but not with females hyperphagia, as shown in
our previous results,44 which indicates that the endocannabinoid
pathway did not contribute to this female phenotype. Other path-
ways, involving dopaminergic tonus or central leptin resistance,
may explain this hyperphagia in NIC females.13 In the PVN, we
did not observe changes in ECS markers in the offspring of either
sex. ECS function could be associated with the regulation of glu-
cocorticoid negative feedback in the PVN since NICmale offspring
exhibit higher corticotropin-releasing hormone (CRH), higher
adrenocorticotropic hormone and hypercorticosteronemia, as pre-
viously demonstrated by our group.44 In the PVN, the feedback
mechanism is mediated by a non-genomic corticosterone binding
to glucocorticoid receptor and involves the endocannabinoid syn-
thesis.45 In addition, pharmacological inhibition of CB1 receptors
results in increased corticosterone concentrations in male and
female Wistar rats.46 Similarly, the endocannabinoid system also
acts in the inhibition of thyrotropin-releasing hormone (TRH)

Fig. 5. Effects of nicotine exposure during breast-
feeding on the endocannabinoid system in the adrenal
glands of male (a) and female (c) offspring at PND180.
Representative western blot bands for each protein
are shown (b; d). Cyclophilin was used as housekeeping
gene. Data are expressed as mean ± S.E.M, n= 7 animals
from different litters/group. Statistical differences are
represented by *, considering p< 0.05 (Student’s t-test);
p = 0.026. CB1: cannabinoid type-1 receptor; Cyclo:
Cyclophilin; DAGL: diacylglycerol lipase; FAAH: fatty acid
amide hydrolase; MAGL: monoacylglycerol lipase; NAPE-
PLD: N-acylphosphatidylethanolamine-phospholipase D.
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release, as indicated by an experiment that blocked CB1 receptors
with an antagonist and observed, as a result, an increased TRH
release in mouse median eminence explants.47

The deregulation of the ECS does not occur only at a central
level, but also in the periphery. Obese people show both central
and peripheral ECS increases.41 Moreover, a deregulated ECS
can be involved in other diseases. In the liver, for example, an upre-
gulation of CB1 is related with hepatic fibrosis, steatosis, oxidative
stress and lipid accumulation.48-50 Our group has already demon-
strated that NIC males have increased lipid accumulation, oxida-
tive stress and steatosis.51 However, these dysfunctions in our male
experimental model apparently are independent of the ECS func-
tion, since ECS tonus was unaltered. In contrast, NIC females had a
reduction of DAGL and CB1 receptor in the liver, which may help
to protect this tissue from the harmful effects of ECS overstimula-
tion, since NIC females have unchanged hepatic cytoarchitecture,
as we have previously shown.52 It is possible that a compensatory
effect is improving liver function by a mechanism remains to be
determined.

The ECS also acts in the white adipose tissue stimulating lipo-
genesis and adipogenesis.53 In the VAT, NIC males did not show
changes in ECS markers, while females had higher DAGL. In most
cases, the deregulation of ECS is characterized by their overactiva-
tion.54 The increase in the biosynthetic enzyme DAGL in the
female offspring VAT suggests an increased 2-AG synthesis, which
could be related with the higher adipocyte area as well as with the
increased protein content of acetyl-CoA carboxylase and transcrip-
tion factor CCAAT/enhancer-binding protein (C/EBP) beta that
were previously observed in these animals.55 It is also known that
increased 2-AG biosynthesis is involved in pro-inflammatory and

prostaglandin responses, mainly because it serves as substrate for
cyclooxygenases.56,57

Concerning the ECS in the adrenal gland, NIC males did not
show any changes, while NIC females had higher NAPE-PLD,
which could indicate higher AEA synthesis. However, it is impor-
tant to highlight that bioactive N-acylethanolamines, including
AEA, can be formed from N-acylated plasmalogen through a
NAPE-PLD-independent pathway.58 Our research group has
already described the effects of nicotine exposure during lactation
on the adrenal function of the offspring. We observed that males
had higher adrenal catecholamine content, but lower in vitro cat-
echolamine release,44 while females had normal adrenal function.55

Endocannabinoids have an inhibitory effect on adrenaline secre-
tion, as demonstrated by the administration of cannabinoids in
isolated rabbit adrenal glands.31 In the adrenocortical cell line
NCI-H295R, it was demonstrated that AEA is capable of inhibiting
steroidogenesis.30 Furthermore, the administration of CB1 antag-
onist AM251 was shown to increase corticosterone levels in the
adrenal cortex.59 Contrasting with the unaltered expression of
adrenal CB1 in our model, Surkin and Gallino60 suggest that, in
the adrenal cortex, AEA has a potent effect via the vanilloid tran-
sient receptor potential cation channel subfamily V member 1
(TRPV1 receptors), which was not evaluated here. It is important
to highlight that endocannabinoid stress modulation could be bidi-
rectional: stress could alter the ECS activity as well as the ECS activ-
ity could induce alterations in HPA axis function.

The ECS is also present in the thyroid gland.32 Studies suggest
that endocannabinoids have a negative regulation on TSH, T3 and
T4 secretions.32,61,62 In addition, FAAH knockout mice had signifi-
cant TSH, T3 and T4 reductions.63 In a previous work, we

Fig. 6. Effects of nicotine exposure during breast-
feeding on the endocannabinoid system in thyroid
glands of male (a) and female (c) offspring at PND180.
Representative western blot bands for each protein
are shown (b; d). Cyclophilin was used as housekeeping
gene. Data are expressed as mean ± S.E.M, n= 7 animals
from different litters/group. Statistical differences are
represented by **, considering p< 0.01 (Student’s t-test);
p= 0.006. CB1: cannabinoid type-1 receptor; Cyclo:
Cyclophilin; DAGL: diacylglycerol lipase; FAAH: fatty acid
amide hydrolase; MAGL: monoacylglycerol lipase;
NAPE-PLD: N-acylphosphatidylethanolamine-phospho-
lipase D.
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demonstrated that NIC males showed low TSH, T3 and T4 plasma
levels, while NIC females had higher T3 and T4.12 Here, NIC males
did not show changes in thyroid ECS markers, but NIC females
had higher thyroid FAAH protein expression. We can speculate
that the overexpression of FAAH may avoid the accumulation
of AEA and prevent its inhibitory effect on thyroid hormones
secretion in females.

Regarding sex dimorphism, there is evidence in the literature
that the ECS show sex-related differences. For instance, females
seem to have lower activation of ECS than males.46,64

Considering other programming models, studies reported
differences in ECS between sexes.50,65-67 Here, comparing male
and female offspring, the differences observed in ECS markers

could have the involvement of the sex hormones. We have already
assessed estrogen and testosterone plasma levels in the neonatal
nicotine exposure model: NIC females showed no alterations in
estradiol and testosterone levels, while NICmales had lower testos-
terone without changes in estradiol.12 In the present study, only
NIC females were affected. Thus, the protective effect mediated
by estrogens 68 did not occur regarding the ECS markers. We have
previously detected, in a different experimental model, that adult
female rats that were programmed by maternal cigarette smoke
during lactation showed lower estradiol levels, higher hypotha-
lamic DAGL protein expression, lower hepatic DALG and lower
VAT CB1.69 Thus, the late effects of nicotine exposure during lac-
tation in the ECS of the female progeny differ from the effects

Fig. 7. The first panel (a) depicts the main proteins involved in endocannabinoid synthesis and degradation pathways. Phosphatidylethanolamine (PE) is converted to N-acyl-
phosphatidylethanolamine (NAPE), catalyzed by the NAPE-phospholipase D (NAPE-PLD), producing anandamide (AEA). In addition, phosphatidylinositol (PI) is hydrolyzed by
phospholipase C (PLC), originating diacylglycerol (DAG), which is converted to 2-arachidonoylglycerol (2-AG) by diacylglycerol lipase (DAGL). The endocannabinoids AEA and
2-AG act by binding to both type-1 or type-2 cannabinoid receptors (CB1 or CB2). The degradation of the endocannabinoids is mediated by fatty acid amide hydrolase
(FAAH), which is responsible for AEA degradation, and by monoacylglycerol lipase (MAGL), which is responsible for 2-AG degradation. The metabolites of AEA and 2-AG are
the arachidonic acid (AA) and ethanolamine, and AA and glycerol, respectively. The second panel (b) shows the main effects of the endocannabinoids in different tissues.
The third panel (c) describes the ECS markers in adult rats that were nicotine-exposed during breastfeeding. OMP: osmotic minipumps.
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observed in females exposed to cigarette smoke for the same
period, suggesting that other compounds in the cigarette can also
affect ECS tonus. However, in both models (nicotine and smoke),
nicotine appears to be responsible for the reduction of DAGL in the
liver. We summarize in Fig. 7, the ECS biosynthesis and degrada-
tion pathways, the main effects of the endocannabinoids in differ-
ent tissues and the ECS markers in our experimental model.

Constitute limitations of our study the lack of measurement of
AEA and 2-AG levels and of the activity of the enzymes involved in
endocannabinoids metabolism.

In conclusion, we demonstrated that nicotine exposure during
lactation imprinted a deregulated ECS in the female offspring. The
central and peripheral characterization of ECS is a contribution to
an understanding of the phenotype observed in this experimental
model. Unraveling the associated mechanisms can contribute to
the discovery of new pharmacological targets for the treatment
of several metabolic diseases originated during development, espe-
cially those caused by maternal smoking or caused by the use of
nicotine patch by mothers who wish to quit smoking.
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