ON A CLASS OF RIGHT HEREDITARY SEMIGROUPS

BY E. H. FELLER

1. Introduction. Throughout this paper all semigroups will have identity, and all S-systems (operands) will be right unitary S-systems. All homomorphisms will be S-homomorphisms unless specified.

An S-system P is projective iff for every epimorphism $g: M \rightarrow R$, and every homomorphism $h: P \rightarrow R$, there exists a homomorphism $k: P \rightarrow M$, such that gk = h, where M and R are S-systems. A semigroup S is called right hereditary provided every right ideal is projective.

This note provides a structure for right hereditary, principal right ideal semigroups with central idempotents as a union of left cancellative, principal right ideal semigroups.

- 1.1 DEFINITION. An S-system F is free provided there exists a subset X of F such that each element y of F has a unique representation y=xs, $x \in X$, $s \in S$. X is called a basis for F.
- 1.2 DEFINITION. An S-system N is called a *retract* of an S-system M provided there exists a diagram,

$$M \stackrel{f}{\rightleftharpoons} N$$

such that $fg=1_N$. Here f is an epimorphism, and g is a monomorphism.

The proofs of the following statements follow the usual diagrammatic procedures.

- 1.3 STATEMENT. Every free S-system is projective, and every retract of a projective S-system is projective.
 - 1.4 STATEMENT. Every S-system is the epimorphic image of a free S-system.
- 1.5 STATEMENT. Every projective S-system, which is the epimorphic image of an S-system M, is a retract of M.
 - 1.6 STATEMENT. An S-system is projective iff it is the retract of a free S-system.
- 1.7 STATEMENT. A semigroup S is right hereditary iff every subsystem of a projective S-system is projective.
- 1.8 STATEMENT. Let S be a semigroup where every right ideal is principal, and the left cancellation law holds, then every subsystem of a free S-system is free.

Received by the editors September 15, 1972 and, in revised form, September 12, 1973.

- 2. Properties of right hereditary semigroups. Note if e is any idempotent in S, then the mapping $s \rightarrow es$ combined with the identity mapping on eS implies that eS is a retract of S. Since S is free, then eS is projective by 1.3. Thus we have
- 2.1 Proposition. If every right ideal of S is generated by an idempotent, then S is right hereditary.
 - By 2.2 of [2, p. 16] we can write
 - 2.2 Proposition. Every completely right injective semigroup is right hereditary.
- 2.3 NOTATION. If $x \in S$ and xS is projective, we shall denote by $f_x: S \to xS$, where $f_x(s) = xs$. Since xS is a retract of S, there exists $g_x: xS \to S$ such that f_xg_x is the identity on xS.
- 2.4 Proposition. If S is right hereditary, then every principal right ideal xS is isomorphic to a right ideal eS, where $e^2 = e$, and $Sx \subseteq Se$.
- **Proof.** From 2.3, $xs=f_xg_x(xs)=xg_x(xs)$. For s=1, $x=xg_x(x)$. Applying g_x , we have $g_x(x)=g_x(x)g_x(x)$. Hence xS is isomorphic to $g_x(x)S$, and $Sx \subseteq Sg_x(x)$.
- 2.5 Proposition. If S is right hereditary with only one idempotent, then S is left cancellative.

Proof. If xa=xb, then $g_x(x)a=g_x(x)b$. Since $g_x(x)=1$, then a=b.

From the preceding discussion we can say,

- 2.6 Proposition. Let S be a principal right ideal semigroup. Then S is right hereditary iff each right ideal is isomorphic to a right ideal generated by an idempotent.
- 3. Principal right ideal semigroups with central idempotents. In this section, let S always denote a right hereditary, principal right ideal semigroup with central idempotents. Since the idempotents of S are central, by 2.4 we have $xS \subseteq g_x(x)S$, which is a two sided ideal.
 - 3.1 Proposition. If $xS \subseteq eS \subseteq g_x(x)S$ where $e^2 = e$, then $e = g_x(x)$.

Proof. Since xe = x, then $g_x(x)e = g_x(x)$. Since $eS \subseteq g_x(x)S$, then $g_x(x)e = e = g_x(x)$.

In this way we can associate with each right ideal xS the two sided ideal $g_x(x)S$, which is minimal with respect to the properties of containing xS and being generated by an idempotent.

Since the right ideals of S are dually well ordered, we can write the ideals generated by idempotents as a chain $S=e_0S \supset e_1S \supset e_2S \supset \cdots \supset e_\alpha S \supset \cdots$ where the subscripts belong to the set M_γ of all ordinals less than an ordinal γ . Let $T_\alpha=e_\alpha S \setminus e_{\alpha+1}S$.

3.2 LEMMA. If $x \in T_{\alpha}$, $y \in T_{\beta}$ where $\beta \leq \alpha$ $(e_{\beta}S \supset e_{\alpha}S)$, then xy and yx belong to T_{α} , and ye_{α} is a unit of T_{α} .

Proof. Since the right ideals are principal they are dually well ordered by inclusion $(aR \cup bR = aR \text{ or } bR)$, we can write by 3.1,

$$xS \subseteq e_{\alpha}S \subseteq yS \subseteq e_{\beta}S.$$

Then $g_xg_y(yx)=g_x(g_y(y)x)=g_x(e_\beta x)=g_x(x)=e_\alpha$. Suppose $yxS\subset eS\subset e_\alpha S$, where $e^2=e$. Then $g_xg_y(yx)=g_xg_y(yxe)=g_xg_y(yx)e$, or $e_\alpha=e_\alpha e$. Thus $e_\alpha=ee_\alpha$, since the idempotents are central. Hence $e_\alpha S=eS$. Thus it is impossible for yx to be contained in eS if eS is properly contained in $e_\alpha S$. Hence $yx\in T_\alpha$ by 3.1. Now $g_yg_x(xy)=g_y((g_x(x)y)=g_y(yg_x(x))=e_\beta g_x(x)=g_x(x)=e_\alpha$. Suppose as before $yxS\subset eS\subset e_\alpha S$. Then $g_yg_x(xy)=g_yg_x(xye)=g_y(xy)e$. Thus $e_\alpha=e_\alpha e$ and $e_\alpha S=eS$. Then, as before, by 3.1 we have $xy\in T_\alpha$. Thus T_α is a semigroup with identity e_α .

Since $e_{\alpha} \in yS$, then $e_{\alpha} = ys$. Thus $e_{\alpha} = (ye_{\alpha})(se_{\alpha})$ for $se_{\alpha} \in T_{\alpha}$. [For $se_{\alpha} \in e_{\alpha}S$, and se_{α} cannot be in a twosided ideal smaller than $e_{\alpha}S$ since $e_{\alpha} = (ye_{\alpha})(se_{\alpha})$].

We have shown ye_{α} is a right unit of T_{α} . Now T_{α} is left cancellative as will be shown in the next proposition. Hence ye_{α} is a unit of T_{α} .

3.3 Proposition The sets T_{α} of S are principal right ideal, left cancellative semigroups.

Proof. We have shown in 3.2 that T_{α} is a semigroup with identity e_{α} . If xy = xz for $x, y, z \in T_{\alpha}$, then $g_{\alpha}(x)y = g_{\alpha}(x)z$ and $e_{\alpha}y = e_{\alpha}z$. Thus y = z.

Let H be a right ideal of T_{α} . Then $K=H\cup e_{\alpha+1}S$ is a right ideal of S. For if $z\in e_{\alpha+1}S$, then $zS\subseteq e_{\alpha+1}S$. If $h\in H$ and $s\in e_{\beta}S$, $\beta>\alpha$ then $hs\in e_{\beta}S\subseteq e_{\alpha+1}S$. If $h\in H$ and $s\in e_{\beta}S$, $\beta\leq\alpha$, then $hs=(he_{\alpha})s=h(e_{\alpha}s)\in H$. Hence K=xS for $x\in T_{\alpha}$. By 3.2, $xS=xT_{\alpha}\cup e_{\alpha+1}S$ since if $e_{\alpha}S\subseteq yS$, then $xy=x(e_{\alpha}y)\in xT_{\alpha}$. Hence $H=xT_{\alpha}$.

Define the mapping $f_{\alpha\beta}: T_{\alpha} \to T_{\beta}$ for $\alpha \leq \beta$ by $f_{\alpha\beta}(a_{\alpha}) = a_{\alpha}e_{\beta}$ with $a_{\alpha} \in T_{\alpha}$. The mappings $f_{\alpha\beta}$ are semigroup homomorphisms, where $f_{\alpha\alpha}$ is the identity on T_{α} , and $f_{\beta\gamma}f_{\alpha\beta} = f_{\alpha\gamma}$ for $\gamma > \beta > \alpha$. In addition, the image of $f_{\alpha\beta}$ is contained in the group of units of T_{β} .

We have proved the converse part of

3.4 Structure Theorem. (1) Let M be a well ordered set such that for each $\alpha \in M$, there corresponds a left cancellative, principal right ideal semigroup T_{α} with identity e_{α} . For each α , β of M with $\alpha < \beta$, let there correspond a homomorphism $f_{\alpha\beta}: T_{\alpha} \to T_{\beta}$ such that $f_{\beta\gamma}f_{\alpha\beta}=f_{\alpha\gamma}$ for $\gamma > \beta > \alpha$, and where the image of $f_{\alpha\beta}$ is contained in the group of units of T_{β} . Let $f_{\alpha\alpha}$ denote the identity mapping on T_{α} , and S be the union of the T_{α} . Define the product $a_{\alpha}b_{\beta}=f_{\alpha\gamma}(a_{\alpha})f_{\beta\gamma}(b_{\beta})$ where $\gamma=\alpha \vee \beta$ for $a_{\alpha}\in T_{\alpha}$, $b_{\beta}\in T_{\beta}$. Then S is a right hereditary, principal right ideal semigroup whose idempotents are in the center. Conversely, each such semigroup is of this form.

⁽¹⁾ Statement suggested by A. H. Clifford.

Proof. The associativity of $S = \bigcup T_{\alpha}$ follows directly as in [1, p. 128]. Now $f_{\alpha\beta}(e_{\alpha}) = e_{\beta}$, since $f_{\alpha\beta}(e_{\alpha})$ is an idempotent unit of T_{β} . Hence $e_{\beta}e_{\alpha} = f_{\beta\beta}(e_{\beta})f_{\alpha\beta}(e_{\alpha}) = e_{\beta}e_{\beta} = e_{\beta}$ and $e_{\alpha}e_{\beta} = f_{\alpha\beta}(e_{\alpha})f_{\beta\beta}(e_{\beta}) = e_{\beta}e_{\beta} = e_{\beta}$ for $\alpha < \beta$. Thus $e_{\alpha}S \supset e_{\beta}S$ for $\alpha < \beta$, and $T_{\alpha} = e_{\alpha}S \setminus e_{\alpha+1}S$. By the definition of $f_{\alpha\beta}$ the idempotents are in the center.

Let H be a right ideal of S. If $x \in H$ and $x \in T_{\alpha}$, then for $\alpha < \beta$, H contains $xe_{\beta}=f_{\alpha\beta}(x)e_{\beta}$, which is a unit of T_{β} by hypothesis. Thus H contains $e_{\beta}S$ for $\beta > \alpha$. Let α be the least index with respect to the condition that $x \in H$, $x \in T_{\alpha}$. Then $H=K \cup e_{\alpha+1}S$ where K is a right ideal of T_{α} . Thus $K=yT_{\alpha}$, $y \in T_{\alpha}$. Then H=yS, which follows directly by using the definition of multiplication.

The mapping $xs \rightarrow e_{\alpha}s$, for all $s \in S$ is an S-isomorphism of xS onto $e_{\alpha}S$. By 2.6, then S is right hereditary.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Amer. Math. Soc. Math. Surveys 7, Vol I (Providence, 1961).
- 2. E. H. Feller and R. L. Gantos, Completely injective semigroups with central idempotents, Proc. Glasgow Math. Assoc. Vol. 10, (1969), 16-20.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF WISCONSIN, MILWAUKEE, WISCONSIN 53201, U.S.A.