Bull. Aust. Math. Soc. 108 (2023), 244–253 doi:10.1017/S0004972722001289

A PAIR OF EQUATIONS IN EIGHT PRIME CUBES AND POWERS OF 2

XUE HAN and HUAFENG LIU[∞]

(Received 14 September 2022; accepted 3 October 2022; first published online 14 December 2022)

Abstract

In this paper, we show that every pair of sufficiently large even integers can be represented as a pair of eight prime cubes and k powers of 2. In particular, we prove that k = 335 is admissible, which improves the previous result.

2020 *Mathematics subject classification*: primary 11P32; secondary 11P05, 11P55. *Keywords and phrases*: circle method, Goldbach–Linnik problem, powers of 2.

1. Introduction

In 1951 and 1953, Linnik [5, 6] showed that every large even integer N can be represented in the form of two primes and a bounded number of powers of 2, namely

$$N' = p_1 + p_2 + 2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_{k'}}.$$
(1.1)

Later, Liu *et al.* [8] proved that k' = 54000 is acceptable in (1.1). After many improvements, up to now, the best result is k' = 8 established by Pintz and Ruzsa [14]. In 2013, Kong [3] first considered the simultaneous representation of pairs of positive even integers as sums of two primes and powers of 2, that is,

$$\begin{cases} N'_1 = p_1 + p_2 + 2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_{k'}}, \\ N'_2 = p_3 + p_4 + 2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_{k'}}. \end{cases}$$

She proved that these equations are solvable for a pair of sufficiently large positive even integers N'_1 and N'_2 satisfying $N'_2 \gg N'_1 > N'_2$ for k' = 63 unconditionally, and for k' = 31 under the generalised Riemann hypothesis (GRH). Subsequently, Kong and Liu [4] improved the value of k' to 34 unconditionally and to 18 under the GRH.

In 2001, based on the works of Linnik [5, 6] and Gallagher [2], Liu and Liu [7] proved that every large even integer *N* can be written as a sum of eight cubes of primes

This work is supported by the National Natural Science Foundation of China (Grant No. 12171286). © The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

and a bounded number of powers of 2, namely

$$N = p_1^3 + p_2^3 + \dots + p_8^3 + 2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_k}.$$

So far, the best result for this equation is k = 30 obtained by Zhu [19].

As a generalisation, in 2013, Liu [11] first considered the simultaneous representation of pairs of positive even integers N_1 and N_2 satisfying $N_2 \gg N_1 > N_2$ in the form

$$\begin{cases} N_1 = p_1^3 + p_2^3 + \dots + p_8^3 + 2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_k}, \\ N_2 = p_9^3 + p_{10}^3 + \dots + p_{16}^3 + 2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_k}, \end{cases}$$
(1.2)

where k is a positive integer. Liu [11] proved that the equations in (1.2) are solvable for k = 1432. This number k was improved successively to k = 1364, k = 658 and k = 609 by Platt and Trudgian [15], Zhao [17] and Liu [9], respectively. We make a further improvement on the value of k in (1.2) by establishing the following result.

THEOREM 1.1. For k = 335, the equations in (1.2) are solvable for every pair of sufficiently large positive even integers N_1 and N_2 satisfying $N_2 \gg N_1 > N_2$.

To prove Theorem 1.1, we apply the circle method in combination with some new arguments of Kong and Liu [4]. To apply the circle method, similarly to [4], we divide $[0, 1]^2$ into three arcs, which means we can avoid the limitation of two arcs in Liu [9] after applying integral transforms (see Section 4 for details), resulting in the sharper *k* in (1.2).

NOTATION 1.2. Throughout this paper, the letter p, with or without a subscript, always represents a prime. Both N_1 and N_2 denote sufficiently large positive even integers, $e(x) = \exp(2\pi i x)$ and $n \sim N$ means $N < n \le 2N$. The letter ϵ denotes a positive constant which is arbitrarily small but may not be the same at different occurrences.

2. Outline of the proof

In this section, we give an outline for the proof of Theorem 1.1. To apply the circle method, we let, for i = 1, 2,

$$P_i = N_i^{1/9-2\epsilon}, \quad Q_i = N_i^{8/9+\epsilon}, \quad L = \frac{\log(N_1/\log N_1)}{\log 2}.$$

For i = 1, 2, we define the major arcs \mathfrak{M}_i and minor arcs $C(\mathfrak{M}_i)$ as

$$\mathfrak{M}_{i} = \bigcup_{\substack{1 \le q_{i} \le P_{i} \ i \le a_{i} \le q_{i} \\ (a_{i},q_{i})=1}} \mathfrak{M}_{i}(a_{i},q_{i}), \quad C(\mathfrak{M}_{i}) = [0,1] \backslash \mathfrak{M}_{i},$$
(2.1)

where

$$\mathfrak{M}_i(a_i, q_i) = \left\{ \alpha_i \in [0, 1] : \left| \alpha_i - \frac{a_i}{q_i} \right| \le \frac{1}{q_i Q_i} \right\}$$

and

$$1 \le a_i \le q_i \le Q_i, \quad (a_i, q_i) = 1$$

Note that the major arcs $\mathfrak{M}_i(a_i, q_i)$ are mutually disjoint since $2P_i \leq Q_i$. We further define

$$\mathfrak{M} = \mathfrak{M}_1 \times \mathfrak{M}_2 = \{ (\alpha_1, \alpha_2) \in [0, 1]^2 : \alpha_1 \in \mathfrak{M}_1, \alpha_2 \in \mathfrak{M}_2 \},$$
(2.2)

$$C(\mathfrak{M}) = [0,1]^2 \backslash \mathfrak{M}. \tag{2.3}$$

As in [16], let $\delta = 10^{-4}$ and

$$U_i = \left(\frac{N_i}{16(1+\delta)}\right)^{1/3}, \quad V_i = U_i^{5/6}.$$

For i = 1, 2, we set

$$S(\alpha_i, U_i) = \sum_{p \sim U_i} (\log p) e(p^3 \alpha_i), \quad T(\alpha_i, V_i) = \sum_{p \sim V_i} (\log p) e(p^3 \alpha_i), \tag{2.4}$$
$$G(\alpha_i) = \sum_{4 \le \nu \le L} e(2^{\nu} \alpha_i), \quad \mathscr{E}_{\lambda} = \{(\alpha_1, \alpha_2) \in [0, 1]^2 : |G(\alpha_1 + \alpha_2)| \ge \lambda L\}.$$

Let

 $R(N_1, N_2) = \sum \log p_1 \log p_2 \cdots \log p_{16}$

be the weighted number of solutions of (1.2) in $(p_1, p_2, \ldots, p_{16}, v_1, v_2, \ldots, v_k)$ with

$$p_1, p_2, p_3, p_4 \sim U_1, \quad p_5, p_6, p_7, p_8 \sim V_1,$$

$$p_9, p_{10}, p_{11}, p_{12} \sim U_2, \quad p_{13}, p_{14}, p_{15}, p_{16} \sim V_2,$$

$$4 \le v_j \le L, \quad j = 1, 2, \dots, k.$$

Then we rewrite $R(N_1, N_2)$ as

$$\begin{split} R(N_1, N_2) &= \left(\iint_{\mathfrak{M}} + \iint_{C(\mathfrak{M}) \cap \mathscr{E}_{\lambda}} + \iint_{C(\mathfrak{M}) \setminus \mathscr{E}_{\lambda}} \right) S^4(\alpha_1, U_1) T^4(\alpha_1, V_1) S^4(\alpha_2, U_2) T^4(\alpha_2, V_2) \\ &\times G^k(\alpha_1 + \alpha_2) e(-\alpha_1 N_1 - \alpha_2 N_2) \, d\alpha_1 \, d\alpha_2 \\ &\coloneqq R_1(N_1, N_2) + R_2(N_1, N_2) + R_3(N_1, N_2). \end{split}$$

In Section 3, we first give some lemmas. In Section 4, we shall estimate $R_i(N_1, N_2)$ for i = 1, 2, 3 and complete the proof of Theorem 1.1.

3. Auxiliary lemmas

Let

$$C(q, a) = \sum_{\substack{m=1\\(m,q)=1}}^{q} e\left(\frac{am^{3}}{q}\right), \quad B(n,q) = \sum_{\substack{a=1\\(a,q)=1}}^{q} C^{8}(q,a)e\left(-\frac{an}{q}\right),$$

$$A(n,q) = \frac{B(n,q)}{\varphi^{8}(q)}, \quad \mathfrak{S}(n) = \sum_{\substack{q=1\\q=1}}^{\infty} A(n,q).$$
(3.1)

246

LEMMA 3.1. Let $\mathscr{A}(N_i, k) = \{n_i \ge 2 : n_i = N_i - 2^{\nu_1} - 2^{\nu_2} - \dots - 2^{\nu_k}\}$ with $k \ge 35$. Then, for $N_1 \equiv N_2 \equiv 0 \pmod{2}$,

$$\sum_{\substack{n_1 \in \mathscr{A}(N_1,k)\\n_2 \in \mathscr{A}(N_2,k)\\n_1 \equiv n_2 \equiv 0 \pmod{2}}} \mathfrak{S}(n_1) \mathfrak{S}(n_2) \ge 0.1596600336L^k.$$

PROOF. From (5.9) of [12] and Lemma 2.3 of [18], for $p \ge 13$ and $p \equiv 1 \pmod{3}$,

$$1 + A(n, p) \ge 1 - \frac{(2\sqrt{p} + 1)^8}{(p - 1)^7},$$

and

$$\prod_{p \ge 17} (1 + A(n_i, p)) \ge 0.8206744593.$$

Then,

$$\prod_{p \ge 13} (1 + A(n_i, p)) = (1 + A(n_i, 13)) \times \prod_{p \ge 17} (1 + A(n_i, p))$$
$$\ge 0.4233091149 \times 0.8206744593$$
$$\ge 0.3473989790 := C.$$

Noting that $\mathfrak{S}(n_i) = 2(1 - 1/2^8) \prod_{p>3} (1 + A(n_i, p))$ and putting $q = \prod_{3 ,$

$$\sum_{\substack{n_{1} \in \mathscr{A}(N_{1},k) \\ n_{2} \in \mathscr{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2}}} \mathfrak{S}(n_{1})\mathfrak{S}(n_{2})$$

$$\geq \left(2\left(1 - \frac{1}{2^{8}}\right)C\right)^{2} \sum_{\substack{n_{1} \in \mathscr{A}(N_{1},k) \\ n_{2} \in \mathscr{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2}}} \prod_{\substack{n_{1} \in \mathscr{A}(N_{1},k) \\ n_{2} \in \mathscr{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2}}} \prod_{\substack{n_{1} \in \mathscr{A}(N_{1},k) \\ n_{2} \in \mathscr{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2} \\ n_{1} \equiv j_{1} \pmod{q} \\ n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{1} \in \mathscr{A}(N_{1},k) \\ n_{2} \in \mathscr{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2} \\ n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{1} \in \mathscr{A}(N_{1},k) \\ n_{2} \in \mathscr{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2} \\ n_{2} \equiv j_{2} \pmod{q}}} \sum_{\substack{n_{1} \in \mathscr{A}(N_{1},k) \\ n_{2} \equiv \mathfrak{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2} \\ n_{1} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{1} \in \mathscr{A}(N_{1},k) \\ n_{2} \in \mathscr{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2} \\ n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2} \\ n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2} \\ n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{1} \equiv n_{2} \equiv 0 \pmod{2} \\ n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{2} \equiv j_{2} \pmod{q}}}} \prod_{\substack{n_{2} \equiv j_{2} \pmod{q}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{2} \equiv j_{2} \pmod{q}}}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{2} \equiv j_{2} \pmod{q}}}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{2} \equiv j_{2} \pmod{q}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{2} \equiv j_{2} \pmod{q}}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{2} \equiv j_{2} \pmod{q}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{2} \equiv j_{2} \pmod{q}} \prod_{\substack{n_{2} \in \mathscr{A}(N_{2},k) \\ n_{2} \equiv j_{2} \pmod{q}} \prod_{\substack{n_{2}$$

[4]

Considering the inner sum,

$$\begin{split} S := \sum_{\substack{n_1 \in \mathscr{A}(N_1,k) \\ n_2 \in \mathscr{A}(N_2,k) \\ n_1 \equiv n_2 \equiv 0 \pmod{2} \\ n_1 \equiv j_1 \pmod{q} \\ n_2 \equiv j_2 \pmod{q}}} 1 = \sum_{\substack{4 \leq v_j \leq L, 1 \leq j \leq k, i = 1, 2 \\ 2^{v_1} + 2^{v_2} + \dots + 2^{v_k} \equiv N_i \pmod{2} \\ 2^{v_1} + 2^{v_2} + \dots + 2^{v_k} \equiv N_i - j_i \pmod{q}}} 1 \end{split}$$

Since $N_1 \equiv N_2 \equiv 0 \pmod{2}$,

$$\begin{cases} 2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_k} \equiv N_1 \pmod{2} \\ 2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_k} \equiv N_2 \pmod{2} \end{cases}$$

is equivalent to

$$2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_k} \equiv N_1 \pmod{2}$$
.

Additionally, if $N_2 \equiv N_1 + t \pmod{q}$ and $j_2 \equiv j_1 + t \pmod{q}$ with $1 \le t \le q$,

$$\begin{cases} 2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_k} \equiv N_1 - j_1 \pmod{q} \\ 2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_k} \equiv N_2 - j_2 \pmod{q} \end{cases}$$

is equivalent to

$$2^{\nu_1} + 2^{\nu_2} + \dots + 2^{\nu_k} \equiv N_1 - j_1 \pmod{q}$$

Therefore, when $N_1 \equiv N_2 \equiv 0 \pmod{2}$, $N_2 \equiv N_1 + t \pmod{q}$ and $j_2 \equiv j_1 + t \pmod{q}$,

$$S \geq \sum_{\substack{4 \leq v_1, v_2, \dots, v_k \leq L \\ 2^{v_1} + 2^{v_2} + \dots + 2^{v_k} \equiv N_1 \pmod{2} \\ 2^{v_1} + 2^{v_2} + \dots + 2^{v_k} \equiv N_1 \pmod{q}}} \left(\frac{L}{\rho(3q)} + O(1)\right)^k \sum_{\substack{4 \leq v_1, v_2, \dots, v_k \leq \rho(3q) \\ 2^{v_1} + 2^{v_2} + \dots + 2^{v_k} \equiv n_1 \pmod{q}}} 1,$$

where the natural number $a_j \in [1, 3q]$ satisfies the conditions $a_j \equiv N_1 \pmod{3}$ and $a_j \equiv N_1 - j_1 \pmod{q}$, and $\rho(q)$ denotes the smallest positive integer ρ such that $2^{\rho} \equiv 1 \pmod{q}$.

Noting that

$$S \ge \frac{1}{3q} \left(\frac{L}{\rho(3q)} + O(1) \right)^k \sum_{t=0}^{3q-1} e\left(\frac{ta_j}{3q} \right) \left(\sum_{1 \le s \le \rho(3q)} e\left(\frac{t2^s}{3q} \right) \right)^k,$$

we get

$$S \ge \frac{1}{3q} \left(\frac{L}{\rho(3q)} + O(1) \right)^k (\rho(3q)^k - (3q - 1)(\max)^k)$$
$$= \frac{L^k}{3q} \left(1 - (3q - 1) \left(\frac{\max}{\rho(3q)} \right)^k \right) + O(L^{k-1}),$$

where

$$\max = \max\left\{ \left| \sum_{1 \le s \le \rho(3q)} e\left(\frac{j2^s}{3q}\right) \right| : 1 \le j \le 3q - 1 \right\}.$$

[5]

Since 3q = 1155 and $\rho(3q) = 60$, with the help of a computer,

max = 30...,
$$(3q-1)\left(\frac{\max}{\rho(3q)}\right)^{50} < 10^{-10}.$$

Therefore,

$$S \ge \frac{(1-10^{-10})L^k}{3q} + O(L^{k-1}).$$

By a numerical calculation,

$$\max_{1 \le i \le q} \left(\sum_{1 \le j_1 \le q} \prod_{3 < p_1 < 12} (1 + A(j_1, p_1)) \prod_{3 < p_2 < 12} (1 + A(j_1 + t, p_2)) \right) \ge 384.9999769.$$

Then,

$$\sum_{\substack{n_1 \in \mathscr{A}(N_1,k) \\ n_2 \in \mathscr{A}(N_2,k) \\ n_1 \equiv n_2 \equiv 0 \pmod{2}}} \mathfrak{S}(n_1) \mathfrak{S}(n_2) \ge 384.9999769 \left(2\left(1 - \frac{1}{2^8}\right) C \right)^2 \frac{(1 - 10^{-10})L^k}{3q} \ge 0.1596600336L^k.$$

LEMMA 3.2 [12, Lemma 2.1]. Let \mathfrak{M}_i , $S(\alpha_i, U_i)$ and $T(\alpha_i, V_i)$ be defined as in (2.1) and (2.4), respectively. For $N_i/2 \le n_i \le N_i$,

$$\int_{\mathfrak{M}_i} S^4(\alpha_i, U_i) T^4(\alpha_i, V_i) e(-n_i \alpha_i) \, d\alpha_i = \frac{1}{3^8} \mathfrak{S}(n_i) \mathfrak{J}(n_i) + O(N_i^{13/9} L^{-1}),$$

where $\mathfrak{S}(n_i)$ is defined as in (3.1) and satisfies $\mathfrak{S}(n_i) \gg 1$ for $n_i \equiv 0 \pmod{2}$, and $\mathfrak{J}(n_i)$ is defined as

$$\mathfrak{J}(n_i) := \sum_{\substack{m_1 + m_2 + \dots + m_8 = n_i \\ U_i^3 < m_1, m_2, m_3, m_4 \le 8U_i^3 \\ V_i^3 < m_5, m_6, m_7, m_8 \le 8V_i^3}} (m_1 m_2 \dots m_8)^{-2/3}$$

and satisfies $N_i^{13/9} \ll \mathfrak{J}(n_i) \ll N_i^{13/9}$.

LEMMA 3.3 [18, Lemma 2.6]. For $(1 - \delta)N_i \le n_i \le N_i$,

$$\mathfrak{J}(n_i) > 1.42432055N_i^{13/9}$$

LEMMA 3.4. We have $meas(\mathcal{E}_{\lambda}) \ll N_i^{-E(\lambda)}$ with $E(0.9570253) > \frac{8}{9} + 10^{-10}$.

PROOF. This is (2.7) in Lemma 2.1 of Zhao [17].

LEMMA 3.5 [17, Lemma 2.5]. Let \mathfrak{M}_i and $S(\alpha_i, U_i)$ be defined as in (2.1) and (2.4), respectively. We have

$$\max_{\alpha_i \in C(\mathfrak{M}_i)} |S(\alpha_i, U_i)| \ll N_i^{11/36+\epsilon}$$

[6]

LEMMA 3.6. Let $S(\alpha_i, U_i)$ and $T(\alpha_i, V_i)$ be defined as in (2.4). We have

$$\int_0^1 |S(\alpha_i, U_i)T(\alpha_i, V_i)|^4 \, d\alpha_i \le 0.134694091 N_i^{13/9}$$

PROOF. The idea of the proof is similar to that of Lemma 2.6 in Liu and Lü [13]. However, we take v = 100552 obtained by Elsholtz and Schlage-Puchta [1] instead of 147185.22 obtained by Liu [10]. This leads to a better upper bound.

Here we only consider the case i = 1 since the case i = 2 can be proved similarly. From (2.7) of Ren [16] and Proposition 2 of Elsholtz and Schlage-Puchta [1],

$$\sum_{N_1/9 < l \le N_1} r^2(l) \le \vartheta(0) \le (\nu + o(1)) U_1 V_1^4 L^{-8},$$

where v = 100552, r(n) denotes the number of representations of n as $p_1^3 + p_2^3 + p_3^3 + p_4^3$ with $p_1, p_2 \sim U_1, p_3, p_4 \sim V_1$ and $\vartheta(0)$ denotes the number of solutions of the equation $p_1^3 + p_2^3 + p_3^3 + p_4^3 = p_5^3 + p_6^3 + p_7^3 + p_8^3$ with $p_1, p_2, p_5, p_6 \sim U_1, p_3, p_4, p_7, p_8 \sim V_1$.

Therefore,

$$\int_0^1 |S(\alpha_1, U_1)T(\alpha_1, V_1)|^4 \, d\alpha_1 \le (\log(2U_1))^4 (\log(2V_1))^4 \vartheta(0)$$
$$\le 0.134694091 N_1^{13/9}. \qquad \Box$$

4. Proof of Theorem 1.1

To prove Theorem 1.1, we first estimate $R_1(N_1, N_2)$. By Lemmas 3.1, 3.2 and 3.3,

$$R_{1}(N_{1}, N_{2}) = \iint_{\mathfrak{M}} S^{4}(\alpha_{1}, U_{1})T^{4}(\alpha_{1}, V_{1})S^{4}(\alpha_{2}, U_{2})T^{4}(\alpha_{2}, V_{2})$$

$$\times G^{k}(\alpha_{1} + \alpha_{2})e(-\alpha_{1}N_{1} - \alpha_{2}N_{2}) d\alpha_{1} d\alpha_{2}$$

$$\geq \left(\frac{1}{3^{8}}\right)^{2} \sum_{\substack{n_{1} \in \mathscr{A}(N_{1},k) \\ n_{2} \in \mathscr{A}(N_{2},k)}} \mathfrak{S}(n_{1})\mathfrak{S}(n_{2})\mathfrak{J}(n_{1})\mathfrak{J}(n_{2})$$

$$\geq \frac{0.1596600336 \times (1.42432055)^{2}}{3^{16}} (N_{1}N_{2})^{13/9}L^{k}$$

$$\geq 7.524395606 \times 10^{-9} (N_{1}N_{2})^{13/9}L^{k},$$
(4.1)

where \mathfrak{M} is defined by (2.2).

Next, we estimate $R_2(N_1, N_2)$. By (2.1) and (2.3),

 $C(\mathfrak{M}) \subset \{(\alpha_1,\alpha_2): \alpha_1 \in C(\mathfrak{M}_1), \alpha_2 \in [0,1]\} \cup \{(\alpha_1,\alpha_2): \alpha_1 \in [0,1], \alpha_2 \in C(\mathfrak{M}_2)\}.$

From Lemma 3.5 and the trivial bounds of $G(\alpha_i)$ and $T(\alpha_i, V_i)$,

$$R_{2}(N_{1}, N_{2}) = \iint_{C(\mathfrak{M})\cap\mathscr{E}_{4}} S^{4}(\alpha_{1}, U_{1})T^{4}(\alpha_{1}, V_{1})S^{4}(\alpha_{2}, U_{2})T^{4}(\alpha_{2}, V_{2}) \times G^{k}(\alpha_{1} + \alpha_{2})e(-\alpha_{1}N_{1} - \alpha_{2}N_{2}) d\alpha_{1} d\alpha_{2} \ll L^{k} \Big(\iint_{[\alpha_{1},\alpha_{2})\in C(\mathfrak{M}_{1})\times[0,1]} + \iint_{[\alpha_{1},\alpha_{2})\in[0,1]\times C(\mathfrak{M}_{2})} \Big)_{\substack{|G(\alpha_{1}+\alpha_{2})|\geq\lambda L}} S^{4}(\alpha_{1}, U_{1})T^{4}(\alpha_{1}, V_{1})S^{4}(\alpha_{2}, U_{2})T^{4}(\alpha_{2}, V_{2}) d\alpha_{1} d\alpha_{2} \ll L^{k}N_{1}^{10/9}N_{1}^{11/9+\epsilon} \iint_{\substack{|\alpha_{1},\alpha_{2}\rangle\in[0,1]^{2}\\|G(\alpha_{1}+\alpha_{2})|\geq\lambda L}} |S^{4}(\alpha_{1}, U_{1})T^{4}(\alpha_{1}, V_{1})| d\alpha_{1} d\alpha_{2} + L^{k}N_{2}^{10/9}N_{2}^{11/9+\epsilon} \iint_{\substack{|\alpha_{1},\alpha_{2}\rangle\in[0,1]^{2}\\|G(\alpha_{1}+\alpha_{2})|\geq\lambda L}} |S^{4}(\alpha_{1}, U_{1})T^{4}(\alpha_{1}, V_{1})| d\alpha_{1} d\alpha_{2}.$$

$$(4.2)$$

Let $\varpi = \alpha_1 + \alpha_2$. By the periodicity of $G(\alpha)$,

$$\begin{split} \iint_{\substack{(\alpha_1,\alpha_2)\in[0,1]^2\\|G(\alpha_1+\alpha_2)|\geq\lambda L}} & |S^4(\alpha_2,U_2)T^4(\alpha_2,V_2)| \, d\alpha_1 \, d\alpha_2 \\ &= \int_0^1 |S^4(\alpha_2,U_2)T^4(\alpha_2,V_2)| \Big(\int_{\substack{\varpi\in[\alpha_2,1+\alpha_2]\\|G(\varpi)|\geq\lambda L}} \, d\varpi\Big) \, d\alpha_2. \end{split}$$

By Lemmas 3.4 and 3.6,

$$\iint_{\substack{(\alpha_1,\alpha_2)\in[0,1]^2\\|G(\alpha_1+\alpha_2)|\geq\lambda L}} |S^4(\alpha_2, U_2)T^4(\alpha_2, V_2)| \, d\alpha_1 \, d\alpha_2 \ll N_2^{13/9} N_1^{-8/9-10^{-10}}.$$
(4.3)

Similarly,

$$\iint_{\substack{(\alpha_1,\alpha_2)\in[0,1]^2\\|G(\alpha_1+\alpha_2)|\geq\lambda L}} |S^4(\alpha_1,U_1)T^4(\alpha_1,V_1)|\,d\alpha_1\,d\alpha_2 \ll N_1^{13/9}N_2^{-8/9-10^{-10}}.$$
(4.4)

From (4.2)–(4.4),

$$R_{2}(N_{1}, N_{2}) \ll N_{1}^{10/9} N_{1}^{11/9+\epsilon} N_{2}^{13/9} N_{1}^{-8/9-10^{-10}} L^{k} + N_{2}^{10/9} N_{2}^{11/9+\epsilon} N_{1}^{13/9} N_{2}^{-8/9-10^{-10}} L^{k} \ll (N_{1}N_{2})^{13/9} L^{k-1},$$
(4.5)

where $N_2 \gg N_1 > N_2$.

Finally, we estimate $R_3(N_1, N_2)$. By Lemma 3.6 and the definition of \mathcal{E}_{λ} ,

$$R_{3}(N_{1}, N_{2}) = \iint_{C(\mathfrak{M}) \setminus \mathscr{E}_{\lambda}} S^{4}(\alpha_{1}, U_{1})T^{4}(\alpha_{1}, V_{1})S^{4}(\alpha_{2}, U_{2})T^{4}(\alpha_{2}, V_{2}) \times G^{k}(\alpha_{1} + \alpha_{2})e(-\alpha_{1}N_{1} - \alpha_{2}N_{2}) d\alpha_{1} d\alpha_{2}$$

$$\leq (\lambda L)^{k} \int_{0}^{1} |S^{4}(\alpha_{1}, U_{1})T^{4}(\alpha_{1}, V_{1})| d\alpha_{1} \int_{0}^{1} |S^{4}(\alpha_{2}, U_{2})T^{4}(\alpha_{2}, V_{2})| d\alpha_{2}$$

$$\leq 0.0181424982\lambda^{k}(N_{1}N_{2})^{13/9}L^{k}.$$

$$(4.6)$$

Putting (4.1), (4.5) and (4.6) together,

$$\begin{split} R(N_1,N_2) &> R_1(N_1,N_2) - R_3(N_1,N_2) + O((N_1N_2)^{13/9}L^{k-1}) \\ &> (7.524395606 \times 10^{-9} - 0.0181424982\lambda^k)(N_1N_2)^{13/9}L^k, \end{split}$$

where $\lambda = 0.9570253$. Then we can deduce that

$$R(N_1, N_2) > 0$$

provided that $k \ge 335$. Thus, we complete the proof of Theorem 1.1.

Acknowledgement

The authors would like to thank the referee for useful comments.

References

- C. Elsholtz and J. C. Schlage-Puchta, 'The density of integers representable as the sum of four prime cubes', *Acta Arith.* 192 (2020), 363–369.
- [2] P. X. Gallagher, 'Primes and powers of 2', Invent. Math. 29 (1975), 125–142.
- [3] Y. F. Kong, 'On pairs of linear equations in four prime variables and powers of 2', *Bull. Aust. Math. Soc.* **87** (2013), 55–67.
- [4] Y. F. Kong and Z. X. Liu, 'On pairs of Goldbach–Linnik equations', Bull. Aust. Math. Soc. 95 (2017), 199–208.
- [5] Y. V. Linnik, 'Prime numbers and powers of two', *Tr. Mat. Inst. Steklova* **38** (1951), 151–169 (in Russian).
- Y. V. Linnik, 'Addition of prime numbers with powers of one and the same number', *Mat. Sb. (N.S.)* 32 (1953), 3–60 (in Russian).
- [7] J. Y. Liu and M. C. Liu, 'Representation of even integers by cubes of primes and powers of 2', Acta Math. Hungar. 91 (2001), 217–243.
- [8] J. Y. Liu, M. C. Liu and T. Z. Wang, 'The number of powers of 2 in a representation of large even integers (II)', Sci. China Ser. A 41 (1998), 1255–1271.
- Y. H. Liu, 'Two results on Goldbach–Linnik problems for cubes of primes', *Rocky Mountain J. Math.* 52 (2022), 999–1007.
- [10] Z. X. Liu, 'Density of the sums of four cubes of primes', J. Number Theory 132 (2012), 735–747.
- [11] Z. X. Liu, 'On pairs of quadratic equations in primes and powers of 2', J. Number Theory 133 (2013), 3339–3347.
- [12] Z. X. Liu and G. S. Lü, 'Eight cubes of primes and powers of 2', Acta Arith. 145 (2010), 171–192.

Prime cubes and powers of 2

- [13] Z. X. Liu and G. S. Lü, 'Two results on powers of 2 in Waring–Goldbach problem', J. Number Theory 131 (2011), 716–736.
- [14] J. Pintz and I. Z. Ruzsa, 'On Linnik's approximation to Goldbach's problem II', Acta Math. Hungar. 161 (2020), 569–582.
- [15] D. J. Platt and T. S. Trudgian, 'Linnik's approximation to Goldbach's conjecture, and other problems', J. Number Theory 153 (2015), 54–62.
- [16] X. M. Ren, 'Sums of four cubes of primes', J. Number Theory 98 (2003), 156–171.
- [17] X. D. Zhao, 'Goldbach–Linnik type problems on cubes of primes', *Ramanujan J.* **57** (2022), 239–251.
- [18] X. D. Zhao and W. X. Ge, 'Eight cubes of primes and 204 powers of 2', Int. J. Number Theory 16 (2020), 1547–1555.
- [19] L. Zhu, 'Goldbach–Linnik type problems on eight cubes of primes', *Rocky Mountain J. Math.* 52 (2022), 1127–1139.

XUE HAN, School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, Shandong, PR China e-mail: han_xue@stu.sdnu.edu.cn

HUAFENG LIU, School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, Shandong, PR China e-mail: hfliu_sdu@hotmail.com

[10]